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Abstract

Quantitative proteomics experiments are usually performed using proteolytic peptides as surrogates for their
parent proteins, inferring protein amounts from peptide-level quantitation. This process is frequently dependent
on complete digestion of the parent protein to its limit peptides so that their signal is truly representative.
Unfortunately, proteolysis is often incomplete, and missed cleavage peptides are frequently produced that
are unlikely to be optimal surrogates for quantitation, particularly for label-mediated approaches seeking to derive
absolute values. We have generated a predictive computational tool that is able to predict which candidate
proteolytic peptide bonds are likely to be missed by the standard enzyme trypsin. Our cross-validated prediction
tool uses support vector machines and achieves high accuracy in excess of 0.94 precision (PPV), with attendant
high sensitivity of 0.79, across multiple proteomes. We believe this is a useful tool for selecting candidate quan-
totypic peptides, seeking to minimize likely loss owing to missed cleavage, which will be a boon for quantitative
proteomic pipelines as well as other areas of proteomics. Our results are discussed in the context of recent results
examining the kinetics of missed cleavages in proteomic digestion protocols, and show agreement with observed
experimental trends. The software has been made available at http://king.smith.man.ac.uk/mcpred.

Introduction

Experimental proteomic strategies, whether qualita-
tive or quantitative, usually rely on the generation of

proteolytic peptides that act as proxy molecules for charac-
terization of their parent proteins, usually via mass spec-
trometry. This is the cornerstone of all bottom-up proteomic
pipelines, and trypsin remains the enzyme of choice for most
laboratories. This is due to its affordability and highly specific
cleavage rules, which generate peptides guaranteed to con-
tain at least one charged basic group, making them compati-
ble with straightforward ionization and analysis with most
mass spectrometry platforms. The tryptic peptides generated
are typically then characterized by product ion spectra via
tandem mass spectrometry, matched to database peptides to
generate peptide spectrum matches (PSMs), leading to can-
didate identifications for their parent proteins. Equally, in a
quantitative context they act as surrogate molecules for their
parent proteins, acting as the major determinant for quanti-
tative proteomics, whether it seeks to be relative or absolute.
Given that the goal of such experiments is to quantify the
proteins, not their peptides per se, they should be stoichio-
metric with the parent protein to enable accurate quantitation,
particularly if the goal is to derive absolute quantitation. For

example, if there is some signal loss, or the protein signal is
split into multiple overlapping peptides, the signal will be
attenuated and the quantification will be underestimated. For
relative quantification strategies, similar problems could be
induced from non-reproducible digestion strategies and/or
choice of missed cleavage peptides. Such an undesired out-
come would be produced if the signal is split across multiple
peptidic species due to incomplete proteolytic digestion or
post-translational modifications. Unfortunately, the proteo-
lytic digestion of proteome proteins is frequently incomplete,
and missed cleavages are often generated in addition to or
instead of the limit peptides produced if every tryptic site is
cut with 100% efficiency. We observed roughly 40% of all
peptides captured in a local proteomics repository containing
one or more tryptic site (Siepen et al., 2007), highlighting this
issue.

We believe this problem is particularly acute for targeted
proteomics strategies using selected peptides as proteotypic
(or quantotypic) surrogate markers of protein abundance,
such as that required for the AQUA (Gerber et al., 2003) or
QconCAT approach (Beynon et al., 2005; Pratt et al., 2006). It is
essential in such cases to select peptides that are genuinely
‘‘quantotypic.’’ This means that that they readily ionize and
are observed in the mass spectrometer, and also that no signal
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is lost owing to missed cleavage or post-translational modi-
fication. These are important criteria to consider in targeted
absolute quantitation experiments using selected reaction
monitoring (SRM) (Lange et al., 2008; Picotti et al., 2009, 2008,
2010). Signal loss from missed cleavages can also potentially
affect relative quantitation strategies; although the splitting
of the peptide signal can be partly mitigated if sample
preparations are identical, this is usually not perfectly
achieved, and adds a further source of variance to the ex-
perimental pipeline. Indeed, some label-free pipelines prefer
to omit missed cleavages from consideration, and we sug-
gest that they are generally best avoided in quantitative
proteomic pipelines.

In this study, we have built upon a previous missed
cleavage predictor (Siepen et al., 2007) to generate a much
expanded dataset of missed and fully cleavage peptides, and
derive a superior tool using machine learning techniques. The
new tool outperforms the previous one, producing an overall
prediction success of 94% positive predicted value (PPV), at a
good sensitivity (recall) of 79%, and an overall validated area
under the ROC curve (AUROC) of 0.88. Its intended use is as
part of a pipeline selecting candidate quantotypic peptides for

targeted proteomics experiments exploiting SRM, but we
believe it has wider applicability in quantitative proteomics.
We demonstrate its superior performance across multiple
example proteomes, and have made it available via http://
king.smith.manchester.ac.uk/mcpred.

Materials and Methods

Tryptic site dataset generation

The process for assembling the tryptic site context data is
summarized in Figure 1. It is worth noting that generation of a
learning set for this task is non-trivial, particularly for the set
of cleaved bonds associated with limit peptides; care must be
taken to ensure that no missed cleaved sites contaminate the
cleaved dataset. To this end we adopted a fairly conservative
strategy that nevertheless generated a substantive dataset of
peptides and associated cleaved/uncleaved tryptic sites,
which is summarized in Table 1. The datasets were generated
from 76 non-ICAT experiments downloaded from Pepti-
deAtlas (Deutsch, 2010), covering three model organism
proteomes, comprised of 32 from S. cerevisiae, 11 from C. ele-
gans, and 33 from D. melanogaster. All peptide spectrum

FIG. 1. Flowchart describing the generation of the two datasets used to train and test the missed cleavage predictor.
Peptides that satisfy an iProphet probability threshold of p ‡ 0.7 are taken from 76 PeptideAtlas experiments across
S. cerevisiae, C. elegans, and D. melanogaster. The missed cleaved dataset is obtained from all peptides containing internal
missed cleavages. The cleavage dataset is taken as any tryptic site within the whole proteome where both peptides on either
side of the site occur at least four times and are never observed as missed.

450 LAWLESS AND HUBBARD



matches were retained that passed a minimum iProphet
(Shteynberg et al., 2011) threshold of p ‡ 0.7. The missed
cleaved site data were collated using all 67,847 peptides
containing internal missed cleavages, resulting in 61,607 un-
ique missed cleaved sites. The cleaved site dataset was de-
rived by first performing an in-silico trypsin digestion on the
three complete proteomes, and then classifying tryptic sites as
cleaved if: (1) there were at least four independent observa-
tions of the attendant peptides on both sides of the tryptic site,
and (2) there were no observations of a missed cleavage
containing peptide spanning the site, even with a low iPro-
phet score.

This conservative definition produced 18,199 unique
cleaved sites. For both the missed and cleaved datasets a 9-mer
was taken, consisting of the tryptic site – four residues. Where
the tryptic site was located within four residues of the N or
C terminus, the character Z was substituted to make up to a
full 9-mer.

Sites to features

In preparation for support vector machine (SVM) training,
the tryptic site datasets were converted into numerical feature
vectors that retained both the position and residue-specific
information. The 20 amino acids (plus Z) were indexed (i)
from 1–21. The feature value (x) representing each position (n)
in the 9-mer was calculated as: x = 21n + i, where the first
position in the 9-mer is zero. For example, if glutamic acid
(with an index of 4) occurs at the second position in the 9-mer
the feature value is 25, and if the last position of the 9-mer is Z
the value is 189.

Support vector machines (SVM)

SVMlight was chosen as the implementation of SVM for
training and testing ( Joachims, 1999). The missed cleaved
dataset was assigned as the positive target, and the cleaved
dataset as the negative target for the training step. The radial
basis function was used for learning, for which the gamma
parameter was optimized to maximize sensitivity · PPV, and
training errors were weighted to account for the unbalanced
dataset.

Prediction performance and validation

The dataset was split into two groups, 10% held back for
validation, and 90% used for 10-fold cross-validation training

and testing. The performance of the predictor was assessed on
both the cross-validation dataset and further validated on the
unseen 10%. Prediction performance was measured using the
usual statistics of sensitivity, PPV, and AUROC. In this case, a
high sensitivity means a high proportion of the missed
cleavages are correctly predicted (few Type II errors), and
high PPV reflects that a high proportion of predicted sites are
truly missed (few Type I errors), both of which are desirable in
this case.

The final SVM predictor was compared with our previous
published missed cleavage predictor, which used an infor-
mation theoretic approach and a smaller learning set (Siepen
et al., 2007).

Results

Amino acid propensities

As a first look at the missed and cleaved datasets, the amino
acid propensities at each position in the 9-mer were calculated.
The log ratio of missed to cleaved propensities are shown in
Figure 2 for P5–P2 and P1¢–P4¢, the four sites immediately N
and C terminal of the tryptic site following the pattern P5-P4-
P3-P2-P1-P1¢-P2¢-P3¢-P4¢ according to the Schechter and Ber-
ger notation (Schechter and Berger, 1967). The P1 position is
omitted, as this does not provide any novel information (all P1
positions are either lysine or arginine).

The most striking feature of Figure 2 is the large lysine/
arginine propensity in missed cleaved sites, particularly
N-terminal to the tryptic site (P2–P5), where there is approx-
imately a 10-fold difference in propensity at P2 and P3 com-
pared to cleaved sites. Looking C-terminal to the tryptic site,
the propensities for arginine/lysine are reduced, though still
present at P1¢, P3¢, and P4¢. There is an increase in glutamic
acid propensity at all positions in missed cleaved sites com-
pared to cleaved sites, which is more pronounced at P1¢ and
P2¢. Similarly, the presence of aspartic acid at P1¢ and P2¢
appears to discourage efficient trypsin cleavage, and also has
an influence N-terminal to the tryptic site at P2. These ob-
servations are consistent with previously reported studies
(Monigatti and Berndt, 2005; Thiede et al., 2000; Yen et al.,
2006), which note the difficulty in observing efficient cleavage
at dibasic sites (KK, KR, RR, and RK), and sites where there is
potential to form a salt bridge between acidic side chains and
the basic site at P1.

Interestingly, from the cleaved point of view, the most in-
fluential amino acid appears to be tyrosine at position P1¢. An

Table 1. Summary Table of Proteins, Peptides, and Tryptic Sites Obtained from PeptideAtlas (at p ‡ 0.7)

to Create the Dataset for the Missed Cleavage Predictor

S. cerevisiae C. elegans D. melanogaster Combined

Proteins 5124 8547 9673 23,344
Proteins with mc peptides 4088 4799 5337 14,224
Peptides 111,119 (10,872) 57,652 (57,652) 71,574 (64,332) 2,340,345 (229,784)
Peptides with no mc 77,505 (75,819) 41,644 (41,644) 53,349 (47,645) 172,497 (164,348)
Peptides with 1 mc 27,417 (26,838) 13,704 (13,704) 15,412 (14,075) 56,533 (54,472)
Peptides with 2 mc 5365 (5254) 2300 (2300) 2722 (2545) 10,387 (10,082)
Peptides with 3–6 mc 832 (811) 4 (4) 91 (67) 927 (882)
Missed cleavage sites 29,176 (28,489) 16,589 (16,478) 18,678 (17039) 64,443 (61,607)
Cleavage sites 11,666 (11,086) 11,695 (3333) 17,449 (3924) 40,810 (18,199)

The non-redundant counts of the peptides and tryptic sites are displayed in parentheses (mc = missed cleavage).
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unexpected result is the positive influence cysteine seems to
have at all 8 positions, with the greater impact being at the N-
terminal positions. It is not straightforward to rationalize this
result, which we believe may be partly associated with the
difficulties encountered in dealing with reduced/oxidized
cysteines in proteomics experiments, and their relative low
abundance in proteins in general. Of the remaining residues,
seven show a consistently higher propensity at all sites for
cleavage (phenylalanine, glycine, histidine, asparagine, glu-
tamine, serine, and tryptophan), albeit these residues do not
show as high a propensity as those mentioned above, and

generally are not as striking as those with strong propensities
for missed cleavage.

Taking the amino acid propensities for both missed
and cleaved across all sites, the information content was
calculated as:

ISi
¼+ abs(log(PrjSi

))

where the information content Is is equal to the summed ab-
solute value of the logged propensities PrS for all residues
r within position S. This showed that the two positions
immediately N- and C-terminal to arginine/lysine contrib-
ute *65% of the total information provided by all eight po-
sitions, suggesting that the majority of information pertaining
to missed cleavage comes from the P3, P2, and P1¢, P2¢ sites
local to the scissile bond.

The amino acid propensities were also calculated for the
three individual proteomes that contribute to the combined
missed and cleaved datasets (see Supplementary Figs. 1–3 at
www.liebertpub.com/omi). < http://www.liebertpub.com/
omi.) > ). Comparing the positional propensities via a linear
regression (Fig. 3), shows that propensities for 6 out of the 8
positions are highly correlated (R2 > 0.7, p < 0.001), and that
therefore these trends are generalizable. Notably, this does
not appear to be the case at P4 and P3¢, although both these
sites have relatively reduced contributions to the information
content at P1.

Predictor performance

Moving on from propensities, we evaluated the perfor-
mance of the SVM trained on this data. The performance
statistics for the fully-trained SVM and the information theory
predictor are shown in Table 2, covering sensitivity, specific-
ity, PPV, sensitivity · PPV, and AUROC. As a binary classi-
fier, the SVM predictor achieves a respectable sensitivity of
0.79, coupled with a high PPV of 0.94, on the cross-validated
test data. Compared to the recommended 0.5 score cut-off for
the information theory approach, the SVM is clearly superior,
although this earlier classifier was trained on a considerably
reduced dataset compared to the current version. Indeed, the
sensitivity of the information theory predictor only achieves
0.02 on the current dataset, which suggests that the 0.5 cut-off
needs revising. It is also worth noting that the original pre-
dictor was designed for a different task: namely, predicting
clearly missed cleavage cases with high PPV (rather than good
sensitivity). Indeed, optimizing the SM - SC threshold score
used for the information theoretic method on the current test
dataset to maximize sensitivity · PPV results in a lower
threshold of - 0.12, which generates a considerably improved
sensitivity of 0.70 with a PPV of 0.88. This is still inferior to the
SVM predictor, however. The precision-recall plot in Figure
4A shows that the SVM predictor achieves a higher PPV at
any given sensitivity than the information theory approach
for the test data, demonstrating its superiority.

The SVM predictor performance on the validation dataset
is marginally better than on the test data, suggesting that the
SVM has not been over-trained and has produced a good
generalized model. The marginal improvement of the vali-
dation data over the test data is noticeable for the specificity,
increasing to 0.83 from 0.82. Again, the information theory
approach appears to be a poorer performer using the re-
commended threshold (see Table 2, validation data). Using

FIG. 2. Histograms are shown plotting log10 ratio propen-
sities for given amino acids to lead to missed cleavage
around tryptic sites. Graphs are plotted for the four residues
immediately N and C terminal of a generic tryptic site fol-
lowing the pattern P5-P4-P3-P2-P1-P1¢-P2¢-P3¢-P4¢, where the
tryptic site is cut between P1 and P1¢. Data for P1 are not
shown due to the lack of new information content (since they
are all lysine or arginine).
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the SM – SC threshold optimized on the test data ( - 0.12), a
sensitivity of 0.70 and PPV of 0.89 are reached (data not
shown). Despite this, the SVM can still outperform the infor-
mation theory approach (Fig. 4B).

The trained SVM provides the distance from the hyper-
plane for each prediction as part of its output, and we assume
that the distance from the hyperplane is indicative of a more
confident class prediction. In order to provide a more mean-
ingful and intuitive score for end users, the hyperplane dis-
tances are scaled from 0 to 1. For both the test data and
validation data, performance statistics were plotted on Figure
4A and B for scaled hyperplane intervals from 0.1 to 0.9. As
the score increases the PPV increases, but sensitivity is sacri-
ficed. For the purposes of peptide selection for quantitation
experiments, a slight over-prediction of missed sites is pref-
erable, permitting some fully cleaved sites to be mispredicted
(false-positives); the opposite is certainly more unfavorable.
With this in mind a reduction in PPV can be tolerated in favor

of an increase in sensitivity. A hyperplane threshold of 0.4
provides high sensitivity > 0.85, while still retaining a PPV >
0.9. If one would prefer to be more accurate on the missed
cleavage prediction the threshold need only be raised, bearing
in mind that a portion of real missed cleavages will be
wrongly predicted to be cleaved.

Discussion

We report here a novel prediction algorithm that is able to
identify candidate tryptic sites likely to lead to incomplete
proteolysis with high accuracy, achieving PPVs over 94% at
high sensitivity. This tool has been made available to the
proteomics community, and we believe it has utility for
groups aiming to select candidate surrogate peptides for
quantitative proteomics experiments.

The success of this predictor runs parallel to ongoing ex-
perimental studies that are attempting to examine the kinetics

FIG. 3. This histogram shows the linear regression (R2) of missed to cleaved propensity ratios at each position across the
three proteomes used to create the dataset.

Table 2. Performance Statistics for the Support Vector Machine (SVM) Predictor and the Information Theory

Approach Set at the Recommended Threshold of SM - SC ‡ 0.5

Sensitivity Specificity PPV SN · PPV AUROC

Test set
SVM 0.79 0.82 0.94 0.74 0.88
Information theory 0.02 1.00 0.99 0.02 0.76

Validation set
SVM 0.79 0.83 0.94 0.74 0.88
Information theory 0.02 1.00 0.99 0.02 0.77

SN, sensitivity; AUROC, area under the ROC curve; PPV, positive predicted value.
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of incomplete proteolysis for a number of relevant exemplar
cases (Brownridge and Beynon, 2011; Brownridge et al., 2011).
These studies highlight the effect that dibasic sites can have on
the kinetics of cleavage, and importantly rationalize the re-
sults for interspersed dibasic sites, where there is a gap be-
tween the lysine/arginine and the P1 site. Importantly, the
inability of trypsin to act as a dipeptidyl peptidase, cleaving
peptides at the N-terminus, are reported. These trends are
clearly represented in our data, as shown in Figure 2, where
the marked arginine/lysine propensities for missed cleavage
are present on the non-prime, N-terminal side, in complete
accordance with Brownridge and Beynon (Brownridge and

Beynon, 2011). Indeed, both of these studies were motivated
by a need to improve our understanding of (in)complete
proteolysis in the context of selecting surrogate peptides for
absolute quantitation of an entire proteome (Brownridge
et al., 2011). For this ambitious and challenging project to
quantify the yeast proteome, we have observed peptides that
are apparently susceptible to missed cleavage, and see direct
evidence that incomplete cleavage can lead to inaccurate
quantitation estimates. This was particularly notable in our
early designs, and our current approach has been modified to
consider these effects directly when selecting Q-peptides for
QconCATs. We note that approximately 25% of the candidate

FIG. 4. Precision-recall plots showing the performance of both the support vector machine (SVM) predictor and the
information theory approach for the test data (A) and the validation data (B). The scaled SVM outputs are shown for 0.1–0.9
on both plots, providing a more intuitive score from which to define a threshold for practical purposes (PPV, positive
predicted value).
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peptides available in the yeast proteome between 6 and 30
amino acids in length have a dibasic context at one or both of
the N- and C-terminal scissile bonds, highlighting the wide-
spread significance of this phenomenon.

Although the prediction tool performs well, it is worth re-
membering that missed cleavage is not a discrete concept, and
that in reality an equilibrium will exist between cleaved/un-
cleaved states for most susceptible bonds. We were mindful of
this when designing our datasets, considering any evidence
that a site could be missed as evidence for inclusion in the
‘‘missed’’ dataset. Given the wide variety of experimental
conditions used to derive the raw data, there will naturally be
some variance beyond our ability to control, although these
experiments all sought to digest proteins to completion. The
scaled hyperplane distance is therefore a useful metric to rank
predicted missed tryptic sites, with larger scores reflecting
sites that are more difficult to digest, and the converse for
those that are easily cleaved. The full extent of this relation-
ship, however, requires further experimental validation.

Prediction of missed cleavage can have other important
applications in experimental proteomics. It has already been
used by other groups for improvement of peptide mass fin-
gerprinting scoring (Li et al., 2011; Siepen et al., 2007), and
indeed we used it ourselves for the prediction of quantotypic
peptides (Eyers et al., 2011). Since this latter method essen-
tially attempts to predict the ‘‘detectability’’ of peptide ions in
the mass spectrometer, it could also have applications in label-
free quantitation techniques, which normalize spectral counts
based on the likelihood of observing a given peptide, such as
APEX (Lu et al., 2007).

We suggest some guidelines for the use of our predictor,
based on our experience of selecting and designing peptides
for incorporation into QconCATs for absolute quantification
(Pratt et al., 2006), but will be equally applicable for AQUA
approaches (Gerber et al., 2003). Clearly, an absence of missed
cleavages is desirable in both the surrogate peptides and the
endogenous protein. In the case of the latter, missed cleavages
can be generated from two candidate bonds in the endoge-
nous protein surrounding the peptide used for quantitation.
In our protocol for QconCATs, peptides are typically selected
based on a set of composition filters, avoiding unwanted
modifications and fragmentation pathways. The remaining
peptides are then ranked by whether they have been previ-
ously observed (Deutsch, 2010), and on their predicted de-
tectability (Eyers et al., 2011), in order to select the best
possible candidate for the proteins of interest. The ability to
predict a peptide’s ‘‘cleavability’’ provides an additional filter
to rank candidate peptides. The ideal peptide would therefore
have the maximal detectability and cleavability. The top-
ranked peptide by detectability (i.e., proteotypic) may have
poor tryptic contexts, and thus despite being readily detected
via mass spectrometry, will lead to lower abundance esti-
mates, as the signal is attenuated through inefficient cleavage
of the scissile bonds. This is an important distinction between
proteotypic and quantotypic. The former is well served by
several good proteotypic predictors (Fusaro et al., 2009;
Mallick et al., 2007; Tang et al., 2006; Webb-Robertson et al.,
2010), but these tools make no direct inclusion of missed
cleavage.

In the case of QconCATs, the predictor has a further ap-
plication, in the physical Q-peptide order within the con-
struct. A missed cleavage occurring within the synthetic

QconCAT protein would essentially result in an overestimate
of the analyte peptide, as the reference peptide would be at a
lower abundance than the level of QconCAT spiked in. In an
attempt to avoid this, the predictor can be used to find the
order of peptides providing the optimum cleavage efficiency
across the entire QconCAT.
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