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Abstract

Significance: Head and neck squamous cell cancer (HNSCC) is a complex disease characterized by high
genetic and metabolic heterogeneity. Radiation therapy (RT) alone or combined with systemic chemotherapy is
widely used for treatment of HNSCC as definitive treatment or as adjuvant treatment after surgery. Antibodies
against epidermal growth factor receptor are used in definitive or palliative treatment.
Recent Advances: Emerging targeted therapies against other proteins of interest as well as programmed cell
death protein 1 and programmed death-ligand 1 immunotherapies are being explored in clinical trials.
Critical Issues: The disease heterogeneity, invasiveness, and resistance to standard of care RT or chemor-
adiation therapy continue to constitute significant roadblocks for treatment and patients’ quality of life (QOL)
despite improvements in treatment modality and the emergence of new therapies over the past two decades.
Future Directions: As reviewed here, alterations in redox metabolism occur at all stages of HNSCC man-
agement, providing opportunities for improved prevention, early detection, response to therapies, and QOL.
Bioinformatics and computational systems biology approaches are key to integrate redox effects with mul-
tiomics data from cells and clinical specimens and to identify redox modifiers or modifiable target proteins to
achieve improved clinical outcomes. Antioxid. Redox Signal. 29, 1660–1690.
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Introduction

A systematic review of the literature is presented here
outlining the role of redox metabolism and regulation

in head and neck squamous cell cancer (HNSCC). HNSCC
is a broad term encompassing malignancies of the squa-
mous epithelium in the upper aerodigestive tract and is the
eighth most common cause of cancer death worldwide (153).
HNSCC management presents with multiple treatment
challenges limiting overall survival (OS) rates and affecting

patients’ quality of life (QOL). Shifts in redox metabolism
leading to accumulation or suppression of reactive oxygen
species (ROS) are present at all stages of HNSCC underlying
cancer etiology, progression, response to therapies, and QOL
post-treatment (Fig. 1). Smoking, environmental pollutants,
infection with viruses or pathogenic bacteria, chronic in-
flammation, and diet/microbiota generate ROS, and are well-
established factors of malignant transformation (77). ROS
further support tumor growth and metastasis by facilitating
angiogenesis and cell invasion processes. The dependence of
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cancer on ROS and redox-regulated processes also enables
the manipulation of these species as anticancer agents
through the use of ROS-inducing ionizing radiation (IR),
targeted agents, and systemic chemotherapies (77, 82, 141).
Suppression of ROS and upregulation of DNA-damage re-
sponses have emerged as major mechanisms of resistance
to standard of care not only in HNSCC but also across
cancers. Dysregulation of redox metabolism is also re-
sponsible for the side effects of treatment impacting the
QOL of HNSCC patients (e.g., oral mucositis and xer-
ostomia), and treatments to alleviate these involve restora-
tion of redox homeostasis.

Prevention: Redox Effects in HNSCC Etiology

Multifactorial interactions between environment and ge-
netic mutations play a critical role in the development and
complexities of staging HNSCC. Key etiologic factors as-
sociated with HNSCC are tobacco smoking, alcohol con-
sumption, and genetics. More recently, human papillomavirus
(HPV) emerged as an important etiologic factor, in particu-
lar for oropharyngeal HNSCC (91, 242, 306). These envi-
ronmental stressors induce acute or chronic shifts in redox
homeostasis promoting inflammation and neoplastic trans-
formation.

Tobacco smoke

It is estimated that 42% of the HNSCC deaths worldwide
can be attributed to smoking alone (153). Studies show that
each puff of smoke contains 5000 carcinogenic compounds
that produce 1015 free radical molecules in the gas phase
(121). Once inhaled, these compounds are metabolized either
by the cytochrome P450 (CYP) super family of proteins
(CYP1A1, CYP1A2, CYP2E1, and CYP2A6) leading to
DNA adduct formation or by glutathione S-transferases
(GSTs; GSTM1, GSTT1, and GSTP1) leading to secretion
(85). The activities of both CYP and GST families of en-

zymes depend on the availability of reducing equivalents
controlled by the nicotinamide adenine dinucleotide phos-
phate [NAD(P)H]/NAD(P)+ or reduced/oxidized glutathi-
one (GSH/GSSG) redox couples, respectively. Exposure to
cigarette smoke increases oxidative damage rate by 30–50%
(183), inducing either cell death by activation of ceramide-
mediated apoptosis or cell proliferation by activation of
epidermal growth factor receptor (EGFR) (120). Prolonged
exposure to cigarette smoke also leads to increased GSSG,
which has two consequences: (i) limits the availability of
reduced GSH needed for the detoxification activity of GSTs
and (ii) activates inflammatory pathways, including nuclear
factor kappa-light-chain enhancer of activated B cells (NF-
jB) and nuclear factor-erythroid 2-related factor 2 (NRF2)
(85, 111). These result in increased gene expression, release
of cytokines (121), and onset of chronic inflammation. The
shift to a more oxidative environment could potentially
further enhance the activity of EGFR through oxidation at
Cys797 in the active site of this enzyme as reported in recent
studies (229) and further detailed hereunder.

Alcohol consumption

Alcohol consumption in conjunction with tobacco smok-
ing increases the risk for HNSCC (91, 242, 306). Excessive
alcohol consumption increases mucosa permeability to toxins
and reduces epithelial thickness, leading to damage of vital
structures and tumor formation (193). Ethanol, for example,
can be metabolized to carcinogenic acetaldehyde by alcohol
dehydrogenase in the mitochondria or NADPH-dependent
CYP2E1 in the microsomal ethanol oxidizing system (187).
Catalase (CAT), an antioxidant enzyme with the main
function of catalyzing H2O2 dismutation into H2O and O2,
can also oxidize ethanol to acetaldehyde in peroxisomes in
the presence of H2O2. Similar to ROS species, acetaldehyde
interacts with proteins and nucleic acids to form adducts,
which interfere with critical cellular functions such as DNA
synthesis and repair (43).

FIG. 1. Stages during HNSCC development and their relationship with altered redox homeostasis. ROS underlies
cancer etiology, progression, and response to treatment, and is used for diagnosis and improving patient’s QOL. CRT,
chemoradiation therapy; CT, computed tomography; EGFR, epidermal growth factor receptor; HNSCC, head and neck
squamous cell cancer; HPV, human papillomavirus; MRI, magnetic resonance imaging; NAC, N-acetylcysteine; PET,
positron emission tomography; QOL, quality of life; ROS, reactive oxygen species; SOD, superoxide dismutase. To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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Genetic factors

The relationship between genetic factors and ROS me-
tabolism is not inherently obvious, but a strong case can be
made by the data summarized here. Variant alleles of genes
involved in carcinogen metabolism, alcohol and folate me-
tabolism, and DNA repair and cell cycle control are thought
to play a role in development of HNSCCs. Meta-analyses
have focused on carcinogen metabolism enzymes such as
CYP super family of enzymes and the antioxidant enzymes
GSTs, introduced previously (2, 169). For example, several
studies demonstrated an increased risk of HNSCCs in indi-
viduals with GSTP1 I105V mutation associated with in-
creased DNA oxidative products (156, 198, 225). Presence of
the null GSTMm1 genotype versus the positive genotype also
increases the risk for HNSCC (225). Genetic variants of cell
cycle control gene, TP53, are also common in HNSCCs and
increase HNSCC risk by 75% (36, 185). The G to C poly-
morphism in codon 72 of exon 4 results in an arginine to
proline substitution in TP53. Although both variants are wild-
type (WT), the proline/proline genotype was shown to be less
effective in suppressing cellular transformation and showed a
higher risk for HNSCC than individuals with the arginine/
arginine genotype (36, 185). Striking ethnic differences have
been observed in the frequencies of these variants, with the
proline allele showing a latitude gradient from 0.17 in a
Swedish population to 0.63 in a Nigerian population (18, 274).
The role of 1-C/folate metabolism in maintaining the reduced
NADPH pool has been reported in several publications (102,
289). Relationships between polymorphisms in folate metab-
olism enzymes (e.g., methylenetetrahydrofolate reductase
[MTHFR], serine hydroxymethyltransferase [SHMT]), tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL), and
immune response factors (e.g., interleukin [IL]-8, toll-like re-
ceptor 10 [TLR10]), and HNSCC risks have been investigated
(115, 218, 246, 304). However, the number of such studies is
limited, and it is difficult to draw definite conclusions.

Human papillomavirus

The incidence of HNSCCs caused by tobacco and exces-
sive alcohol consumption is decreasing, whereas there is an
increase in incidence of HNSCCs in younger white individuals
and nonsmokers due to infection with ‘‘high-risk’’ HPVs (e.g.,
HPV subtype 16, which accounts for 87% of all HPV+ tumors)
(51, 80). Of note, HPV- tumors do not necessarly imply virus-
free HNSCCs and the tumors may be positive for other viruses
such as EBV, HCV, HSV, or HIV. The HPV viral genes are
divided into ‘‘early’’ genes (E1–7) and ‘‘late’’ genes (L1, L2).
Two ‘‘early’’ genes (E6, E7) are considered tumorigenic.
Mechanisms involve suppression of p53 and retinoblastoma
protein (pRb) function and induction of oxidative stress (180,
196, 316) by activation of NADPH oxidase 2 (NOX2) (196)
and by suppression of antioxidant proteins superoxide dis-
mutase 2 (SOD2) and glutathione peroxidase 1/2 (GPX1/2)
(316). Consequently, ROS accumulation in HPV+ cells con-
tributes to DNA damage and genomic instability needed for
HPV-induced tumorigenesis and synergizes with IR by
forming clustered lesions that are highly lethal (196), in
keeping with the clinical observation that patients with HPV+

head and neck tumors have a more favorable outcome after
chemoradiation therapy (CRT) than patients with HPV- tu-
mors (6, 101). In turn, a more oxidative environment promotes

several stages of HPV infection, including viral entry, DNA
replication, and integration into the host genome (83, 317). In
the case of HNSCCs, it has been shown that HPV16 utilizes a
tissue-spanning redox gradient to facilitate viral maturation,
and a complete viral life cycle can occur in oral (tonsil) tissue
(151). HPV vaccines such as Gardasil� and Cervarix�, which
are currently being evaluated for prevention of HPV-related
HNSCCs, (135) are expected to decrease the incidence of
HPV+ HNSCCs though their efficacy under increased oxida-
tive stress environments remains to be tested. Common diag-
nostic methods for HPV positivity in HNSCCs include
detection of viral DNA with in situ hybridization or poly-
merase chain reaction (PCR), and detection of p16 (a surrogate
marker for HPV infection) protein expression with immuno-
histochemistry [reviewed in Chai et al. (51), Mirghani et al.
(206), and Venuti and Paolini (303)]. With each of these
methods providing different information and having their own
specific limitations, there is currently no consensus on the
optimal way to identify HPV-related HNSCC.

Detection and Diagnosis: Redox Biomarkers
in HNSCC Detection

HNSCC patients can present with various precancerous
conditions and lesions depending on the tumor location within
specific areas of the head and neck. The most common symp-
toms presented by HNSCC patients include chronic sore throat,
difficulty swallowing, a change or hoarseness in the voice, and a
lump or sore that does not heal. There are currently no bio-
markers for early HNSCC detection. Although preclinical
studies to identify possible markers for early cancer detection
have been reported (e.g., EGFR, serum antioxidant CAT, and
GSH levels), these remain exploratory (126). DNA methylation
patterns appear gradually due to environmental influences (i.e.,
tobacco and alcohol use), and are thus considered as poten-
tial source of biomarkers. Epigenetic modifications are essen-
tial for regulation of cell cycle control (i.e., p16 and p14), DNA
repair, and apoptosis. Longitudinal studies reported higher hy-
permethylation of p16 in precancerous lesions leading to in-
creased tumor progression compared with hypomethylation of
p16 in precancerous lesions leading to tumor regression (46,
131). Clearly, the GSH levels and epigenetic DNA methyla-
tion are mechanistically connected as S-adenosylmethionine
(SAM), the substrate for DNA methyltransferases and other
methyltransferase enzymes, is synthesized from methionine,
which is also part of the GSH biosynthesis through the redox-
regulated transsulfuration pathway (136). Given the redox shifts
associated with the etiology of HNSCC supported by the value
of utilizing CAT and GSH antioxidant biomarkers for early
detection, a need for development of redox positron emission
tomography (PET) imaging methods for HNSCC early diag-
nosis is emerging. This has not yet been explored in preclinical
or clinical studies in relation to HNSCC. Such PET imaging
probes may include [18F]fluorothymidine probe for H2O2 or
other yet unexplored biomarker indicators of redox shifts (48).

Treatment: Redox Modulators of Standard of Care
and Emerging Therapies for HNSCC

Standard of care

The treatment plan for patients with HNSCC is determined
from three parameters: (i) location of tumor, (ii) stage of
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cancer, and (iii) person’s age and overall performance status
regardless of HPV status (89, 92). Surgery followed by
fractionated radiotherapy is the standard of care for resect-
able primary and secondary malignancy with the goal of
obtaining tumor-free surgical margins (132). However, neg-
ative surgical margins often result in removal of normal tis-
sue causing impairment of critical functions, such as chewing
and swallowing, and an adverse QOL (132). In many cases,
due to presence of high risk of relapse factors such as positive
margins and/or the presence of extracapsular invasion of
the positive lymph nodes by cancer cells, surgery is followed
up with aggressive CRT to kill remaining tumor cells. Pa-
tients generally undergo fractionated doses of 2 Gy each in 5
weekly sessions for 6–6½ weeks for a total dose of 60–66 Gy
(27). Patients with unresectable tumors or on whom an organ
sparing approach is possible receive radiation therapy (RT) or
most often CRT with an even higher dose of RT of 70–72 Gy
for 7 weeks (116).

Based on large randomized clinical trials and meta-
analysis, cisplatin is considered the standard radiosensitizing
agent for definitive or adjuvant RT. When used in combina-
tion with radiotherapy, cisplatin is given at 100 mg/m2 every
3 weeks during the course of RT (15). However, in recurrent
tumors or for palliative care, other chemotherapeutics such
as taxanes, hydroxyurea, and the antifolates methotrexate or
pemetrexed have been utilized as well as radiosensitizers
(129, 258). Antifolates, such as methotrexate and the newer
drug pemetrexed, were reported to sensitize tumors to RT in
both preclinical and clinical studies (149, 199, 257). These
drugs inhibit the enzyme dihydrofolate reductase, which is
essential for DNA synthesis and connects the 1-C/folate
metabolism to NAD(P)H/NAD(P)+ balance, GSH biosyn-
thesis, ROS and epigenetics through biosynthesis of SAM, a
substrate for DNA methyltransferases, already described.
Consistent with this notion, methotrexate also exhibits potent
immunosuppressant activity through ROS accumulation and
decreased GSH biosynthesis (234). Normal tissue toxicities
associated with methotrexate or pemetrexed therapy are
typically reduced in the clinic by coadministration of folate/
B9 and vitamin B12 supplements, without compromising the
efficacy of treatment (41, 69, 219). What all these chemo-
therapeutics have in common is the connection to the central
redox metabolism network, which sets the balance between
the intracellular ROS (E0 = approximately -0.3 to 2.5 V; e.g.,
H2O2 + 1.78 V) and the NAD(P)H/NAD(P)+ (E0 = -0.32 V)
reserve (245). Depletion of the NAD(P)H pool and the en-
suing increase in ROS kill cancer cells by DNA damage and
induction of cell death pathways.

Therapies targeting EGFR

EGFR is overexpressed in 90% of HNSCC patients (19,
222), making EGFR a possible target to address locally ad-
vanced or metastatic HNSCCs (116). EGFR is a transmem-
brane glycoprotein with tyrosine kinase activity (91) serving
as a critical signaling hub for tumor cell growth, angiogen-
esis, and invasion (Fig. 2). Currently, cetuximab (Erbitux�) is
the only targeted therapy approved by the Food and Drug
Administration (FDA) to be used in combination with RT for
locally advanced HNSCC (38). Cetuximab is a recombinant
immunoglobulin G1 (IgG1) monoclonal antibody directed at
the extracellular domain of EGFR to block ligand-mediated

activation of the EGFR pathway (288) (Fig. 2). It has been
reported that cetuximab combined with RT improves
progression-free survival (PFS) from 14.9 to 24.4 months and
median OS rates from 20.3 to 54.0 months, but does not
decrease rates of distant metastases in patients with locally
advanced HNSCCs compared with RT alone (7, 15). Ce-
tuximab is also FDA approved for use as a single agent or in
combination with chemotherapy in metastatic HNSCCs.
Cetuximab combined with platinum and 5-fluorouracil (5-
FU) was tested in the EXTREME clinical trial. The study
showed improved outcome in all end points including (i)
increased PFS from 2.7 to 4.2 months, (ii) increased OS from
8.0 to 9.2 months, (iii) 1 -year survival rate from 31.7% to
38.6%, and (iv) locoregional control from 60% to 80% with
no compromise in QOL (266). Other monoclonal antibodies,
similar to cetuximab such as nimotuzumab (128, 186), za-
lutumumab, duligotuzumab (104), and panitumumab, have
proved promising in preclinical research. One significant take
away from the duligotuzumab study is that HPV- patients had
higher response rates to both cetuximab and duligotuzumab
than HPV+ patients (104). In general, newly developed EGFR
monoclonal antibodies combined with radiotherapy or CRT
have not improved oncologic outcomes or demonstrated su-
periority over CRT but promising attempts at enhancement
continue.

Emerging therapies for HNSCCs

Despite decades of research, the best treatment modality
yielding significant efficacy with reduced side effects, improved
organ function, and overall QOL has yet to be determined. Most
research has focused on identifying radiation-sensitizing ther-
apies with decreased side effects. There are many new emerging
therapies on the horizon, including anti-EGFR monoclonal
antibodies already described, tyrosine kinase inhibitors (TKIs),
and other targeted drugs, as well as immunotherapies.

Tyrosine kinase inhibitors

EGFR TKIs target the receptor catalytic domain (Fig. 2).
Overall, lack of survival benefit for EGFR TKIs alone or in
combination with radiotherapy or CRT in clinical trials has
hindered their FDA approval for HNSCCs. For example,
erlotinib (Tarceva�) and gefitinib (Iressa�) clinical trials
have shown modest single agent response rate of only 4% and
10%, in recurrent or metastatic HNSCCs. However, in
combination with cisplatin, the response improved to 21%
but the combination of cisplatin, radiation, and erlotinib has
not been well tolerated in HNSCC clinical trials (273, 281).
Second generation EGFR TKIs, such as afatinib (Giotrif�),
have shown increased cellular potency against EGFR (98,
204). Afatinib is an irreversible pan-EGFR TKI targeting
Cys797 in the active site of EGFR. Studies have shown,
however, that this cysteine site is also redox sensitive. Its
oxidation to sulfenic acid state increases the activity of EGFR
(229), and under chronic oxidative stress conditions induces
resistance to afatinib (296). The impact of EGFR redox state
on the response to afatinib and other targeted agents needs to
be further investigated in the clinical context as RT or CRT
may also induce oxidation of EGFR. There are at minimum
three major redox mechanisms by which a drug could be
rendered ineffective or result in unwanted toxicity when used
in clinic (Fig. 3): (i) cancer drugs can be modified by tumor
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ROS (intrinsic or generated by cotherapies such as radiation
or chemotherapeutics; e.g., erlotinib), (ii) molecular targeted
drugs or the protein target itself may be modified by tumor
ROS (e.g., EGFR), and (iii) drug-induced changes in tumor
redox state can drive changes in the cellular phenotype (ep-
ithelial/mesenchymal, stem-cell like, etc.), which, in turn,
would impact tumor progression and response to RT or CRT
(14). Consideration of these effects along with others, which
have been outlined recently (70), is expected to significantly
improve the success rate of translating lead bench compounds
into successful cancer therapeutics in clinic. Other TKIs
targeting vascular endothelial growth factor (VEGF) and
mechanistic target of rapamycin (mTOR) are being studied
but have not provided any evidence of significant therapeutic
efficacy in HNSCC patients. Tools to better predict patient

responses to EGFR inhibitors will provide new opportunities
for increased efficacy and newly identified mutations in the
EGFR catalytic domain that confer sensitivity to EGFR TKIs
promise to open new doors to use EGFR TKIs in the future.

Exploiting NAD(P)H quinone oxidoreductase 1
bioactivatable drugs for radiosensitization of HNSCCs

The powerful potential of quinone oxidoreductase 1
(NQO1) bioactivatable drugs to sensitize NQO1 over-
expressing human head and neck cancer cells in culture and
xenografts in athymic nude mice to radiation was recently
reported (177), consistent with findings in other NQO1
overexpressing human cancer cells (39, 40, 93, 177, 226).
Importantly, synergy noted between radiation and NQO1

FIG. 2. EGFR signaling pathways. Activation of EGFR by ligand binding leads to a myriad of downstream signaling
pathways (e.g., PI3K/Akt pathway, Ras/Raf/MEK/ERK pathway, JAK/STAT pathway, and NF-jB pathway) that ultimately
drive tumor cell growth, angiogenesis, invasion, etc. Note that PI3K is required for membrane recruitment of Rac, a NOX
subunit, and the subsequent ROS production. EGFR-targeted monoclonal antibodies block ligand binding to the extra-
cellular domain of EGFR. EGFR-targeted TKIs inhibit the catalytic domain of EGFR. Mechanisms for resistance to EGFR-
targeted therapies include EGFR oxidation/mutation with increased/constitutive activity, activation of redundant kinase
signaling pathways (e.g., c-MET and HER2), and EGFR-independent activation of downstream pathways (e.g., PI3K/Akt).
Bold borders indicate redox-regulated proteins. Akt, protein kinase B; c-MET, tyrosine-protein kinase Met; EGF, epidermal
growth factor; ERK, extracellular signal-regulated kinase; Grb2, growth factor receptor-bound protein 2; HER2, human
epidermal growth factor receptor 2; IKK, IjB kinase; JAK, Janus kinase; MEK, mitogen-activated protein kinase kinase;
mTOR, mechanistic target of rapamycin; NADPH, nicotinamide adenine dinucleotide phosphate; NF-jB, nuclear factor
kappa-light-chain-enhancer of activated B cells; NOX, NADPH oxidase; PI3K, phosphatidylinositide 3-kinase; PRX,
peroxiredoxin; PTEN, phosphatase and tensin homologue; Rac, Ras-related C3 botulinum toxin substrate; SHP2, tyrosine-
protein phosphatase nonreceptor type 11; STAT, signal transducer and activator of transcription factor; TKI, tyrosine kinase
inhibitor. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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bioactivatable drugs avoids the only normal tissue toxicity
noted with these drugs, methemoglobinemia (a condition
characterized by elevated levels of hemoglobin that contains
the ferric [Fe3+] form of iron). As these series of drugs are
relatively new and are tightly connected to both ROS me-
tabolism and NAD(P)H reserve, we present this class of
compounds in more detail hereunder.

NQO1 expression specificity. In normal tissue, NQO1
plays a role as a Phase 2 detoxification enzyme, performing
two-electron oxidoreduction of most quinones. The enzyme
converts quinones to their hydroquinone forms, which are
then conjugated within the cell and exported. However, there
are a few specific quinones that undergo a rapid futile cycle
response, whereby NQO1 creates an unstable hydroquinone that
spontaneously and rapidly converts back to its original com-
pound using two oxygenation steps and creating two molecules
of superoxides (Fig. 4) (235). For example, mitomycin C and
streptonigrin can be converted to active drugs by NQO1, but
these agents are not solely dependent on NQO1 and they are
converted to active DNA-modifying agents through this reaction
(267). There are currently three classes of futile cycle-bioactive
quinones: (i) deoxynyboquinones (DNQ) (147), (ii) KP372
agents (328), and (iii) b-lapachone (235) with b-lapachone being
the prototype drug (235). The term ‘‘NQO1 bioactivatable
compounds’’ has been applied to these specific quinones (52–54,

147, 148, 209). In the NQO1 catalyzed reaction, b-lapachone
treatment uses 60 moles NAD(P)H and creates 120 moles of
superoxide within a 2 min period (Fig. 4). DNQ and its related
derivatives cause five- to eightfold more superoxide and
NAD(P)+ formation in the same timeframe (147). Measure-
ments of superoxide formation and NAD(P)+ formation for
KP372 have not been determined (328).

NQO1-dependent calcium release. A key feature of the
cell death response caused by NQO1 bioactivatable drugs is
that calcium release from otherwise inert central endoplasmic
reticulum (ER) core stores is required for the specific pro-
grammed necrotic pathway referred to as NAD+-Keresis (177,
284, 285). Cell death does not require extensive formation or
accumulation of poly ADP ribose (PAR) moieties generated by
PAR glycohydrolase (PARG), since coadministration of nic-
otinamide phosphoribosyltransferase (NAMPT) inhibitors and
loss of NAD+ levels increased programmed necrosis induced
by b-lapachone or isobutyl-deoxynyboquinone (IB-DNQ)
(147, 177, 209). Instead, pretreatment with a specific calcium
chelator, such as BAPTA-AM, caused the specific inhibition of
NQO1-dependent cell death by these bioactivatable quinones
(Fig. 4) (147, 177, 284, 285).

CAT detoxification. In HNSCCs, as well as in pancreatic,
lung, prostate, and breast cancers, CAT levels were found to

FIG. 3. Redox mechanisms
for drug resistance. IR and/or
intrinsic ROS generate an ox-
idative tumor microenviron-
ment, which can modify the
anticancer drug, rendering it
less effective (e.g., erlotinib
and its oxidized forms shown
in the bottom) and the protein
target itself (e.g., EGFR). IR
and/or intrinsic ROS also af-
fect tumor signaling, cell me-
tabolism, and epigenetics in a
cyclic way resulting in chan-
ges in the cellular phenotype,
which, in turn, would impact
tumor progression and response
to therapies. EMT, epithelial-
mesenchymal transition; IR,
ionizing radiation; MET,
mesenchymal-epithelial transi-
tion. To see this illustration in
color, the reader is referred to
the online version of this article
at www.liebertpub.com/ars.
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be lower in tumor than in associated normal tissue within
human patients (52–54, 148, 177). This generates an exten-
sive therapeutic index for these cancers that can be exploited
using NQO1 bioactivatable drugs (52–54, 148, 177). Forced
overexpression of CAT (>1000 U of cell membrane perme-
able polyethylene glycol [PEG]-CAT) can suppress NQO1-
dependent DNQ or b-lapachone lethality in these cancers
(Fig. 4); however, these levels are well beyond CAT ex-
pression typically seen in these cancers under endogenous
conditions. This strongly suggests that NQO1 can generate
more than ‘‘saturable’’ levels of H2O2 within human cancers
that overwhelm the enzyme’s capacity for degrading H2O2.
The accumulated H2O2 can pass through membranes and
easily damage neighboring NQO1-deficient cancer cells (29).
In contrast, normal cells plated along side NQO1 over-
expressing cancer cells are protected due to their elevated

CAT levels. These findings supported by in vivo data suggest
a potent NQO1-dependent bystander effect capable of sup-
pressing the emergence of NQO1 cells growing from mixed
cultures (47). Such bystander effects are likely to play a role
in the radiosensitization responses observed in HNSCC xe-
nografts (177).

DNA damage created by NQO1 futile recycling. DNA
damage analyses of NQO1+ overexpressing cancer cells
exposed to b-lapachone or IB-DNQ (or DNQ) revealed ex-
tensive DNA lesion formation by alkaline comet analyses,
whereas little to no DNA lesions were noted after the same
treated cells were examined using neutral comet assays (23,
24, 54, 93, 147). These data showed that the initial DNA
damage created by NQO1 bioactivatable drugs is DNA
single-strand breaks (SSBs) and apurinic/apyrimidinic (AP)

FIG. 4. Exploiting NQO1 bioactivatable drugs for radiosensitization of HNSCCs. NQO1 metabolizes b-lapachone to
an unstable hydroquinone (quinol) that spontaneously and rapidly converts back to its original compound using two
oxygenation steps and creating two molecules of superoxides, which then damage DNA and cause cell death via pro-
grammed necrosis (NAD+-Keresis). This process is dependent on calcium release, and pretreatment with a specific calcium
chelator BAPTA-AM inhibits NQO1-dependent cell death. AP, apurinic/apyrimidinic; BER, base excision repair; DSB,
double-strand break; ER, endoplasmic reticulum; NQO1, quinone oxidoreductase 1; PARP, poly ADP ribose polymerase;
SSB, single-strand break. To see this illustration in color, the reader is referred to the web version of this article at
www.liebertpub.com/ars
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site generation from incorporation of 8-oxo-deoxyguanine
(8-OHdG), a result of H2O2-induced 8-oxoguanine-dGTP
pools (54, 147, 177), as well as other altered bases. H2O2-
induced Fenton reactions are also likely to ultimately induce
DNA SSBs and double-strand breaks (DSBs). However,
these lesions appear to be protected by hyperactivation of
poly ADP ribose polymerase (PARP), which occurs imme-
diately after exposure of cells to b-lapachone or IB-DNQ.
PARP hyperactivation in this context is prevented by
BAPTA-AM or dicoumarol (NQO1 inhibitor) and is not
apparent in NQO1-deficient cells (e.g., resulting from NQO1
polymorphisms, *2 [C609T] and *3 [C465T]) (148, 177).
Importantly, PARP1-/- cells lack these responses, but are not
immune to overall cell death after exposure to NQO1
bioactivatable drugs. Instead, NQO1+/PARP1-/- cells treated
with NQO1 bioactivatable drugs, or NQO1+ cancer cells
exposed to PARP inhibitors, undergo a synergistic apoptotic
cell death responses caused by DNA SSBs converted to DSBs
due to inaccurate DNA replication, without a major loss in
NAD+ or adenosine triphosphate (ATP) (148).

PARP hyperactivation and subsequent l-calpain-dependent
programmed necrosis. The massive level of DNA lesions,
in concert with Ca2+ release from the ER, induces hyper-
activation of PARP in NQO1+ cancer cells exposed to the
NQO1 bioactivatable drugs. Increased NAD+ pools in these
cells resulting from the oxidation of NADH in the futile cycle
(Fig. 4) are rapidly degraded by the hyperactivated PARP.
Such responses are not present in NQO1-deficient cells or in
exposed NQO1+ cancer cells treated with dicoumarol, a
fairly specific NQO1 inhibitor. NAD+ pools, aside from the
sequestered mitochondrial NAD+ level, are degraded within
20–35 min in most NQO1+ cancer cells, leading to con-
comitant ATP losses within 30–40 min, l-calpain activation
with 8–24 h, terminal deoxynucleotidyl transferase dUTP
nick end labeling positive staining within 24–48 h, and loss of
attachment and programmed necrosis within 72 h of exposure
to NQO1 bioactivatable drugs (Fig. 4) (23, 24, 28, 47, 52–54,
93, 176, 235, 236, 284, 285).

Combined radiation and NQO1 bioactivatable drugs. IR
creates a spectrum of DNA lesions, including DNA DSBs,
SSBs, AP sites, and DNA-protein crosslinks. DSBs are po-
tentially the most lethal lesions, with only one DSB able to
cause lethality (22, 50). The formation of DSBs among a
range of SSBs and AP sites (also known as a multidamaged
site) is enough to synergistically hyperactivate PARP when
treated immediately with NQO1 bioactivatable drugs after
exposure to IR. The formation of SSBs and AP sites after
radiation, to which PARP binds with high affinity (239),
synergistically interacts with the DNA lesions created by
NQO1 bioactivatable drug exposure (exclusively SSBs and
AP sites) to hyperactivate PARP activity (93, 148). Indeed,
efficient synergy responses were noted with five doses of
1 Gy radiation and 5 mg/kg b-lapachone intravenous treat-
ments (*10-fold below the maximum tolerated dose of b-
lapachone alone). As already mentioned, hyperactivation of
PARP leads to massive NAD+ and ATP losses, which then
prevent the repair of DSBs and greatly suppress NAD+, ATP,
and, in theory, carbon metabolism (which has not been
monitored to date). As a result, NQO1+ cancer cells, in-
cluding from HNSCCs, can be efficiently killed by radiation

and NQO1 bioactivatable drug combination therapy. The cell
death pathway occurs specifically in NQO1+ cancer cells,
independent of any oncogenic drivers, and causes a unique
programmed necrotic death, NAD+-Keresis (93, 148, 177,
209). Similar to the treatment with the NQO1 bioactivatable
drug alone, responses are only noted in NQO1 overexpressing
cancer cells (177) with no responses in NQO1-deficient cells
or normal tissue (93, 177). The therapeutic responses were also
independent of the HPV or p53 status (177).

Future studies. The exact metabolic changes occurring
in NQO1+ cancer cells after exposure to radiation and NQO1
bioactivatable drug treatments are not known. The role of
released and circulating calcium in PARP hyperactivation,
cell metabolism, and DNA repair has not been elucidated and
is extremely important for radiation responses, since pre-
treatment with BAPTA-AM can suppress the synergistic re-
sponse of combined radiation and NQO1 bioactivatable drug
therapies (93, 177). Understanding the roles of genes that can
suppress the responses is also unexplored, and genes involved
in base excision repair (BER), DSB repair, ROS scavenging,
and suppressing calcium ER release signaling are the most
likely to strongly affect the response in NQO1+ cells. Cur-
rently, there are four clinical trials using a b-lapachone pro-
drug (as ARQ761) ongoing or planned. The monotherapy
trial with ARQ761 is just about completed and responses
to the agent were only noted in NQO1-expressing cancers,
with no or little responses noted in NQO1-deficient cancers,
most notably small cell lung cancers. Ongoing is a clinical
trial treating NQO1+ pancreatic cancer patients in combi-
nation with abraxane and gemcitabine, wherein synergy was
previously noted (162). Soon to open clinical trials are with
sensitizing agents, including methoxyamine (54) and PARP
inhibitors (148). Finally, another more potent NQO1 bio-
activatable drug IB-DNQ should enter clinical trials within
1–2 years.

Immunotherapy

HNSCC is considered an immunosuppressive disease be-
cause of its ability to (i) dysregulate the cytokine profile (e.g.,
chemokine and VEGF overexpression), (ii) impair immune
effector cell functions (e.g., upregulating IL-6), and (iii)
cause abnormalities in tumor-associated antigen presentation
(107). The interplay between the tumor and the host’s im-
mune system has become an increased area of research for
HNSCC therapeutics. Tumor progression or relapse is be-
lieved to be associated with the inability of the immune
system to eliminate cancer (255, 301). Immune checkpoints
are critical in regulating T cell response, and coinhibitory
molecules are new exciting targets of inhibition for HNSCC.
The two most common targets include programmed cell death
protein 1 (PD-1) or cluster of differentiation 279 (CD279),
and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4 or
CD152) (Fig. 5). Since ROS affects many functions of T cells
such as activation, differentiation, and apoptosis [reviewed
in Belikov et al. (20), Chen et al. (59), and Nathan and
Cunningham-Bussel (215)], modulation of ROS levels could
potentially enhance or impede immunotherapy efficacy. For
example, it has been shown that increasing ROS synergizes
with the tumoricidal activity of PD-1 blockade by strongly
activating mitochondrial function of tumor reactive cytotoxic
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T lymphocytes (56). This activation signals through mTOR,
AMP-activated protein kinase (AMPK), and peroxisome
proliferator-activated receptor gamma coactivator 1a (PGC-
1a). Small-molecule activators of AMPK and mTOR, or
PGC-1a, also synergize with the PD-1 blockade therapy,
whereas none of these activators alone has any effects on
tumor growth. These findings provide novel combinatorial
treatment strategies for patients who are less responsive to
PD-1 immunotherapy alone. In contrast, as shown using
multiple graft-versus-host-disease models, PD-1 signaling
promotes apoptosis in alloreactive T cells by increasing ROS
in a fatty acid oxidation-dependent manner, whereas PD-1
blockade, which decreases ROS, renders cells less susceptible
to subsequent metabolic inhibition (292). Based on these
findings, adjuvant therapies relying on increased ROS levels
(e.g., glucocorticoids, methotrexate, and cyclophosphamide)
will likely be undermined in T cells after PD-1 blockade.
There are currently two promising PD-1 inhibitors for
HNSCC, pembrolizumab (Keytruda�) and nivolumab (Op-
divo�), which have shown efficacy irrespective of tumor
programmed death-ligand 1 (PD-L1) expression (>1%) or
HPV status (106). As of now, no CTLA-4 monoclonal anti-
bodies have FDA approval for HNSCC treatment (95).

However, there are several open-label dose escalation clinical
trials with durvalumab (anti-PD-L1 monoclonal antibody)
and ipilimumab or tremelimumab against CTLA-4. Pre-
clinical data also suggest that there is increased efficacy when
PD-1 and CTLA-4 immunotherapies are combined because
they regulate T cell induction and maturation at different
phases (95).

Resistance to Standard of Care Therapy:
Redox Controlled Mechanisms of Resistance
to HNSCC Therapies

Suppression of ROS and upregulation of DNA-damage
response have emerged as major mechanisms of resistance to
CRT across cancers. Thus, it is not surprising that a high
number of emerging drugs directly target these pathways
(e.g., PARP, DNA-dependent protein kinase [DNA-PK], and
BER). PARP1, in particular, impacts both ROS and DNA-
damage response by consuming intracellular NAD+ to
modify critical nuclear proteins by PARylation. Inhibition of
PARP increases intracellular NAD+ reserve while decreasing
the NADH/NAD+ balance in cancer cells and contributing to
the synergy of interaction with CRT. In addition, the effec-
tiveness of PARP inhibitors in tumors defective in DNA-
damage repair is well documented (240, 272). EGFR is
overexpressed in HNSCCs and thus constitutes an important
therapeutic target both because of its function in cell prolif-
eration and because of its recently discovered role in DNA
DSB repair with PARP (213). Surprisingly, the redox state of
EGFR in the tumor environment is not currently being con-
sidered as a prognostic indicator of response to EGFR-
targeted therapies when used alone or in combination with
CRT. Studies have shown a significant role of ROS, driven by
NAD(P)H/NAD(P)+ ratio and cholesterol/lipid rafts content,
in the response to both radiation treatment and EGFR in-
hibitor erlotinib in vitro and clinical tumor specimens of
HNSCCs (14, 205). These and other redox-dependent
mechanisms of resistance to RT and chemotherapies are
presented hereunder.

Resistance to radiation in HNSCC

The mechanisms of damage by IR were reviewed recently
(243) and are only briefly summarized here. The major types
of IR are alpha and beta particles, X-rays, and gamma rays,
and all are capable of causing cellular damage and are thus
used for therapeutic purposes (87). The adult human body is
composed of 60% of H2O that absorbs energetic radiations
leading to ROS production (Fig. 6). Gamma irradiation of
cellular H2O rapidly generates ROS, including hydroxyl
radical (�OH) and ionized water (H2O+) as well as hydrogen
radical (H�) and hydrated electrons (e-

aq). Within one pico-
second, O2

�- and H2O2 are formed as secondary ROS prod-
ucts and this chemical cascade generates cell-damaging
molecules (271). These ROS and their progenies attack
macromolecules (DNA, RNA, lipids, and proteins), induce
mitochondrial ROS production, and upregulate NOX ex-
pression (11, 71, 94). Most IR-induced protein modifications
are irreparable and critically affect protein stability. Re-
versible oxidation of cysteine amino acids in critical signal-
ing molecules, such as kinases and phosphatases, can lead to
amplification or dampening of signaling pathways and in
some cases may synergize or antagonize the efficacy of

FIG. 5. Mechanisms of PD-1 and CTLA-4 in immu-
nosuppression. In the priming phase, dendritic cells present
antigens to T cells via the interaction of MHC and TCR. B7
binding to CD28 generates a costimulatory signal. CTLA-4,
upregulated shortly after activation, negatively regulates T
cell activation by outcompeting CD28 for binding to B7. In
the effector phase, PD-1 is expressed on activated T cells
and binds to PD-L1/2 expressed on tumor cells, sending an
inhibitory signal to T cells. Anti-CTLA-4 antibodies (e.g.,
ipilimumab) and anti-PD-1/PD-L1 antibodies (e.g., nivolu-
mab and pembrolizumab) enhance T cell function by turning
off the inhibitory signal. CD, cluster of differentiation;
CTLA-4, cytotoxic T-lymphocyte-associated protein 4; MHC,
major histocompatibility complex; PD-1, programmed cell
death protein 1; PD-L1, programmed death-ligand 1; TCR,
T cell receptor. To see this illustration in color, the reader
is referred to the web version of this article at www.liebert
pub.com/ars
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targeted therapies when used in combination with RT. Under
moderate oxidative stress, cysteine residues can be oxidized
to relatively unstable sulfenic acid (-SOH), which can be
further oxidized to -SO2H and -SO3H, or form mixed dis-
ulfides (S-thiolation) with other protein thiol groups (-SH) or
low molecular mass thiols such as GSH (68). Disulfides are
readily reduced to thiols by disulfide reductases in coupled
reactions such as thioredoxin (TRX)/thioredoxin reductase
(TR) or GPX/GSH/glutathione reductase (GR) with NADPH
as ultimate provider of reducing equivalents (140) (Fig. 6).
Loss or gain of function by disulfide formation is a regulatory
mechanism by which proteins mediate the cellular response
to oxidative stress. For example, phosphatase and tensin
homologue (PTEN), which is mutated in HNSCC, has a
catalytic Cys124 residue that when oxidized leads to disulfide
bond formation with a neighboring Cys79 residue. The dis-
ulfide bond inactivates the phosphatase and protects the
cysteine from hyperoxidation, enabling reactivation of PTEN
by TRX (174). Redox-regulated proteins with signaling,
metabolic, or epigenetic functions have been reviewed re-
cently (86, 181, 224).

Radiation resistance is a major clinical problem for
HNSCC patients compounded by origin, location, and tumor
grade that limits tumor control and ultimately affects patient
QOL (232). A tumor is considered radioresistant if there is
either lack of tumor response or partial response resulting in
recurrence a few weeks after an initial complete response.
Tumor size, location, grading, and stem-like cell population
play a critical role in driving radiation resistance. For ex-
ample, larger, more differentiated tumors have a worse
overall prognosis due to hypoxic cores, and differentiated
tumors have the ability to accelerate repopulation capacity
during radiotherapy (268). Rapid repopulation depends on
the stem-like cells ability to activate checkpoints and DNA

repair to enhance self-renewal and results in differentiation
into heterogeneous cells (100). There are several well-studied
mechanisms of resistance to radiation involving redox pro-
cesses associated with hypoxia, autophagy, intracellular
pathway alteration, and metabolic reprogramming, as de-
scribed hereunder.

Hypoxia

The cytotoxic effects of radiotherapy depend heavily on
the presence of molecular O2 to react with free radicals to
produce ROS and irreparable DNA damage. However, under
hypoxic conditions, O2 availability is low due to either re-
duced perfusion or starvation of necessary O2 and nutrients
(144). It is estimated that HNSCCs contain three zones where
O2 tensions fluctuate between anoxic (0% O2), hypoxic (1%/
7 mm Hg O2), and normoxic (8%/60 mm Hg O2) (302). A
study measuring oxygen partial pressure (pO2) in 28 HNSCC
patients reported an 80% postradiotherapy PFS correlation
with a median oxygen tension of pO2 > 10 mm Hg (42).
Transcription factors, such as hypoxia-inducible factors
(HIFs), respond to changes in O2 availability in the cellular
environment, making them attractive targets in cancer ther-
apeutics. HIF-1a is considered most active during initial in-
tense short period of hypoxia (i.e., <0.1% O2 and <24 h),
whereas HIF-2a is active under longer more chronic periods
of hypoxia (i.e., <5% O2 and >24 h) (259). Elevated ex-
pression of HIF-1a and HIF-2a is associated with radiation
resistance in HNSCCs (166). Unfortunately, there are limi-
tations to accurately detecting hypoxia as most exogenous
markers can only detect chronic hypoxia, and endogenous
markers may be upregulated due to stress factors that are
not hypoxia related (17). However, PET studies using (18F)–
fluoroazomycin arabinoside (FAZA) to measure hypoxia and

FIG. 6. Mechanisms for
radiation therapy. IR causes
water radiolysis generating
ROS that leads to DNA dam-
age, lipid peroxidation, and
protein oxidation. IR also di-
rectly damages DNA. ROS
can oxidize specific protein
cysteine residue to unstable
sulfenic acid, which can be
reversed back to thiol through
mixed-disulfide formation.
Further oxidation of sulfenic
acid results in irreversible
conversion to sulfinic and
sulfonic acids. Upregulation
of antioxidant systems and
DNA damage responses can
restore redox homeostasis and
macromolecule integrity, un-
derlying major mechanisms
for radiation resistance. GPX,
glutathione peroxidase; TRX,
thioredoxin. To see this illus-
tration in color, the reader is
referred to the web version of
this article at www.liebertpub
.com/ars
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predict PFS showed that hypoxic tumors had a lower PFS of
60% than nonhypoxic tumors PFS of 93% (261). The clinical
trial attempts at increasing tumor oxygenation before and
during radiotherapy have included red blood cell transfusion,
erythropoietin administration, and hyperbaric oxygen treat-
ment, but all have ended in conflicting or inconclusive results
(223). Inhibitors against HIFs such as acriflavine, YC-1,
endostatin, and TNP-470 have poor toxicity profiles and lack
increased efficacy (173, 188).

Autophagy

Autophagy is the cellular recycling mechanism responsi-
ble for degrading dysfunctional cellular organelles in living
cells to provide building blocks for metabolites and synthe-
sis of macromolecules as a source of energy. Cell survival or
death depends on the severity and length of autophagy: al-
though cells utilize autophagy as a prosurvival mechanism
for maintaining cellular homeostasis under starvation or other
stress stimuli, extensive or prolonged autophagy can activate
apoptosis or apoptosis-independent autophagic cell death
(81, 191). Many lines of evidence support a role of ROS in
both protective autophagy and autophagic cell death. The
most direct demonstration of a redox-regulated mechanism in
autophagy involves oxidation and inactivation of autophagy-
related protein 4 (ATG4). Specifically, starvation-induced
mitochondrial H2O2 oxidizes ATG4 at Cys81, which inacti-
vates its delipidating activity on ATG8, thus allowing for
autophagosome formation (251). Other possible mechanisms
of redox regulation of autophagy include (i) S-glutathionylation
of AMPK (332), which inhibits mTORC1 and activates unc-
51-like autophagy activating kinase 1 (ULK1) to promote
autophagy (96, 130, 163) and (ii) upregulation of proauto-
phagic protein Beclin-1 (60, 90). ROS is involved in autop-
hagic cell death, wherein it can be upstream of autophagy
(60), or is accumulated as a result of autophagy-mediated
specific degradation of CAT (325). In addition, autophagy
can regulate ROS through NRF2/Kelch-like ECH-associated
protein 1 (KEAP1)/p62 interactions, where degradation of
KEAP1 by selective autophagy facilitated by autophagic
adaptor p62 releases transcription factor NRF2 to enter the
nucleus, leading to subsequent expression of antioxidant
proteins (165, 171, 286). Given the dual role of autophagy in
cell survival and death and the complex interplay between
autophagy and ROS, it is not surprising that autophagy has
been regarded as both a tumor promoter and a tumor sup-
pressor, and its role in cancer cell response to therapies can be
both protective and cytotoxic (10, 61, 119, 175, 283, 290,
315, 323). Nevetheless, one popular hypothesis suggests that
during early tumor development, autophagy is anticarcino-
genic through removal of damaged organelles and protein
aggregates (195, 208). For example, short-term exposure to
arecoline, similar to nicotine, increases ROS and inflamma-
tory cytokines, leading to autophagy activation and removal
of DNA damage or protein aggregates to prevent tumor
formation. After tumor formation or radiation-induced oxi-
dative stress, autophagy is upregulated and used by the tumor
as a survival mechanism (143). However, the exact mecha-
nism by which autophagy contributes to radiation resistance
is unclear. Some studies suggest autophagy is regulated by
HIFs to clear ROS-producing damaged organelles and pro-
tein aggregates too large for proteasomal removal (327).

Overall, autophagy seems to have a dual role in cancer de-
velopment and progression, making it a potential therapeutic
target and biomarker to determine tumor stage. It is worth
noting that mitophagy, which refers to the selective degra-
dation of damaged or surplus mitochondria, also crosstalks
with ROS and plays a role in cancer progression (62, 167,
184). On the one hand, ROS, produced by damaged mito-
chondria, RT, or chemotherapy, may trigger mitophagy to
protect cells from oxidative stress and cell death (34, 112,
310). Suppression of mitophagy leads to overproduction of
ROS and further damage to the mitochondria, which then
produces more ROS in a vicious cycle (168). In this regard,
mitophagy serves as a tumor suppressor to maintain the in-
tegrity of the mitochondrial pool and cellular homeostasis,
supported by the observations that loss or downregulation of
several mitophagy proteins promotes tumor growth (26, 63,
64, 105, 114, 238). On the other hand, mitophagy provides a
survival mechanism for tumor cells, which already have
higher ROS than normal cells and are likely more dependent
on mitophagy to manage ROS and maintain functional mi-
tochondria (62), suggesting that inhibition of mitophagy
represents a promising antitumor strategy in combination
with conventional cancer treatment (i.e., mitophagy inhibi-
tors as radio- or chemosensitizers). However, studies showed
conflicting results as to whether it is inhibition or induction of
mitophagy that kills cancer cells (167). Just as autophagy,
mitophagy is a double-edged sword in cancer biology and
further research is needed to correctly target mitophagy for
cancer intervention.

Reprogramming of cellular signaling and metabolism

Radiation-induced cell death is accompanied by alter-
ations in intracellular pathways primarily involved in DNA
repair and cell cycle, proliferation, apoptosis, and metabolic
reprogramming. These insults can lead to radiation resistance
over time. For example, p53 regulates cell cycle arrest
through cyclin-dependent kinase inhibitor 1 (CDKN1A)
stimulation and programmed cell death in response to envi-
ronmental stimuli. In the presence of cellular stressors, p53
may undergo post-translational modifications, including
phosphorylation, acetylation, and PARylation that lead to its
activation. During cell cycle arrest in G1 phase, cells are able
to repair DNA before its replication to avoid propagation of
nucleic acid alterations (307). However, p53 may not be able
to rescue a cell after repetitive insults, leading to damage and
apoptosis induction through upregulation of Bcl-2-associated
X protein (BAX) and p53-upregulated modulator of apo-
ptosis (PUMA) (324). It is estimated that 50% of HNSCC
patients have small mutations in the gene encoding TP53
(i.e., nonsense, missense, insertions, or deletions of nucleo-
tides), leading to inactivation or absence of protein (278).
These alterations impair the cells ability to arrest cell cycle
and activate apoptosis, leading to more genetic mutations,
genetic instability, and clonal selection of radiation-resistant
cells. The origin and location of HNSCCs in combination
with the presence of TP53 mutations further increase tumor
heterogeneity, resulting in decreased survival and increased
locoregional failure. As previously described, EGFR over-
expression is correlated with poor prognosis in HNSCCs.
Radiation can induce autophosphorylation of EGFR, causing
protection from apoptosis (252), increased cell proliferation,
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and tumor repopulation after radiotherapy (230). EGFR and
p53 expression and activity in HNSCCs are extremely im-
portant to therapeutic response. For example, HPV+ tumors
are generally characterized by WT p53 and lower EGFR
expression than HPV- tumors (49, 170), resulting in high
chemoradiosensitivity. The metabolic reprogramming of
cancer cells through the Warburg effect is also mediated by
HIF-1a. Activation of glycolytic enzymes, pyruvate dehy-
drogenase kinase 1 (PDK1) (164) and pentose phosphate
pathway (PPP) glucose-6-phosphate dehydrogenase (G6PD),
by HIF-1a causes downregulation of aerobic respiration and
upregulation of the PPP, leading to increased production of
NADPH and ribonucleotides (231, 311) to protect cells
against apoptosis (327) during radiation-induced hypoxia and
oxidative stress. HIF-2a also regulates the expression of cy-

tochrome c oxidase (COX) and SOD2 to increase mito-
chondrial electron transport chain efficiency and suppressing
ROS generation (122, 123). Thus, tumor cell signaling and
metabolism are connected by key enzymes and transcription
factors to enhance resistance to RT and chemotherapy by
regulating energy production, proliferation, and apoptosis.

Upregulation of antioxidant system

Human body has developed complex antioxidant defense
mechanisms against endogenous- and exogenous-induced oxi-
dative stress (Fig. 7). When ROS increases, cellular transcrip-
tion factors, NRF2 and NF-jB, are activated to help increase
production of antioxidants (12). Enzymatic (e.g., SOD, perox-
iredoxin [PRX], and CAT) and nonenzymatic [e.g., GSH and

FIG. 7. Cellular sources of ROS and the antioxidant systems. Two major cellular sources of ROS are produced by
mitochondria ETC and NOX. In ETC, leaky electrons from complexes I and III reduce oxygen to superoxide. Cytosolic
superoxide, generated by the NOX complex or transported by VDAC from mitochondria ETC, can be dismutated by Cu/
ZnSOD to H2O2 and oxygen. Cytosolic H2O2 is then dismutated to water and oxygen by CAT, PRX/TRX/TR, or GPX/
GSH/GR system using the reducing power of NADPH. Similarly, mitochondrial superoxide can be degraded by MnSOD
and then PRX3 and GPX1 resided in the mitochondria. CAT, catalase; ETC, electron transport chain; GR, glutathione
reductase; GSH, glutathione; GSSG, oxidized glutathione; MPC, mitochondria pyruvate carrier; TR, thioredoxin reductase;
VDAC, voltage-dependent anion channel. To see this illustration in color, the reader is referred to the web version of this
article at www.liebertpub.com/ars
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NAD(P)H] antioxidants are some of the most well-studied in-
tracellular defenses against oxidative damage. In addition to
their antioxidant properties, several of these molecules are in-
creasingly recognized as signaling molecules (262).

SODs are the major superoxide scavengers in the cells,
catalyzing the dismutation of superoxide radicals to H2O2

and molecular oxygen. There are three forms of SODs, each
encoded by a separate gene: CuZnSOD (SOD1) located
mainly in the cytosol, MnSOD (SOD2) located in the mito-
chondrial matrix, and EcSOD (SOD3) located in the extra-
cellular region of the cell. The role of SOD2 in cancer
progression is controversial [reviewed in Holley et al. (137–
139) and Miriyala et al. (207)]. Although many studies show
a reduction in SOD2 expression in tumors compared with
normal tissues suggesting a tumor suppressor activity (65, 78,
146, 221), there is also abundant evidence supporting that
SOD2 promotes cancer progression to a more aggressive
stage (e.g., increased SOD2 activity was detected in ad-
vanced HNSCCs) (66, 145, 152, 192, 249, 294). This di-
chotomy is reflected in a study using a chemically induced
skin cancer mouse model, in which SOD2 expression, me-
diated by transcription factors Sp1 and p53, was decreased in
the early stage but increased at late stages of skin cancer (88).
To reconcile the opposing roles of SOD2 in cancer progres-
sion, one has to take into consideration that by catalyzing the
dismutation reaction, SOD2 not only controls levels of su-
peroxides but also contributes to H2O2 accumulation in cells
(44). In other words, SOD2 is both an antioxidant and a pro-
oxidant, whose role in cancer progression is likely a result
from concerted efforts with other antioxidant enzymes. In
fact, based on this dual role of SOD2, strategies aiming at
increasing SOD2 expression and/or activity have proven to
be important adjuvants to radiotherapy, sensitizing tumor
cells to radiation while protecting normal tissues, as dis-
cussed in Survival and QOL: Improving HNSCC Patients’
QOL with Redox Modifiers section.

PRXs are a family of thiol-dependent peroxidases that
catalyze the reduction of H2O2, alkyl hydroperoxides, and
peroxynitrite (ONOO-). PRXs also function as regulators in
growth factor signaling and cell cycle progression by virtue
of their inactivation, which enables localized build-up of
H2O2 and protein oxidation. In this case, the transient inac-
tivation of PRXs occurs by either hyperoxidation (PRX-SO2/3)
(319, 320) or phosphorylation at key tyrosine or threonine
residues (318). For example, cells stimulated by EGFR can
cause PRX1 association with lipid rafts and subsequent in-
activation through selective phosphorylation at tyrosine 194
by Src kinase (318). The inactivation allows H2O2 to accu-
mulate near lipid rafts and mediate cell signaling. Therefore,
PRXs play a critical role as a sensor and transducer of H2O2

signaling in cells. It has been shown that oxidized PRX2
forms a redox relay with transcription factor signal transducer
and activator of transcription factor 3 (STAT3), resulting in
STAT3 oxidation and attenuation of transcriptional activity
(275). In HNSCC cells, PRX2 expression increases in cells
after treatment with radiation and its overexpression blocks
cells from radiation-induced cell death (227). Importantly,
STAT3 is also expressed at high levels in HNSCCs and
current therapeutics such as cetuximab lacks the ability to
abrogate STAT3 activity. Combined inhibition of EGFR and
control of redox metabolism could provide a path to improve
cetuximab and other EGFR-targeted therapies.

GSH is synthesized in the cytosol by sequential reactions
catalyzed by glutamate-cysteine ligase (GCL) and glutathi-
one synthetase (GSS). Cysteine availability is the rate-
limiting factor in GSH biosynthesis and it can be either
synthesized in cells from methionine through the activities of
cystathionine b-synthase (CBS) and cystathionine c-lyase
(CSE or GCL) or imported by the cystine/glutamate trans-
porter system (xCT). GSH donates reducing equivalents
(H++e-) to molecules such as cysteine disulfides in oxidized
proteins to shift their redox state to reduced forms. As a
result, GSH becomes oxidized to GSSG, which can be either
excreted from the cell or reduced by GR in an NADPH-
dependent manner. In addition, glutathione’s protective roles
against oxidative stress include (i) acting as a cofactor of
detoxifying enzymes, (ii) participating in amino acid trans-
port, (iii) scavenging hydroxyl radical and singlet oxygen,
and (iv) regenerating other antioxidants back to their active
forms (197). The ratio of reduced GSH versus oxidized
GSSG is an indicative measure of oxidative stress in the
cell (154).

TRX is a disulfide-containing redox protein with two redox
active cysteines that can be oxidized to a disulfide and present
in all subcellular organelles (159). TRX is reduced to its
active state TRX-(SH)2 by TR in an NADPH-dependent
manner (312). In addition to its function in the PRX catalytic
cycle, TRX plays critical roles in controlling cell growth
through redox regulation of DNA synthesis, cell signaling,
and apoptosis by regulating transcription factors and kinase
cascades. For example, TRX acts as a reducing cofactor for
ribonucleotide reductase, the first unique step in DNA syn-
thesis and methionine sulfoxide reductase, which reduces
methionine sulfoxide to methionine (13). TRX also controls
redox-sensitive points during apoptosis, including activating
caspases by reducing cysteines (297) and by binding to ap-
optosis signal-regulated kinase 1 (ASK1) to create an inactive
complex that when oxidized is activated and released from
TRX (293). Overexpression of TRX has been shown to
protect cancer cells from oxidative stress-induced apoptosis
and provide a survival and growth advantage to tumors (298).
Owing to the widespread redundancy between the TRX and
GSH systems, strategies often target both of them to achieve
powerful and synergistic antitumor effects (21, 133, 160,
194). In addition, dual inhibition of the TRX and GSH sys-
tems sensitizes cancer cells to chemotherapeutics (103, 250,
270). Remarkably, additional inhibition of NRF2 on top of
GSH and TRX results in even more HNSCC cell death,
particularly in cisplatin-resistant cells (247).

NAD(P)H is the ultimate donor of reducing equivalents in
cells and a key substrate for TR and other antioxidant en-
zymes. In addition to its function in the maintenance of the
redox homeostasis in cells, it is also necessary for synthesis
of nucleic acids and lipids (300). NADPH is generated in
cells via glucose and glutamine metabolism through the PPP
enzymes G6PD and 6-phosphogluconate dehydrogenase
(6PGD), conversion of pyruvate to malate by malic enzymes,
conversion of isocitrate to a-ketoglutarate by isocitrate de-
hydrogenases 1 and 2 (IDH1 and 2), and through 1-C/folate
metabolism. Transcription factors NRF2 and p53 modulate
NADPH production by increasing transcription of NADPH-
generating enzymes and upregulating TP53-induced glycol-
ysis and apoptosis regulator (TIGAR), which inhibits glycolysis
and promotes PPP (124). As previously described, NADPH is
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necessary to maintain reduced GSH and TRX during oxida-
tive stress. Therefore, attenuation of the PPP or down-
regulation of NADPH production in tumors would reduce or
inhibit the cells’ ability to handle ROS and inhibit critical
biosynthetic pathways.

Resistance to chemotherapy in HNSCC

Chemotherapy induces cell death primarily via DNA
damage and apoptosis. Defective apoptotic initiation may
cause drug resistance (190). Cisplatin is the most commonly
used chemotherapy for HNSCC but has significant patient
variability related to outcome, efficacy, and toxicity. To
overcome disease resistance, cisplatin is used in combination
with other chemotherapeutics, RT, or drug-targeted therapy.
However, as the disease-free period shortens, the response to
platinum-based therapy decreases, resulting in a platinum-
resistant or a refractory disease state. The primary mechanism
of resistance to cisplatin at low levels (i.e., 10- to 15-fold above
baseline) is due to altered DNA repair. At intermediate and
high levels of cisplatin resistance, the resistance is due to
reduced cellular accumulation and cytosolic inactivation of
cisplatin (3) (Fig. 8).

DNA damage alteration

The balance of DNA damage versus DNA repair deter-
mines cancer cell death versus survival after cisplatin
therapy (202). DNA excision repair protein, excision repair
cross-complementation group 1 (ERCC1), complexed with
xeroderma pigmentosum complementation group F (XPF),
catalyzes the incision of the damaged DNA strand, the rate
limiting step in the nucleotide excision repair pathway. High
ERCC1 and XPF expression is indicative of increased re-
moval of DNA platinum adducts and has a linear relation-
ship with resistance to cisplatin in many cancers, including
HNSCCs (322). Polymorphisms have been identified in

ERCC1 and XPF but they have not correlated with in-
creased sensitivity or resistance.

Platinum influx and efflux

Moderate platinum resistance is mediated by decreased
uptake or increased export, thereby reducing platinum con-
centration (161). Cisplatin can passively diffuse the cell
membrane or is transported by copper transporter proteins 1/2
(CTR1/2) and the organic cation transporter 2 (OCT2).
Cisplatin-resistant cells show decreased levels of CTR1
messenger RNA (mRNA) and reduced levels of copper, but
increased levels of CTR2, suggesting that CTR1 to CTR2
ratio may be a useful biomarker for determining cisplatin
response (155). Cisplatin is exported out of the cell by P-type
ATPase transporters (e.g., ATP7A and ATP7B) or by ATP-
binding cassette (ABC) transporters. These transporters are
trafficked to the cell membrane to remove excessive copper
(3). As expected, increased ATP7A and ATP7B levels are
associated with poor response to cisplatin (178).

Platinum conjugation

Cisplatin resistance can also be due to conjugation with
protein thiols (e.g., metallothionein and GSTs such as GST-pi
and GST-Ml), leading to increased solubility, increased
cellular export, and less DNA damage. In HNSCCs, there is a
correlation between high expression of GST-pi and cisplatin
resistance (217).

Other mechanisms of chemoresistance

HIFs have been implicated in increased resistance to
chemotherapeutics by increasing drug efflux and reducing
DNA damage. HIF-2’s ability to inhibit apoptotic pathways
and activate antiapoptotic signaling pathways results in en-
hanced cyclin D2 expression, causing improved growth and

FIG. 8. Mechanisms for
cisplatin therapy. Cisplatin
enters the cell through passive
diffusion or active transport
via CTR1/2 or OCT2. Binding
of cisplatin to DNA results
in platinum adducts, causing
kinking of the DNA and in-
hibiting DNA transcription and
cell proliferation until DNA
damage is repaired or the cell
dies. Resistance to cisplatin
treatment can be due to (i) de-
creased influx and increased
efflux, (ii) increased DNA re-
pair, and (iii) neutralization
with protein thiols. ABC, ATP-
binding cassette; ATP, adeno-
sine triphosphate; CTR, copper
transporter protein; GST, glu-
tathione S-transferase; OCT,
organic cation transporter. To
see this illustration in color, the
reader is referred to the web
version of this article at www
.liebertpub.com/ars
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resistance to DNA damage (122, 123). Multidrug resistance
1 (ABCB1) is an ABC (ATP-binding cassette) transporter
protein, which can traffic substances across cellular mem-
branes and cause efflux of many xenobiotics (214). It was
also shown in colon and gastric cancer that ABC transporter,
ABCG2, mediates resistance to chemotherapies under hyp-
oxic conditions (79). Acid ceramidase (AC) plays a role in
ceramide metabolism by converting ceramide into sphingo-
sine to prevent ceramide-induced apoptosis. AC is over-
expressed in 70% of HNSCC malignant tissue and causes
resistance to chemotherapeutic agents. An in vitro study
demonstrated that AC silencing regulates expression of WT
or mutant p53 by post-transcriptional processing and caspase-
dependent mitochondrial apoptosis, increasing response to
chemotherapy (210).

Resistance to EGFR-targeted therapies

Monoclonal antibodies and TKIs target EGFR at the ligand
binding or the catalytic domain, respectively, causing their
efficacy and cytotoxicity profiles to be different. Cetuximab
resistance is associated with dysregulation of the internal-
ization and degradation processing of EGFR. Forty-two
percent of HNSCCs express an in-frame deletion in the
ligand-binding portion of the receptor, resulting in a trun-
cated EGFR-variant 3 (EGFRvIII) to be expressed (276).
EGFRvIII is constitutively phosphorylated, independent of
ligand binding causing resistance to monoclonal antibodies,
which target the ligand binding domain (276) (Fig. 2).
STAT3 is also expressed at higher levels in HNSCCs with
EGFRvIII. Cetuximab lacks the efficacy to abrogate EGFR-
vIII constitutive activation and STAT3 activity. In contrast,
resistance to TKIs is mostly attributed to (i) activation of
redundant kinase signaling pathways such as tyrosine-protein
kinase Met (c-MET) and other EGFR family members and
(ii) EGFR-independent activation of downstream signaling
pathways such as phosphatidylinositide 3-kinase (PI3K)/
protein kinase B (Akt) pathway (74, 182, 237). For example,
recent studies have suggested that overexpression of other
members of the EGFR family, such as human epidermal
growth factor receptor 3 (HER3), is involved in resistance to
EGFR TKIs (25). HER3 lacks tyrosine kinase activity but can
be phosphorylated by c-MET or other receptor tyrosine ki-
nases (75). c-MET is commonly overexpressed, mutated, or
has increased number of gene copies in 60% of HNSCCs
(182). Mesenchymal-epithelial transition (MET) amplifica-
tion drives HER3-dependent activation of PI3K/Akt signal-
ing bypassing the EGFR inhibition by TKI (263, 277).
Similarly, inhibitory PTEN mutations seen in many cancers
including HNSCC (263, 277) or persistent oxidation result in
activation of Akt pathway and downstream effectors (237).

Survival and QOL: Improving HNSCC Patients’
QOL with Redox Modifiers

Owing to the location of the tumor, HNSCC patients often
suffer from impairments in swallowing, breathing, and
speaking as side effects of RT or CRT, greatly affecting their
QOL. Preventing and controlling these complications can not
only improve the QOL of HNSCC patients but also allow
them to continue or receive higher doses of treatment,
achieving overall better cancer management. There are many
aspects of preventing and treating oral complications asso-

ciated with HNSCC treatment, including pain control, nu-
tritional support, and oral hygiene, just to name a few. Here
we highlight the use of ROS modifiers in managing oral
mucositis and xerostomia.

Oral mucositis is a common side effect observed in
HNSCC patients receiving RT or CRT. The pathogenesis of
oral mucositis was defined to have five biological stages: (i)
initiation, (ii) primary damage response, (iii) signal amplifi-
cation, (iv) ulceration, and (v) healing (279). ROS, as a result
of the chemotherapy and/or RT, is involved in the first
two stages by causing direct mucosal tissue damage and ac-
tivating NF-jB and ceramide pathways that further result in
apoptosis and tissue injury. Management of oral mucositis
has been largely palliative, although targeted therapeutic
interventions exploiting the dependency of oral mucositis on
ROS generation are emerging. Amifostine, originally de-
veloped by U.S. military to protect soldiers from radiation
exposure, is thought to act as a thiol-based free radical
scavenger to protect HNSCC patients against radiation- and
chemoradiation-induced toxicity. However, due to conflict-
ing results on its ability to reduce oral mucositis, insufficient
evidence of benefit, and strong toxic side effects, a guideline
regarding the use of this agent in oral mucositis in chemo-
therapy or RT patients could not be established (216, 241).
Currently, FDA only approves amifostine for prevention of
xerostomia in HNSCC radiotherapy and for prevention of
nephrotoxicity in cisplatin-based chemotherapy in ovarian
cancer.

Another group of ROS inhibitors with potential therapeutic
benefit in treating oral mucositis involves SOD activity.
Small-molecule SOD mimetic M40403 has shown efficacy in
attenuating radiation-induced oral mucositis in a hamster
model (212). Its enantiomer, GC4419, has completed a Phase
1b/2a clinical trial with positive results of reducing the in-
cidence, severity, and duration of oral mucositis in HNSCC
patients receiving CRT (5), and is currently being evaluated
in a randomized Phase 2 clinical trial to assess its effect on
radiation-induced oral mucositis in patients with HNSCC
(NCT02508389). In addition, a novel manganese porphyrin
SOD mimetic (MnBuOE-2-PyP5+, BMX-001) has shown
radioprotective properties on normal tissue by reducing
radiation-induced mucositis, xerostomia, and fibrosis, while
acting as a radiosensitizer in a mouse model of HNSCCs (8,
35). Given its differential effect on normal tissue versus tu-
mor (16, 313, 314), BMX-001 is currently under a Phase 1a/b
clinical trial to test its ability to reduce radiation-induced
mucositis and xerostomia in HNSCC patients receiving RT
(NCT02990468). Along the same lines, overexpression of
human SOD2 in the oral cavity mucosa by plasmid/liposome
delivery prevented radiation-induced mucositis in a mouse
HNSCC model (127). For details regarding different physical
properties, distribution, and chemistry of these SOD mi-
metics, readers are referred to Batinic-Haberle et al.’s review
(this Forum).

Finally, RK-0202, a proprietary matrix for topical appli-
cation in the oral cavity, consists of an antioxidant N-
acetylcysteine (NAC). In a Phase 2 clinical trial, RK-0202
significantly reduced the incidence of severe oral mucositis in
HNSCC patients treated with radiotherapy (55). NAC also
showed efficacy in reducing the incidence and total duration
of oral mucositis in leukemia patients undergoing allogeneic
hematopoietic stem cell transplant and high-dose chemotherapy
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(211). Other ROS inhibitors with promising antioral mucositis
effects include benzydamine (99, 157, 264), vitamin E (97, 308),
and allopurinol (321).

Xerostomia or dry mouth is a common side effect associ-
ated with RT or CRT. It is a consequence of the hypo-
functioning salivary gland, which is damaged by these
therapies. Standard treatment options for xerostomia include
saliva substitutes and stimulating agents, such as pilocarpine
hydrochloride, a cholinergic agonist. Recent treatment has
included novel antioxidants, such as lecithinized SOD and
Tempol, and has shown positive results in mouse models (76,
287). Interestingly, acupuncture has also been reported to
alleviate xerostomia (117, 269). The underlying mechanism
is unknown but believed to be mediated by decreasing ROS
levels (265).

Bioinformatics and Computational Systems
Biology Approaches to Integrate Redox Effects
in HNSCC Management

The diverse tissue sources (e.g., laryngeal, oropharyngeal,
and salivary gland) implicated in HNSCCs create challenges
in the development of systems biology approaches for
studying etiology of HNSCCs and prediction of effective
treatment strategies. Compounding the tissue diversity is the
distribution of genetic drivers in HNSCCs (45, 282, 309).
Compared with other cancers, for example, genomic analysis
of allelic mutations in HNSCCs indicates lesions across nu-
merous genes rather than a small set of dysregulated drivers
of carcinogenesis (282). Targeted deep sequencing of 51
oncogenes highlighted the diversity of mutations in HNSCCs
that are related to the underlying patient population (tobacco
users and HPV+) (118). Although the occurrence of shared
gene mutations across samples analyzed by whole-exome
sequencing was low, recurrent mutations of TP53, PI3KCA,
PTEN, CASP8, and HRAS were enriched across the sample
set (282). Strikingly, these proteins have been implicated in
redox-regulated processes either as direct protein thiol targets
or as accessories to redox enzyme regulation in other cell
types and biological contexts (4, 73, 134, 256). The motivation
for using computational models for precision medicine ap-
proaches for targeting of redox-dependent signaling pathways
is further supported by the two examples given hereunder.

EGFR and ROS formation

Systems biology modeling of the EGFR receptor network
has resulted in refined understanding of regulation and opti-
mal drug targets in cancers in general and specific to breast
cancer and nonsmall cell lung cancer (NSCLC) (37, 58, 113,
253, 254); however, these types of models have not been
applied extensively to HNSCCs. Regulatory features gleaned
from these models can potentially be generalized to HNSCCs.
For example, a large-scale kinetic model of EGFR signaling
identified HER3 (ErbB/EGFR3) as the optimal inhibitory
target for monoclonal antibody modulation of PI3K signaling
(254). In a computational and experimental analysis of HER2
overexpression in breast cancers, extracellular signal-
regulated kinase (ERK) activity was more robust against var-
iability in parameter values than Akt, which may reflect drug
targeting of Akt to be more advantageous in heterogeneous
tumors or across a broad patient population. Zhou et al. built
upon these findings to include features of EGFR-induced NOX

activation to examine regulatory features of ROS in oncogene
addiction in NSCLC cells (329). This model predicted that
crosstalk between Akt and ROS-activated ASK1 suppresses
proapoptotic mechanisms during sustained EGFR signaling.
Disruption of this crosstalk by the EGFR TKI gefitinib resulted
in enhanced apoptosis that could be modulated by vitamin C
(ascorbate); however, the matching of simulations to experi-
ments was limited due to the lack of detail of additional redox-
regulated mechanisms that would be impacted by the NOX
activation. Interestingly, a large prospective study found an
inverse correlation between the intake of vitamin C and the
incidence of HNSCCs (84). A body of experimental evidence
implicates EGFR-induced NOX activation in the thiol oxida-
tion of multiple proteins within this receptor tyrosine kinase
network, including EGFR itself, PTEN, protein-tyrosine
phosphatase 1B (PTP1B), and tyrosine-protein phosphatase
nonreceptor type 11 (SHP2) (203, 229, 296). Furthermore,
proinflammatory cytokines such as IL-6 are reported to be
modulated in a NOX4-dependent manner in HNSCC cells, and
incorporation of tumor cell migration and invasion as addi-
tional phenotypic endpoints beyond cytoxicity in network
simulations would provide insight into the role of ROS gen-
erated by NOX during different therapies (110). Despite these
limitations, the authors propose from their systems-level
analysis that oncogene-addicted cancers may require combi-
natorial treatment to target survival signals and enhance
proapoptotic mechanisms, such as elevation of ROS. The ap-
plicability of these systems level features of cancer regulation
to HNSCCs is unknown. For instance, isolation of the ERK or
Akt module was reported to exhibit switch-like behavior that
was very different from the behavior of the intact system,
suggesting that parameter sensitivity and ligand thresholds are
very context-specific (58). Thus, the nuances in expression
levels of this complex network and the multiple nodes of cross-
regulation via ROS may render cetuximab or erlotinib dose
responses to regulate EGF signaling very differently from all
of the other cancer modeling studies to date.

Transcriptomic analysis of 60 HNSCC patient samples
identified 4 distinct subtypes of patients that were loosely
categorized as EGFR-related, mesenchymal-enriched, nor-
mal epithelium-like, and high antioxidant defense (67). The
latter subset of patients exhibited a gene signature of upre-
gulated xenobiotic, pentose phosphate, and redox enzymes
such as GPX2 and TR1. This profile corresponds to other
transcriptional analyses of epithelium from cigarette smokers
and clustered the furthest from the EGFR-related subset.
Targeting EGF signaling may be suboptimal for HNSCC
patients based upon history of tobacco use.

STAT3 as a redox sensor

A recent stratification of HNSCC patient outcomes using
big-data approaches leveraged somatic mutation information
with prior knowledge derived from protein–protein and im-
mune signaling databases (179). This methodology resulted
in three classes of patients that mapped into different Cox
survival profiles, yet distributed smoking status, HPV status,
and other clinical metrics similarly. Instead, the algorithm
identified different protein subnetworks associated with mu-
tations within the patient groups, with STAT3 being a key
‘‘hidden’’ linker between the network that associated with
best prognosis. STAT3 activation and upregulation are
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associated with loss of growth control in early-stage HNSCC
(125), and blockade of STAT3 signaling has demonstrated
antitumor efficacy in preclinical models of HNSCCs (1, 30,
260). Notably, STAT3 has been identified as the first mam-
malian signaling protein capable of serving as a redox relay
with PRX2, resulting in an attenuation of Janus kinase/STAT
signaling due to either endogenous or exogenous H2O2 levels
(275). Thus, transcriptional activity of STAT3 is dependent
on the PRX/TRX system and indirectly coupled to NADPH
for reducing equivalents. To date, no computational modeling
has been done to explore the role of STAT3 in translating
elevated tumor levels of ROS into transcriptional changes;
implementing these effects in pre-existing three-dimensional
computational models of tumor growth and hypoxia (189)
would be insightful in the spatial contributions to chemo-
therapeutic resistance.

Models of redox-based drug mechanisms of action
for HNSCC therapies

To date, very little computational modeling has been
performed that incorporates redox-based mechanisms of ac-
tion for the common chemotherapeutics used clinically for
HNSCCs (e.g., cisplatin, 5-FU, and methotrexate). One study
was able to determine a 10-gene signature to predict response
of HNSCC patients to 5-FU induction chemotherapy by an-
alyzing HNSCC biopsies with whole-genome microarrays
and quantitative reverse transcriptase PCR (295). Some of the
candidate genes identified play a role in response to redox
stress such as heat shock protein 40 and TRX domain con-
taining 9 (295). Another notable example is a computational
network model, consisting of 44 ordinary differential equa-
tions with mass action kinetics, which incorporated cisplatin
effects on apoptotic signaling pathways, DNA damage, and
oxidative stress (142). Time and concentration-dependent
effects of cisplatin are accounted for through explicit de-
scription of OCT2-mediated cellular uptake. The model
provided insight into the three-way crosstalk between death
receptor, mitochondrial, and ER stress contributions to apo-
ptosis in a generic cell. The lack of literature-derived pa-
rameter values for a mechanistic model such as this precludes
the use of this approach in HNSCCs unless concerted effort to
quantify rates of caspase activation, Bcl-2 homologous an-
tagonist/killer (BAK)/BAX binding, etc. is undertaken in a
consistent experimental setting. Other examples of ROS
production induced by chemotherapeutics, such as doxoru-
bicin (108, 109), highlight the use of in vitro measurements
for establishing cancer-specific parameters.

Models of HPV infection and progression

A spatial model of HPV infection and progression within
the stratified squamous epithelium was developed to consider
the role of stochastic division rates of stem-like progenitor
cells in viral persistence/clearance within infected tissue
(248). Although this model primarily focuses on the balance
between immune responses and cellular dynamics for viral
clearance, the framework provides an opportunity to couple
progression from HPV infection to sustained neoplastic
growth and account for viral-induced cellular oxidation (57,
200), which is spatially defined within a tumor mass. Model-
based simulations that account for recent immunotherapeutic
advances (280, 299) and susceptibility to redox-modulating

therapeutics in HPV+ versus HPV- cancers could also fea-
sibly incorporate T cell–HNSCC interactions, as recently
developed in a computational analysis for HIV–HPV coin-
fection (305).

Bioinformatics analysis of the Cancer Genome Atlas
and the Cancer Proteome Atlas HNSCC data

A growing number of studies are using data archived
through NIH programs such as the Cancer Genome Atlas
(TCGA) and the Cancer Proteome Atlas (TCPA). For ex-
ample, a novel cascade propagation (CasP) subtyping ap-
proach, using TCGA data, was developed to investigate
codependent immune signaling pathways in HNSCCs by
using dynamic network modeling followed by stratifying
somatic mutations. Using CasP subtyping, HNSCC patients
were stratified into two distinct groups, including (i) patients
with mutations in TLR signaling who have better OS and (ii)
patients with mutations in T and B cell receptor signaling
who have poorer survival (179). Also, another study identi-
fied genomic and/or epigenomic changes that lead to STAT3
activation in HNSCCs using data generated by the TCGA and
the TCPA programs (233). The authors identified that STAT3
expression is associated with disease stage, nodal status,
tumor size, PFS, and OS in early stage oral HNSCCs. These
types of modeling techniques offer opportunities to better
understand molecular signaling and identification of bio-
markers as well as opportunities for therapeutic escalation/
deescalation.

Concluding Remarks

The research reviewed here provides clear evidence of the
critical role played by altered redox homeostasis at all stages
of HNSCC from development and early detection to treat-
ment and improvement of patients’ QOL. There is an estab-
lished connection between etiologic factors, ROS, and
inflammation as driving mechanisms of HNSCCs. There re-
main, however, certain aspects of HNSCC etiology that are
just starting to be investigated and are critical for disease
prevention and early detection. These include (i) synergy
of interaction between currently acknowledged drivers of
HNSCCs (e.g., HPV and smoking), (ii) the possibility of
other coinfections acting as cofactors with HPV [e.g., Chla-
mydia, another sexually transmitted infection with cofactor
function in HPV+ cervical cancer (330) and with potential for
upregulating host cell EGFR and ROS (228)], and (iii) the
role of oral microbiota in HNSCC development. Composi-
tion of oral microbiota and associated biomarkers was shown
relevant for HNSCC development and early detection (172)
and for predicting severity of oral mucositis induced by RT
(331). Detailed mechanisms of how bacterial metabolism
interacts with current etiologic factors and standard of care
HNSCC therapies require further investigation. Redox
mechanisms remain relevant in this context as oral micro-
biota plays a key function in nitrate metabolism (e.g., high in
cruciferous vegetables like broccoli), which ultimately con-
tributes to blood nitric oxide levels and controls cancer-
relevant processes such as neovascularization (150).

Accumulation of ROS as a mechanism to kill cancer was
applied successfully over decades through the use of RT.
Toxicities associated with treatment and damage to normal
tissue have been, however, concerns from the very beginning.
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Earlier methods at the turn of the 20th century employed
glass tubes placed in vicinity of the tumors to deliver radia-
tion in a method known as interstitial brachytherapy (72).
Current technologies such as hybrid imaging and image-
guided treatment devices allow for better targeting of radia-
tion to the tumor, largely avoiding damage of normal healthy
tissue. Nevertheless, metabolic and signaling changes such as
those enabling suppression of radiation-induced ROS and
DNA damage impair efficacy of RT and CRT. As NADH and
NADPH species are the ultimate donors of reducing equiv-
alents fueling ROS degradation and energy metabolism, it is
critical to learn how to manipulate these species with spatial
and temporal resolution within tumors to increase sensitivity
to treatment (Fig. 9). Although some tools to selectively
detect and manipulate NADH, NADPH (31–33, 291, 328),
and specific ROS species are currently available (in some
cases with subcellular resolution) [e.g., Kelso et al. (158) and
Robb et al. (244)], more are needed to enable basic and
translational studies on this subject. NQO1 bioactivatable
drugs are examples of how NAD(P)H-consuming and O2

�-/
H2O2-producing reactions can be manipulated to achieve
tumor kill alone or in combination with RT. In particular,
NQO1 substrates capable of futile cycling, like the b-
lapachone described here, are exciting new leads for further
development into therapeutics.

Targeted therapies, such as EGFR kinase inhibitors and
others, continue to remain of interest for treatment of
HNSCCs. It is unfortunate to date that the impact of tumor
redox microenvironment on the efficacy of response to small-
molecule inhibitors is not being routinely considered. Simi-
larly, more consideration needs to be given to physiologic
redox modifiers such as aging, diet, and exercise on cancer
development and response to treatment. Although a signifi-
cant body of literature exists on the role of these factors in
cancer development and incidence (9), less is known with
regard to their impact on regulation of response to RT, CRT,
targeted drugs or immunotherapies (220, 326), and QOL
post-treatment (201).

There are currently two SOD mimetics under clinical trials
as radioprotective agents in HNSCC treatment (GC4419 and
BMX-001). This is the first time metal complexes are in
clinical trials and target cellular redox environment. Al-
though these drugs are indeed redox active, it is also likely
that they act through functions other than SOD mimicking,

such as inhibiting NF-jB and activating NRF2, which has
been demonstrated for BMX-001 (16). For such functions
and mitochondrial localization of BMX-001, readers are re-
ferred to Carroll and St Clair’s review in this Forum.

In summary, there is strong evidence connecting redox
metabolism with all stages of HNSCC management. The
location of HNSCCs brings new opportunities for exploiting
critical redox modifiers generated through activation of bio-
logically active dietary molecules by oral microbiota to
prevent or decrease HNSCC progression, improve response
to therapies, and patients’ QOL.
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5-FU¼ 5-fluorouracil
ABC¼ATP-binding cassette

AC¼ acid ceramidase
Akt¼ protein kinase B

AMPK¼AMP-activated protein kinase
AP¼ apurinic/apyrimidinic

ASK1¼ apoptosis signal-regulated kinase 1
ATG¼ autophagy-related
ATP¼ adenosine triphosphate
BAX¼Bcl-2-associated X protein
BER¼ base excision repair
CasP¼ cascade propagation
CAT¼ catalase

CD¼ cluster of differentiation
c-MET¼ tyrosine-protein kinase Met

COX¼ cytochrome c oxidase
CRT¼ chemoradiation therapy

CTLA-4¼ cytotoxic T-lymphocyte-associated
protein 4

CTR¼ copper transporter protein
CYP¼ cytochrome P450
DNQ¼ deoxynyboquinone
DSB¼ double-strand break

EGFR¼ epidermal growth factor receptor
EGFRvIII¼EGFR-variant 3

ER¼ endoplasmic reticulum
ERCC-1¼ excision repair cross-complementation

group 1
ERK¼ extracellular signal-regulated kinase
FDA¼ Food and Drug Administration

G6PD¼ glucose-6-phosphate dehydrogenase
GCL¼ glutamate-cysteine ligase
GPX¼ glutathione peroxidase

GR¼ glutathione reductase
GSH¼ glutathione

GSSG¼ oxidized glutathione
GST¼ glutathione S-transferase
HER¼ human epidermal growth factor receptor
HIF¼ hypoxia-inducible factor

HNSCC¼ head and neck squamous cell cancer
HPV¼ human papillomavirus

IB-DNQ¼ isobutyl-deoxynyboquinone
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Abbreviations Used (Cont.)

IL¼ interleukin
IR¼ ionizing radiation

KEAP1¼Kelch-like ECH-associated protein 1
MET¼mesenchymal-epithelial transition

mTOR¼mechanistic target of rapamycin
NAC¼N-acetylcysteine

NADPH¼ nicotinamide adenine dinucleotide
phosphate

NF-jB¼ nuclear factor kappa-light-chain-
enhancer of activated B cells

NOX¼NADPH oxidase
NQO1¼ quinone oxidoreductase 1
NRF2¼ nuclear factor-erythroid 2-related

factor 2
NSCLC¼ nonsmall cell lung cancer

OCT¼ organic cation transporter
OS¼ overall survival

PAR¼ poly ADP ribose
PARP¼ poly ADP ribose polymerase

PCR¼ polymerase chain reaction
PD-1¼ programmed cell death protein 1

PD-L1¼ programmed death-ligand 1
PET¼ positron emission tomography
PFS¼ progression-free survival

PGC-1a¼ peroxisome proliferator-activated
receptor gamma coactivator 1a

PI3K¼ phosphatidylinositide 3-kinase
pO2¼ oxygen partial pressure
PPP¼ pentose phosphate pathway

PRX¼ peroxiredoxin
PTEN¼ phosphatase and tensin homologue
QOL¼ quality of life
ROS¼ reactive oxygen species

RT¼ radiation therapy
SAM¼ S-adenosylmethionine
SOD¼ superoxide dismutase
SSB¼ single-strand break

STAT¼ signal transducer and activator of
transcription factor

TCGA¼The Cancer Genome Atlas
TCPA¼The Cancer Proteome Atlas

TKI¼ tyrosine kinase inhibitor
TLR¼ toll-like receptor

TR¼ thioredoxin reductase
TRX¼ thioredoxin

VEGF¼ vascular endothelial growth factor
WT¼wild-type

XPF¼ xeroderma pigmentosum
complementation group F
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