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Abstract

Significance: All cells must maintain a balance between oxidants and reductants, while allowing for fluctua-
tions in redox states triggered by signaling, altered metabolic flow, or extracellular stimuli. Furthermore,
they must be able to rapidly sense and react to various challenges that would disrupt the redox homeostasis.
Recent Advances: Many studies have identified Keap1 as a key sensor for oxidative or electrophilic stress, with
modification of Keap1 by oxidation or electrophiles triggering Nrf2-mediated transcriptional induction of
enzymes supporting reductive and detoxification pathways. However, additional mechanisms for Nrf2 regu-
lation are likely to exist upstream of, or in parallel with, Keap1. Critical Issues: Here, we propose that the
mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a potent regulator of Nrf2. A high chemical
reactivity of TrxR1 and its vital role for the thioredoxin (Trx) system distinguishes TrxR1 as a prime target for
electrophilic challenges. Chemical modification of the selenocysteine (Sec) in TrxR1 by electrophiles leads to
rapid inhibition of thioredoxin disulfide reductase activity, often combined with induction of NADPH oxi-
dase activity of the derivatized enzyme, thereby affecting many downstream redox pathways. The notion of
TrxR1 as a regulator of Nrf2 is supported by many publications on effects in human cells of selenium
deficiency, oxidative stress or electrophile exposure, as well as the phenotypes of genetic mouse models.
Future Directions: Investigation of the role of TrxR1 as a regulator of Nrf2 activation will facilitate further
studies of redox control in diverse cells and tissues of mammals, and possibly also in animals of other classes.
Antioxid. Redox Signal. 23, 823–853.

Introduction—Redox Control Through Nrf2 or TrxR1

Modifications of redox-sensitive protein moieties by
reactive oxygen species (ROS) and reactive nitrogen

species have emerged as major post-translational mechanisms
for regulation of protein function and downstream cellular
events. These modifications can be reversed by reductive
systems, of which the glutathione (GSH) and thioredoxin
(Trx) systems are the most prominent in mammalian cells.
These systems rely on NADPH-dependent disulfide reduc-
tases that, in turn, propel the reduction of a wide range of
downstream targets. Both oxidative and reductive pathways
are tightly controlled and ensure cellular redox homeostasis
while also allowing regulation of redox signaling pathways.
These redox processes are typically sensitive to reactive ex-
ogenous and endogenous molecules that easily modify critical
redox-sensitive residues in proteins (24, 91, 121, 254).

Mammalian cells possess the transcription factor Nrf2
(Nuclear factor (erythroid-derived 2)-like 2) as a major reg-
ulator to coordinate cellular responses to oxidative and elec-
trophilic stress (32, 34, 147, 208, 282, 287). Nrf2, when
activated, binds to the antioxidant/electrophile responsive el-
ement (ARE/EpRE) in the promoter region of genes expres-
sing enzymes that directly or indirectly promote cell survival
and restoration of redox homoeostasis. Its portfolio of target
genes includes, among others, phase 2 detoxification enzymes,
proteins that promote the regeneration and synthesis of glu-
tathione, antioxidant, and redox regulatory enzymes, includ-
ing proteins of the Trx system, and enzymes that specialize in
DNA and protein repair (11, 25, 32, 116, 144). Nrf2 is usually
sequestered in the cytosol and constantly targeted for protea-
somal degradation via Keap1 (Kelch-like ECH-associated
protein 1), which is generally considered the main cellular
sensor for oxidative and electrophilic stress (168, 169, 229).
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In this review, we wish to summarize and highlight the
importance of the Trx system as a modulator of the Keap1-
Nrf2 response pathway. The selenoprotein TrxR1, in partic-
ular, seems to operate in concert with Keap1 in detecting
cellular stress and modulating appropriate Nrf2-dependent
responses. We base our proposal on results from animal
models and cell culture studies, strongly suggesting a direct
causal relationship between TrxR1 inhibition or depletion
and profound Nrf2 activation (36, 43, 44, 52, 61, 92, 192, 207,
221, 237, 242, 284, 285, 294). Inhibition of cellular TrxR1
activity is, compared with targeting of other redox-active
enzymes, a likely scenario that has a major impact on nu-
merous cellular events (11, 66, 127, 201, 292). We propose
that electrophilic compounds that activate Nrf2 by targeting
Keap1 also, if not predominantly, inhibit TrxR1 due to the
highly reactive and accessible active site selenocysteine
(Sec) residue of this enzyme. Some reactive molecules that
target TrxR1 may furthermore not only inhibit the enzyme
but also transform the protein to pro-oxidant SecTRAPs
(selenium compromised thioredoxin reductase-derived apo-
ptotic proteins) having NADPH oxidase activity (5, 6, 49),
thus further promoting activation of Nrf2 in any cells that
survive such an oxidative challenge. These links between
TrxR1 targeting and Nrf2 activation will be discussed in
detail next, but first, we give a brief general introduction of
the closely intertwined redox systems in mammalian cells.

The Functions of TrxR1 in Relation to the Many
Roles of the GSH and Trx Systems in Mammalian
Redox Control

Mammalian cells utilize a variety of low-molecular-
weight antioxidants, antioxidant enzymes, and repair systems
not only to protect against oxidative damage but also to re-
verse oxidative modifications in order to regulate signaling
pathways (16, 90, 141, 162, 187, 214, 215, 232, 240). The
composition of antioxidants varies between tissues and is

affected by nutrition and cellular redox states. Some of the
well-known nonenzymatic antioxidants include Vitamin A
and E, ascorbate, lipoic acid, ubiquinone, and GSH (110).
Their redox properties and intracellular localization vary, and
they may scavenge radical species, chelate transition metal
ions, or promote oxidative stress, depending on concentra-
tion, cellular context, and oxygen tension. They may also be,
either directly or indirectly, regenerated by various antioxi-
dant enzymes, where the enzymes of the GSH and Trx sys-
tems are considered the most important (Fig. 1). These
systems will briefly be introduced here, with the reader being
referred to more comprehensive reviews on detailed discus-
sions about the different players of these diverse redox sys-
tems. It is important to note that the different redox systems
of cells constitute a complex redox milieu within which
Keap1- and Nrf2-linked signaling must occur.

The tripeptide glutathione (GSH; c-Glu-Cys-Gly) is pres-
ent in low millimolar concentrations in cells and is thus their
most abundant low-molecular-weight antioxidant (232, 246).
It can scavenge electrophilic and oxidizing compounds either
directly or as catalyzed by glutathione-S-transferases (GSTs),
which have also been shown to be important in modulation of
signaling pathways (116, 172). GSH is also utilized by glu-
tathione peroxidases (GPxs) to reduce hydroperoxides or by
glutaredoxins (Grxs) that operate as disulfide reductases and
de-glutathionylation enzymes.

The GPx family contains eight isoforms that are expressed
in various tissues and with different subcellular localizations.
GPx1-4 and GPx6 in humans have a peroxidatic Sec residue,
whereas the other isoforms are Cys dependent. GPx4 is unique
in reducing peroxides of complex lipids such as phospholipids
or cholesterol within the hydrophobic core of membranes. Of
the GPx proteins for which mouse models have been made,
only the GPx4 knockout is lethal (326), which might reflect
particularly detrimental consequences of lipid peroxidation.
In addition to being important antioxidant enzymes, GPxs are
also discussed in redox signaling and regulation of

FIG. 1. Summarizing scheme of the complementary glutathione (GSH) and thioredoxin (Trx) systems. The GSH and
Trx systems are two major complementary reductive systems in mammals, as illustrated here in a highly schematic manner.
This scheme summarizes overall functions of the GSH and Trx system proteins, thus not considering compartmentalization
effects that can further modulate their activities. General and vital functions such as DNA synthesis (through ribonucleotide
reductase) and protein disulfide reduction can efficiently be supported by both systems. The key enzymes of the Trx system
are the TrxRs that use electrons from NADPH to reduce Trx isoforms, as well as a number of other protein or nonprotein
substrates. The GSH system fulfills similar functions, with GSH propelling enzymes such as GST, GPx, and Grx, and also
directly participating in a number of processes. Oxidized GSH (glutathione disulfide, GSSG) is regenerated to its reduced
form by glutathione reductase (GR) utilizing NADPH. Importantly for the purpose of this review, cells and animals
generally display a significant cross-talk as well as functional overlap between the GSH and Trx systems. However, there is
a major difference between the two NADPH-dependent enzymes in these reductive pathways; GR is a highly dedicated
enzyme for GSSG reduction and is neither easily targeted nor inhibited by electrophiles or oxidative stress, while TrxRs are
exceptionally reactive enzymes, the inhibition of which yield major effects on cellular redox control. In this review, we
propose that the particular characteristics of the cytosolic TrxR1 isoform, in particular, renders it a status of a sensor
communicating with the Nrf2 system, as further discussed in the text.
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physiological processes. The GPx family of proteins was re-
cently reviewed in detail by Brigelius-Flohé and Maiorino
(33). The Grxs may also modulate many signaling events, and
they have been thoroughly reviewed elsewhere (90, 187, 272).

After having donated their electrons, two GSH molecules
form a glutathione disulfide (GSSG) via an intermolecular
disulfide bridge, which, in turn, is reduced by glutathione re-
ductase (GR) using NADPH as the electron donor (291). GSH
also influences redox signaling events via glutathionylation of
reactive thiol-groups in key cysteine residues, which can pro-
tect them from oxidative modifications and electrophilic com-
pounds (102). The effect of GSH depletion on Nrf2 activation
is, in contrast to TrxR1 inhibition, less clear. Some studies
report Nrf2 activation on GSH depletion (59, 158, 176),
whereas this is less clear in other studies (85, 183). An expla-
nation for different results between these reports might possibly
be different degrees of GSH depletion. With GSH being the
most abundant low-molecular-weight antioxidant present in
low millimolar concentrations (232, 246), a depletion of 80%–
90% could be considered as having major effects, although the
signs are less than those seen on TrxR1 depletion. Using mouse
embryonic fibroblasts, it was shown that Nrf2 is required for
antioxidant gene induction on GSH depletion and oxidative
stress (176) and it was shown that Nrf2 activation on GSH
depletion is associated with oxidative stress (158, 183). How-
ever, this is not necessarily the case with TrxR1 depletion,
which can also promote an oxidative stress-independent acti-
vation of Nrf2 (284), as will be further discussed next.

The thioredoxin system is, in addition to the GSH-dependent
enzymes, a key redox regulatory system in mammals that
contributes to defence against oxidative stress (108, 198), cell
proliferation and viability (14, 205), as well as protein folding

and signal transduction (188, 211). It consists of isoenzymes of
thioredoxin reductase (TrxR) that use NADPH as the electron
donor to reduce their main substrates, isoforms of thioredoxin
(Trx), and related proteins (16, 127, 201), which, in turn, sustain
a number of pathways by providing redox enzymes either with
electrons or via protein–protein interactions (198, 205). Sub-
strates of Trxs that are likely of major importance in relation to
signaling are the peroxiredoxins (Prxs). The Prx isoforms
(Prx1-6) differ in cellular localization, substrate specificity, and
reaction mechanism but all of them are highly reactive with
peroxides. As such, they were initially recognized for their roles
in prevention of oxidative stress, by direct reduction of hy-
drogen peroxide, organic hydroperoxides, lipid hydroperox-
ides, and peroxinitrite. Prxs are also currently recognized in the
context of signal transduction, as they may transfer oxidative
modification to specific target proteins via protein-protein in-
teractions. The Prxs have also been discussed in detail in recent
reviews (247, 256) but will be specifically discussed later in
relation to targeting of TrxR1. More comprehensive discus-
sions of the whole Trx system with regards to physiologic
functions are provided by recent reviews of Mahmood et al.
(205) and Lu and Holmgren (198).

Giving a full presentation of the GSH and Trx systems in
mammals is beyond the scope of this review. Here, we shall
only conclude that GSH, with all GSH-dependent enzyme
systems, and the Trx system, including many Trx-dependent
enzymes, support a wide range of reductive pathways in cells
that strive to obtain redox homeostasis, while simultaneously
allowing for fluctuations in redox control to enable redox
signaling events. This occurs through an important interplay
with Nrf2 regulation (Fig. 2). For the purpose of specifically
introducing TrxR1 in relation to Nrf2 signaling, we first need

FIG. 2. The main principles of mammalian redox homeostasis. Reduction-oxidation (redox) reactions modify cellular
components, particularly thiol groups of key cysteine residues that have a low pKa, by either increasing or decreasing their
oxidation states, which, in turn, modulates their respective functions. Oxidative modifications, in turn, are reduced by
various complex enzyme systems, of which the two most prominent are the GSH and the Trx systems (Fig. 1). A balance
and tight regulation between protein oxidation and reduction is essential to maintain redox homeostasis and to enable redox
signaling. The transcription factor Nrf2 is in this an essential regulator of redox homeostasis, as it induces transcription of
various antioxidant enzymes in case of imbalances. In the remaining parts of this review, we discuss how Nrf2 activity, in
turn, can be directly modulated by the Trx system and especially activated on a specific targeting of TrxR1. To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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to underscore the key importance of TrxR1 for the Trx sys-
tem, which will initially be done here through a few illus-
trative examples. For a full review of the enzymatic
properties and physiological functions of TrxR1 as well as
other TrxR isoenzymes, please see earlier reviews on the
topic (13, 16, 26). It should be noted that mammalian TrxR
variants, in contrast to most nonmammalian orthologs (13,
313), are larger enzymes utilizing a Sec residue in their active
sites. The functional implications of the mammalian TrxR
biochemical features for signaling are discussed later in de-
tail. Mammals have three genes encoding three separate
isoenzymes of TrxR (cytosolic TrxR1, mitochondrial TrxR2,
and TGR in testis) that, furthermore, are subject to extensive
splicing that results in expression of several different iso-
forms (16, 261, 279, 280, 295). It is possible that specific
isoforms of TrxR have dedicated unique roles in signaling.
However, in this review, most, if not all, of the discussed
functional links to Nrf2 signaling are likely related to the
classical cytosolic TrxR1 isoform, although very few studies
have hitherto explicitly analyzed which specific isoform(s) of
TrxR may be involved in the observed signaling effects.

With TrxR1 being the main enzyme propelling the whole
Trx system, its inhibition will naturally impair important
downstream functions of this system. That includes regula-
tion of H2O2 homeostasis via peroxiredoxins (Prx) (255) or
modulation of signaling pathways via reduction of protein
tyrosine phosphatases (PTPs) (65, 113)—particularly these
processes are also known to directly modulate activation of
Nrf2 (198, 205). The Trx system is furthermore not only
controlling intracellular ROS levels and redox events but also
itself regulated by redox processes (76, 114, 128, 197, 198,
270, 311, 320). TrxR1 can, for instance, be directly inhibited
by high ROS levels through an oligomerization process that
seems to be promoted by oxidation of its surface exposed
Tryptophan-114 residue (322). Nitrosylation events can also
inhibit TrxR1 when occurring in the presence of Trx and Prxs
(82), and denitrosylation through Trx was proposed to be a
prerequisite for apoptotic signaling through caspases (27).
Furthermore, Trx can easily be inhibited by its over-oxidation
in absence or inhibition of TrxR1, in a process that is pro-
moted by oxidized Prxs (76). In this context, it should be noted
that Prxs are increasingly recognized as mediators of oxida-
tion states as a mechanism of redox signaling (257, 276).

These short examples serve to illustrate that TrxR1 may be
targeted and inhibited not only by treatment of cells or ani-
mals with electrophilic agents but also under conditions of
normal physiological signaling. Before discussing in detail
how specific targeting of TrxR1 is likely to be intimately
linked to Nrf2 signaling, we shall briefly introduce the Nrf2/
Keap1 system and its characteristics that may be particularly
important in view of its links to the Trx system and the status
of TrxR1.

The Keap1-Nrf2 Response Pathway

Nrf2, a ubiquitously transcribed member of the cap-n-
collar subfamily of bZIP transcription factors, is clearly one
of the most important regulators of detoxification and oxi-
dative stress responses in mammalian cells. The underlying
mechanisms that determine its activation are complex and
have been extensively discussed in other recent reviews (32,
34, 147, 208, 282, 287). Here, we just wish to briefly sum-

marize its main cellular roles and the overall mechanisms
underlying its regulation.

Activation of Nrf2 is typically mediated by a variety of ex-
ogenous and endogenous stressors such as electrophilic agents
and ROS. When activated, Nrf2 transits to the nucleus, het-
erodimerizes with one of several other ubiquitous BZIP family
members, and binds to ARE(s) in the promoter region of its
target genes. These genes encode proteins that collectively
promote cell survival, such as several detoxifying enzymes,
antioxidant enzymes (including several key proteins of both the
GSH and Trx systems), receptors, transcription factors, meta-
bolic enzymes, proteases, and more (11, 25, 32, 116, 144).

Under normal conditions, Nrf2 is bound to its inhibitor
Keap1, a ubiquitin E3 ligase accessory protein that constantly
targets Nrf2, via Cul3-mediated ubiqutination, for proteaso-
mal degradation. Keap1 is also a sensor for Nrf2-activating
compounds, with oxidation or electrophile targeting of key
Cys residues in Keap1 causing the protein to undergo con-
formational changes (168, 229). As a consequence, Nrf2-
Keap1 binding is partly disrupted so that Nrf2 ubiquitination
and degradation is blocked. Nrf2 is, however, likely not re-
leased but instead occupies the now inactive Keap1, so that

FIG. 3. Scheme of Nrf2 regulation. Nrf2 is bound to its
inhibitor Keap1, which targets it for proteasomal degradation.
Keap1 serves as a redox sensor as it changes conformation in
response to oxidation or alkylation of crucial Cys residues in the
protein. The Keap1/Nrf2 complex is stabilized and degradation
is prevented on Keap1 targeting, whereby newly synthesized
Nrf2 can bypass Keap1 and instead translocate to the nucleus
where it activates specific ARE sequences. Nuclear Trx1/Ref-1
is important for reduction of critical Cys residues in Nrf2: one
important for DNA binding, and the other being involved in
nuclear export, as illustrated in the scheme. In addition, Nrf2 is
subjected to phosphorylation, which further modulates its ac-
tivation. Among the Nrf2 target genes are enzymes of the Trx
and GSH systems. Upregulation of these counteracts the initial
Nrf2 activating conditions and will facilitate downstream de-
toxification and antioxidant defense. This figure is modified
from a figure in a review by Brigelius-Flohé and Flohé (32). To
see this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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newly synthesized Nrf2 can translocate to the nucleus where
it forms heterodimers with bZIP transcription factors such as
Mafs (predominantly), c-Jun, or ATF4 before binding ARE and
activating target genes (146) (Fig. 3). It has been, and still is,
debated whether Nrf2 also dissociates from Keap1 (32).
However, a recent study convincingly showed that Nrf2 is in-
deed not released from Keap1 (22). Interestingly, it was also
demonstrated that increased de novo translation of Nrf2 occurs
very rapidly as a response to low (12.5 lM) H2O2 concentra-
tions, with a rate that exceeds nuclear translocation of Nrf2 (64,
208). This may possibly be another sign that there can be ad-
ditional potent, but yet unknown, H2O2 sensors in cells, in
addition to Keap1 that are linked to Nrf2 activation (64, 208).

Keap1 is a homodimer that functions as adaptor of the
Cullin-3-based E3 ligase. Each Keap1 subunit contains 27
(human) or 25 (mouse) Cys residues, of which 9 have been
predicted to be overly reactive due to a basic microenviron-
ment (71). Considering the broad chemical heterogeneity of
Nrf2 activators, it was also suggested that the Cys residues of
Keap1 should be targeted differently by different electro-
philes, which may translate into specific cellular responses
(169). Particularly Cys151, Cys273, and Cys288 of Keap1
were identified as good candidates for specific targeting.
Cys151 was shown to be important for H2O2-, spermine
nononate (NO donor)-, and HOCl-mediated Nrf2 activation,
by forming an intermolecular disulfide with Cys151 of a
second Keap1 molecule, leading to subsequent release of
Cullin-3 (92, 252). The Cys273 and Cys288 residues are
furthermore Zn-coordinated and essential for the response to
many Nrf2 activators. A modification of those Cys residues
disrupts the Zn-stabilized conformation of Keap1, thus in-
hibiting degradation (329) (Fig. 3).

Not only Keap1 but also Nrf2 itself is subject to redox
regulation. Nrf2 has at least two redox-sensitive Cys residues
within its nuclear localization signal (NLS) and nuclear ex-
port signal (NES) sequences. Oxidation of Cys183 in the NES
site was proposed to interfere with Crm1 (chromosome re-
gion maintenance 1; exportin) binding and thus retain Nrf2 in
the nucleus (184, 185). A similar effect was reported for
nuclear Keap1, which would further prevent the nuclear ex-
port of Nrf2 (301). Such oxidations may be reversed by nu-
clear GSH or Trx systems. Trx1 was, for example, shown to
promote nuclear export of Nrf2 (112). Reduction of Cys506
in the NLS region may be catalyzed by Trx1 together with
redox factor-1 (Ref-1) as a part of activator protein 1 (AP1)-
mediated activation (112, 125) and is important for interac-
tion with the transcriptional coactivators CBP/p300 as well as
for DNA binding of Nrf2 (30) (Fig. 3).

Nrf2 is also regulated by phosphorylation—certain events
promote Nrf2 activation by phosphorylation, whereas others
seem to diminish it. The Ser40 residue is, for example,
phosphorylated by the redox-sensitive protein kinase C
(PKC), which prevents binding to Keap1 and promotes nu-
clear translocation (231). On the other hand, Nrf2 can be
phosphorylated by Fyn at Tyr568 in the nucleus, which may
promote its Crm1 interaction and thus nuclear export. Acti-
vation and nuclear translocation of Fyn can be detected sev-
eral hours after Nrf2 activation and is redox regulated, as it
involves an H2O2-activated phosphorylation cascade, which
may thus also be part of the final Nrf2 regulation (150) (Fig.
3). Processes that involve phosphatases and kinases are fur-
thermore susceptible to cross-talk between different signaling

pathways, which is an aspect that has elsewhere been thor-
oughly discussed by others in the context of Nrf2 (32, 193).

The different events of Keap1/Nrf2 regulation that are
redox sensitive, as briefly summarized here, will naturally be
affected by the overall redox status of cells. Perturbations of
redox homeostasis may be triggered through a myriad of
events, but as we propose in this review the selenoprotein
TrxR1 may be uniquely positioned as a sensitive redox
‘‘sensor’’ that is functionally linked to the Keap1/Nrf2 sys-
tem. This role of TrxR1 is due to a combination of its position
as an important master regulator of the Trx system and its
unique chemical reactivity.

Unique Biochemistry and Chemical Reactivity of TrxR1

TrxR1 is not absolutely required to keep
Trx1 reduced in cells

As stated earlier, the thioredoxin system is one of the two
key redox regulatory systems in mammalian cells and is, as
such, important for defense against oxidative stress (108,
198), cell proliferation and viability (14, 205), as well as
protein folding and signal transduction (188, 211). The main
‘‘engine’’ of the Trx system is TrxR that under normal con-
ditions uses NADPH to reduce its main substrate thioredoxin
(Trx) (127, 201), which, in turn, sustains a number of path-
ways by providing enzymes with either electrons or via
protein–protein interactions (198, 205). It should, however, be
noted that cytosolic Trx1 may also be maintained in a reduced
form by the GSH system through the action of glutaredoxins
(Grxs) (75, 331). This fact should explain how Trx1 is kept
reduced in mouse embryonic fibroblasts lacking TrxR1, un-
less cells are further challenged such as with high glucose
concentrations (244). Importantly, although the bulk of Trx1
is kept reduced in cells lacking TrxR1 and without overt signs
of oxidative stress in the absence of TrxR1, Nrf2 still becomes
robustly activated on knockout of TrxR1 (149, 244, 249, 284).
This suggests that loss of TrxR1 activity can signal Nrf2 ac-
tivation even in the absence of a general oxidative stress. In
relation to its links to Nrf2 activation, it may possibly be
important that mammalian TrxR1 also catalyzes reduction of
various additional proteins beyond Trx1, as well as several
redox-active low-molecular-weight compounds and therefore
displays a broad functional spectrum (11) (Fig. 4).

The catalytic mechanism of TrxR1 involves
an accessible and highly reactive Sec residue

The catalytic mechanism of mammalian TrxR enzymes
has been extensively studied, as reviewed elsewhere (16,
129). It involves a transfer of electrons from NADPH via the
enzyme-bound flavin adeninedinucleotide co-factor to a
disulfide motif in the N-terminal domain of one subunit in the
homodimeric enzyme. The reduced dithiol motif exchanges
these electrons with the selenenylsulfide in the C-terminal
active site motif of the other subunit, which in the form of a
reduced selenolthiol motif catalyzes reduction of most sub-
strates of the enzyme, such as Trx, or the artificial substrate
5,5¢-dithiobis(2-nitrobenzoic) acid (DNTB) (56, 336) (Fig.
5A). Several of its substrates, however, including many
quinone compounds, do not require an intact Sec-residue and
may be directly reduced via the N-terminal Cys59/Cys64
dithiol motif (50, 129, 194, 195).
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With the main enzymatic activities of TrxR1 being de-
pendent on its active site Sec residue (19, 78, 79, 98, 100, 178,
195, 233, 336–338), it is interesting to note that this residue is
highly accessible and exposed to solvent in the reduced en-
zyme (28, 56, 79, 94, 95, 266). This should have importance
for the roles of TrxR1 in signaling. Selenol groups have un-
ique biochemical properties, including a high nucleophilicity
and very low pKa, which typically renders Sec several orders
of magnitude more reactive in redox reactions compared with
the thiol counterpart of Cys (17, 47, 139, 227, 312). For GPxs,
the Sec-containing enzymes typically display 3–5 orders of
magnitude higher rate constants than Cys-containing coun-
terparts, although this difference cannot be the sole expla-
nation for high catalytic efficiency seen in the selenoproteins
(293). In general, Cys residues of proteins are believed to
show reaction rates with peroxides at &1–500 M-1s-1, while
catalytic Cys residues of Prxs display reaction rates of
&105–107 M-1s-1; the latter agrees very well with the idea
that Prxs may also be the first targets of peroxides during
oxidative signaling events (314, 315). In this context, it is
interesting to note that electrophilic agents known to acti-
vate Nrf2 typically react with low-molecular-weight thiol

compounds with second-order rate constants of only about
2–100 · 103 M-1s-1 (72). Reaction rates with Cys residues in
pure Keap-1 were reported to be in the range of 140 M-1s-1

(92, 208), which may be compared with electrophiles that
react with TrxR1. This includes 1-chloro-2,4-dinitrobenzene
that targets the Sec residue of TrxR1 with a second-order rate
constant in excess of 200 M-1 s-1 (18) and the acetaminophen
metabolite NAPQI that displayed a second-order rate con-
stant with TrxR1 of 2.37 · 103 M-1 min-1 (149). The gold-
containing Nrf2 activating drug auranofin is also a highly
potent TrxR1 inhibitor (106). Its reaction with TrxR1 occurs
efficiently at stoichiometric amounts and is difficult to de-
termine experimentally, but the second-order rate constant
was found to be in excess of 1.6 · 106 M-1 min-1 (248). Thus,
TrxR1 is exceptionally susceptible to attack by electrophilic
compounds. This can lead to diverse effects with regards to
TrxR1 function in a cellular context that, as argued here, will
include Nrf2 activation. The molecular mechanisms for the
relationship between TrxR1 and Nrf2 activation are likely
complex and multifaceted, as will be discussed next. It should
also be noted that if the effects of TrxR1 targeting are mild,
they may be transient because TrxR1 is itself an Nrf2-induced

FIG. 4. Substrates and principle functions of the thioredoxin system. This scheme summarizes in greater detail the
diverse functions of the Trx system, as well as the possible direct reactions involving TrxR. Dotted lines indicate direct
protein–protein binding or modification, whereas solid lines denote redox activity and thiol–disulfide exchange reactions.
Expression of both Trx and TrxR is induced via Nrf2 under various stress conditions (Fig. 2). Trx1 is predominantly located
in the cytosol, where it provides ribonucleotide reductase (RNR) with electrons and supports the activity of Prxs (255) and
Msrs (175). Trx1 can also translocate to the nucleus, where it regulates gene expression by modulating transactivation of
various transcription factors, including NFjB, HIF, p53, Nrf2, AP-1, and the glucocorticoid receptor (8, 93, 99, 103, 112,
125, 126, 298). Furthermore, reduced Trx1 directly binds PTEN, a major tumor suppressor that prevents survival signaling by
deactivating the PI3K/Akt pathway. Trx1 binding inhibits the phosphatase activity of PTEN and thus promotes cell pro-
liferation and tumor growth while also inhibiting apoptosis (217). Trx1 is also an important regulator of apoptosis signal-
regulating kinase 1 (ASK1). In its reduced form, Trx1 binds and thus inhibits ASK1. However, high levels of reactive oxygen
species (ROS) promote oxidation of Trx1 and thus ASK1 release, leading to subsequent apoptosis (264). ASK1 release may
also be promoted by the Trx1-interacting protein (TXNIP), an endogenous inhibitor of Trx1 that binds to reduced Trx1 and
thus competes with ASK1 (327). Interestingly, TXNIP binding also mediates Trx1 translocation to the plasma membrane,
which is proposed to enable inflammation in endothelial cells by promoting cell survival and vascular endothelial growth
factor signaling during oxidative stress (319). In addition, Trx1 together with a truncated variant (Trx80) can be found in the
extracellular environment where it exhibits an oxidoreductase-independent chemokine-like activity (232, 243). TrxR1 also
catalyzes the reduction of various additional thiol-proteins and low-molecular-weight compounds and is a prime target for
many electrophilic drugs (11). This figure is a modified version of a figure in a review from Lu and Holmgren (197).
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gene, that is, if diminished, TrxR1 activity leads to increased
oxidative stress that does not kill the cells, and new synthesis
will commence of native noninactivated TrxR1 (124). Finally,
direct inhibition of TrxR1 can also have effects on Nrf2 ac-
tivation not only as a result of diminished activity but also due
to pro-oxidant gain of function in the forms of TrxR1 deri-
vatized by electrophiles, as discussed next.

Formation of SecTRAPs—converting electrophilic
challenges to oxidative signals

Some electrophilic compounds that target TrxR1 can yield
a pro-oxidant gain of function in the protein, by transforming
the enzyme into SecTRAPs (5, 11, 49). This peculiar effect is
schematically shown in Figure 5B. Prooxidant properties of
SecTRAPS were originally not only characterized in relation
to induction of cell death on targeting of TrxR1 with elec-
trophilic compounds in cancer cells but may also relate to the
mechanisms of Nrf2 activation in cells that survive an elec-
trophilic insult. SecTRAPs may be formed from the TrxR1
protein by compounds that derivatize the Sec residue of
TrxR1, but leave the remaining redox-active moieties of the
enzyme intact. Such modified TrxR1 species have lost their
ability to catalyze their normal Sec dependent reactions but
can still sustain a potent NADPH oxidase activity through
redox cycling with certain substrates, such as quinone com-
pounds. As listed in Table 1 and further discussed next,
several strong Nrf2 activators target TrxR1 and also have the
capacity to transform TrxR1 into SecTRAPs. Recently, it was
proposed that an increased access to the N-terminal domain

of TrxR1 can be promoted in SecTRAPs by conformational
changes caused by modifications of the Sec residue (94, 195).
In unmodified TrxR1, this access, and thus electron leakage
and NADPH oxidase activity, was proposed to be prevented
by efficient electron transfer to the Sec residue (94). When
present at high concentrations, SecTRAPs were shown to be
able to induce cell death via a combination of apoptosis and
necrosis, which may thus contribute to the pronounced cy-
totoxicity of many TrxR inhibitors (5, 135, 202, 203). This
may also explain why A549 cells having high TrxR1 levels
are more susceptible toward the SecTRAP triggering com-
pound cisplatin (4) than A549 cells having lower levels of the
enzyme, as obtained using siRNA treatment (83). A similar
phenomenon was illustrated in HCT116 and NIH 3T3 cells
treated with thiophosphate and selenite. When given selenite
supplementation, these cells increased their expression of
TrxR1, which rendered them more sensitive toward cisplatin;
whereas thiophosphate, on the other hand, promoted a more
resistant phenotype due to expression of a less reactive Sec-
to-Cys variants of the enzyme (245). Recently, the natural
product shikonin was shown to promote SecTRAP formation
from TrxR1 (77), which is also an Nrf2-activating compound
(138). Another important TrxR1-targeting compound that
induces SecTRAP properties is NAPQI (N-acetyl-p-benzo-
quinone imine), the hepatotoxic metabolite of acetamino-
phen, suggesting that the prooxidant properties of SecTRAPs
formed in the liver on acetaminophen treatment may con-
tribute to not only Nrf2 responses but also the liver damage
seen on acetaminophen overdose (149). Several different
compounds having the two combined properties of TrxR1

FIG. 5. Principal electron
flow in normal catalysis
and differential modes of
inhibition. (A) Scheme of
the head-to-tail homodimer
confirmation of mammalian
TrxR. The principal electron
flow during normal catalysis
is indicated. (B) Targeting
via electrophilic compounds
can either leave the enzyme
completely inactive (left) or
transform it into its pro-oxi-
dant SecTRAP form (right),
which was shown to promote
ROS production via redox
cycling. See section on Sec-
TRAPs in the main article for
more details. To see this il-
lustration in color, the reader
is referred to the web version
of this article at www.liebert
pub.com/ars
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targeting, with or without SecTRAP formation, and trigger-
ing of Nrf2 activation are listed in Table 1.

Additional effects of targeting Sec residues compared with
Cys residues with electrophilic compounds include a greater
flexibility of Sec toward substrates, efficient support for one-
electron-transfer reactions, high nucleophilicity that leads to
fast reaction rates with electrophiles, and increased resistance
to inhibition of Sec via overoxidation (17, 105, 130, 228,
275). However, for an Sec residue in a selenoprotein to be
derivatized by electrophiles, it also has to be solvent exposed
and easily accessible, as in the case of TrxR1. The list of
identified compounds that target TrxR1 is, indeed, extensive
(39, 262) and includes naturally occurring substances such
as flavonoids (35, 199), the lipid peroxidation product 4-
hydroxy-2-nonenal (HNE) (88), curcumin (89), as well as
many synthetic electrophilic compounds, of which some are
in clinical use. Prominent examples of the latter include gold
compounds such as auranofin (104) or aurothioglucose (274),
platinum compounds, including cisplatin (15) and oxaliplatin
(316), arsenic oxide (196), nitrosoureas (107), or dini-
trohalobenzenes (12). Some TrxR1 inhibitors might react as
reversible competitive inhibitors with regards to reduction of
Trx, such as the green tea extracts epicatechin-gallate (ECG)
and (-)-epigallocatechin-3-gallate (EGCG) (308). However,
such inhibition seems to be the exception. The majority of
compounds targeting TrxR1 irreversibly inhibit the enzyme
by covalent binding to the thiol/selenol groups of its active
sites, as illustrated by the NADPH dependency of inhibition

(104, 262, 336). A schematic illustration of the inhibitory
pathways of Sec targeting in TrxR1 and the potential for-
mation of SecTRAPs is shown in Figure 5B.

TrxR1 as a Gatekeeper of Nrf2 Activation

Having briefly discussed the functions and mechanisms of
TrxR1 and Nrf2, as well as having noted the exceptionally
reactive Sec residue of TrxR1, we shall here discuss the
published results illustrating that TrxR1 may be viewed as a
potent Nrf2 regulator and gatekeeper of Nrf2 activation.

TrxR1 attenuation or depletion leads
to robust Nrf2 activation

A number of studies over the past few years have shown
that an active Trx system, in particularly TrxR1, is important
for counteracting Nrf2 activation (Fig. 6). Links between
selenium and selenoprotein status, in general, and the activ-
ities of TrxR1 and GPx, in particular, to Nrf2 activation
patterns have been discussed elsewhere (34, 224). Such
functional links have been further demonstrated in a number
of mouse knockout models. It was shown in several studies
that a reduction of the total cellular selenoprotein pool either
by nutritional selenium deficiency (36, 52, 61, 222, 237) or
through a conditional knockout of the tRNASec gene (Trsp)
that is required for Sec insertion into selenoproteins results in
robust Nrf2 activation and induction of various phase II and
antioxidant enzymes (43, 285). It was also shown that this

FIG. 6. TrxR1 as an essential negative regulator of Nrf2. (A) Normal, unstressed cells with the Trx- and GSH systems
expressed at a basal level maintain redox homeostasis. Both systems act, together with Keap1, as negative regulators of Nrf2
transactivation counteracting oxidative and electrophilic insults. Furthermore, TrxR1 might directly prevent Keap1 inhi-
bition by reducing the critical cysteine 151 via Trx1. (B) A reduction in the catalytic capacity of TrxR1 either by Se
deficiency or due to knockdown or knockout leads to activation of Nrf2. This, in turn, promotes the expression of various
enzymes of the Trx and GSH systems, boosting the antioxidant and detoxification capacity of the cell. (C) Loss of TrxR1
activity leads to direct interplay with Nrf2 signaling through several different mechanisms. The mechanisms of TrxR1
targeting leading to Nrf2 activation likely involve combinations of a reduced antioxidant capacity, changes in redox
signaling-dependent pathways (particularly those mediated by Trx1), and direct regulatory effects on Keap1 and Nrf2. The
lack of TrxR1 prevents Trx1 from its reductive functions, which leads to oxidation of Cys151 in Keap1, either directly or
potentially via a transfer of oxidative equivalents from Prx (257). This latter mechanism would serve as an ‘‘oxidative
switch’’ in the regulation of Keap1, as not only reduction is diminished but also oxidation is actively promoted. To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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Nrf2 induction phenotype is particularly dependent on lack of
expression of housekeeping selenoproteins such as TrxR1
(42). Indeed, when the liver-expressed tRNASec gene (Trsp)
was mutated in a manner so that only housekeeping, but not
stress-related, selenoproteins were affected, the compensa-
tory upregulation of phase II enzymes could be seen, thus
indicating that TrxR1 might be the key selenoenzyme in
regulation of Nrf2 (269). An interdependent relationship
between TrxR1 and Nrf2 was also reported earlier by Trigona
et al. and Mostert et al. (221, 294). A final validation of
TrxR1 as a main selenoprotein that regulates Nrf2 was pro-
vided with a conditional knockout of only the Txnrd1 gene in
the mouse liver, encoding TrxR1, which gave a robust Nrf2
activation as a response (284).

Several additional cell- and animal-based studies have
verified that diminished TrxR1 activity leads to Nrf2 acti-
vation. Fourquet et al., for instance, suggested that shRNA-
mediated TrxR1 knockdown could promote H2O2-mediated
oxidation of Keap1 at Cys151 as well as Nrf2 stabilization
(92), thus indicating that reduction of the intermolecular
disulfide by the Trx system might be an important turn-off
signal. Furthermore, Nrf2 stabilization and transactivation
was observed in Clara cells on siRNA-mediated TrxR1
knockdown or inhibition (192), or in hepatocytes of liver-
specific Txnrd1 knockout mice as mentioned earlier. Such
effects on Nrf2 on TrxR1 targeting have indeed been vali-
dated by several groups (44, 242, 284), as well as observed in
Txnrd1 knockout mouse embryonic fibroblasts (207, 284).
Importantly, analyzed liver samples of Txnrd1-deficient mice
did not appear to be oxidatively stressed as they lacked
markers such as oxidized thioredoxin, oxidized glutathione,
carbonylated proteins, or peroxidated lipids (284). The robust
Nrf2 activation in Txnrd1-deficient conditions can, thus, not
be directly explained by a general increase of overall oxi-
dative stress. Immunostaining of tissue sections, Western blot
analyses, as well as chromatin immunoprecipitation (ChIP)
analyses were also employed to demonstrate that Nrf2 protein
levels increased and that Nrf2 relocated to ARE sites in target
genes as a result of Txnrd1 knockout (284). Collectively,
these observations are strongly suggestive of direct func-
tional links between TrxR1 and Nrf2, which cannot be ex-
plained by increased oxidative stress on loss of cellular
TrxR1 activity alone.

What makes TrxR1 a unique gatekeeper
of Nrf2 activation?

The mechanisms behind Nrf2 activation when promoted
by diminished TrxR1 activities are likely to be complex, with
a combination of factors contributing differently depending
on cellular context and redox state. One major consequence
of lower TrxR1 activity is likely a lower capacity in Trx1-
mediated processes, such as disulfide reduction and de-
nitrosylation (198, 270). This will lead to a propagation of
effects through various downstream events. One example
would be effects on regulation of phosphorylation pathways,
also potentially regulating Nrf2, by Trx1- or thioredoxin-
related protein of 14 kDa (TRP14)-catalyzed reduction of key
phosphatases such as protein-tyrosine phosphatase 1B
(PTP1B) (65, 96). Trx1, furthermore, prevents Nrf2 activa-
tion directly via the reduction of Cys151 in Keap1 (92) or of
Cys506 in the NLS region of Nrf2, which promotes the nu-

clear export (112), as discussed earlier. In addition, lower
capacity in Trx1-mediated reduction of Prxs will affect H2O2

homeostasis and thus redox signaling pathways (255) (Fig.
3). However, it is also likely that additional specific links
exist between the TrxR1-dependent reductive pathways and
Nrf2 activation.

Peroxiredoxins are likely to be Trx-dependent
sensors of oxidative stress

An interesting possibility would be direct oxidation of
Keap1, Nrf2, or other relevant protein thiols in the Keap1/
Nrf2 system, by Prxs in accordance with the sensor protein-
mediated oxidation model. This model proposes that regu-
lated oxidation of target proteins can occur via thiol exchange
reactions using specific sensor proteins that are especially
reactive with H2O2; in that context, peroxidases have been
suggested as suitable candidates (257, 315). Recently, it was
shown by Du et al. that Prx1 can also transmit oxidative
equivalents to nonactive site cysteine residues of oxidized
Trx1-S2, thus generating overoxidized Trx1-S4 forms that
can be directly reduced by GSH or via Grx1, but not by TrxR1
(76). This mechanism was proposed to serve as a temporary
shut-off signal to modulate Trx1-mediated redox signaling
processes, such as activation of Nrf2, and will likely be
promoted by diminished TrxR1 activity. Another example of
a sensor protein-mediated oxidation in mammals involves
transfer of the oxidation state of Prx4 to protein disulfide
isomerase, which, in turn, promotes disulfide formation in
target proteins (289). The best known case for this type of
signaling is, however, seen in the yeast transcription factor
Yap1 that is oxidized via the glutathione peroxidase-like
protein GPx3 (69) and the thioredoxin peroxidase Tsa1 (236).
Here, the sulfenic acid of the oxidized peroxidase forms an
interdisulfide bond with Yap1, which on subsequent ex-
change with a second Cys residue in Yap1 generates an in-
tramolecular disulfide and recycles GPx3 or Tsa1. Whether
similar direct oxidative processes occur between a dedicated
redox protein of mammals with Keap1 and Nrf2 is not yet
clear. However, as discussed here, it is clear that TrxR1 tar-
geting leads to robust Nrf2 activation. The molecular
mechanism(s) leading to this activation have not yet been
fully characterized. Importantly, TrxR1 is expressed at low
submicromolar concentration in cells (16) but is, nonetheless,
easily targeted at its Sec residue by electrophilic compounds
or cellular stresses, such as nitrosylation or excessive oxi-
dation, because of its unique reactivity as discussed earlier.
Targeting of TrxR1, with its many downstream conse-
quences, can thus easily translate into a robust Nrf2 response.
There may also be differences in TrxR1 dependence for Nrf2
activation on oxidative stress as opposed to challenges with
electrophiles. Indeed, almost every electrophilic compound
that was found to activate Nrf2 also inhibits TrxR1, as dis-
cussed next in greater detail.

Electrophilic compounds typically modulate
both TrxR1 and Nrf2

The same classes of compounds that inhibit TrxR1 (39)
have been shown to also activate the Keap1-Nrf2 pathway
(204), which may not be surprising as the mechanism for
Keap1 inactivation involves modification of thiol groups,
while TrxR1 is inhibited by similar targeting of its highly
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reactive Sec residue. However, we propose that simultaneous
targeting of TrxR1 with Nrf2 activation is not only circum-
stantial. Some prominent examples of compounds that both
inhibit TrxR1 and activate Nrf2 include Michael acceptors
such as curcumin (73), flavonoids (204) such as quercetin
(267), polyphenols such as ellagic acid (161), Isothiocyanates
(226) including sulforaphane (134), or metal compounds
such as auranofin (164). It has been suggested that a main
mechanism by which most of these compounds activate Nrf2
is via covalent modification of reactive Cys residues in Keap1
(169, 299), as also discussed earlier. However, based on the
chemistry of known TrxR1 inhibitors and Nrf2-activating
compounds, the highly reactive Sec residue in TrxR1, and the
effects of TrxR1 depletion on Nrf2 activation, we here pro-
pose that TrxR1 may be a major target of most electrophilic
Nrf2 activators. We also propose that inhibition of TrxR1
may be a major component of the mechanism(s) leading to
Nrf2 activation (Fig. 7A). It stands to reason that Nrf2 acti-
vation via TrxR1 inhibition might be an event that could
precede modification of Keap1, as a result of the high reac-
tivity of the Sec residue in TrxR1. However, this has yet to be
experimentally proven. Targeting events involving Keap1
and TrxR1 are likely to be fast and may also only be observed
within an initial phase of exposure to electrophiles, as, in
most cases, expression of novel nonmodified TrxR1 mole-
cules will be induced by Nrf2 activation. It should also be
noted that neither Trx1 nor TrxR1 has yet been identified as
being major Nrf2 regulating proteins in systems-wide ‘‘Nrf2
interactome’’ studies (239, 296), although both Trx1 (gene
TXN) and TrxR1 (TXNRD1) are found in the larger Nrf2
interactome if searched for in a database of Nrf2 network
proteins, covering as much as 7,891 proteins in total (http://
nrf2.elte.hu). It is, however, clear that a large number of
compounds that inhibit TrxR1 also activate Nrf2. The com-
bined effects of these electrophiles have not always been
recognized in the same studies, but here we have compiled a
list of original studies showing that electrophilic compounds
that inhibit TrxR1 also activate Nrf2 (Table 1). We argue here
that the dual effects of these compounds should not only be a

coincidence but also a reflection of a causal relationship be-
tween TrxR1 targeting and Nrf2 activation.

The potential role of SecTRAP formation in Nrf2
activation by electrophiles

The combination of a diminished catalytic activity to-
gether with a gain of NADPH oxidase activity in the form of
SecTRAPs enables TrxR1 to transform a minor electrophilic
insult into an oxidative signal that might further promote
activation of Nrf2 (Fig. 7B). Such events may precede ran-
dom modification of Cys residues by electrophiles, thus en-
abling a faster stress response to boost the Nrf2-driven
detoxification system. The prooxidant capacity of SecTRAPs
also suggests that Nrf2 activation may be promoted before a
loss of total TrxR1 activity in a cell, that is, it may be suffi-
cient for a lower fraction of TrxR1 molecules to be converted
to SecTRAPs for the signaling process to be initiated. An
interesting mechanistic possibility is furthermore the addi-
tive effects of prooxidant SecTRAP formation with Prx1-
mediated over-oxidation of Trx1, as discussed earlier. Such
combined effects should be synergistic and could serve as
potent mechanisms of signal transduction in the background
of all cellular reductive pathways, thus being able to translate
smaller electrophilic insults into efficient and appropriate
patterns of Nrf2 activation.

Concluding Remarks

In this review, we have discussed many published results
from cell and animal studies that collectively suggest that
targeting of TrxR1 by oxidative stress, electrophiles, sele-
nium deficiency, or genetic manipulation typically leads to
robust Nrf2 activation. We propose that compelling evidence
suggests that such targeting of TrxR1 should posit the en-
zyme to be a key regulator of Nrf2 activation, which is likely
to play a central role in redox homeostasis, defense against
oxidative stress, and regulation of redox signaling pathways.
Furthermore, we have reasoned that this functional role of
TrxR1 is linked to its central position in the Trx system, in

FIG. 7. Different modes of redox modulation and their effects on Nrf2 activation. (A) Both Keap1 and TrxR1 are
subject to inhibition by electrophiles and ROS, which, in turn, leads to activation of Nrf2. The interplay between Keap1, TrxR1,
and Nrf2 is constituted of a complex web of interactions. Here, it is proposed that TrxR1 targeting is part of the mechanisms
regulating Nrf2 activation, as summarized in the figure and discussed further in the text. (B) Active TrxR1 is proposed to act as
a gatekeeper to prevent Nrf2 activation. Direct inactivation of the enzyme promotes Nrf2 activation, as seen in Txnrd1
knockout or knockdown models, or under selenium deprivation conditions. In addition, the formation of SecTRAPs can
promote a very strong Nrf2 activation, by means of ROS production from converted TrxR1 protein having NADPH oxidase
activity, in addition to a loss of reductive capacity. These mechanisms together identify TrxR1 as a potent regulator of Nrf2
activation. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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combination with the reliance of the enzyme on a solvent
exposed, easily accessible, and highly reactive Sec residue. It
is also likely that conversion of TrxR1 to prooxidant Sec-
TRAPs on its targeting by certain classes of inhibitors should
further contribute to the highly potent activation of Nrf2 seen
with many electrophilic compounds. As discussed earlier and
also indicated in Figure 7B, the activities of TrxR1 may
regulate Nrf2 activation through three separate mechanisms:

1. An intact Trx system, with fully active TrxR1, is likely
to counteract Nrf2 activation through several mecha-
nisms. One mechanism would be through the antiox-
idant properties of the complete Trx system, including
antioxidant properties of Trx1-dependent enzymes
such as Prxs. Another possible mechanism could be
through effects of keeping Keap1 in a reduced state,
provided that Keap1 would be a substrate of Trx1 or
another TrxR1-dependent oxidoreductase.

2. Loss of TrxR1 activity may activate Nrf2 solely
through diminished antioxidant or reductive capacity
of the Trx system. However, as discussed earlier, an-
alyses of tissues or cells from knockout mouse models
that lack TrxR1 have not displayed overt signs of
oxidative stress or Trx1 oxidation. This suggests that
loss of TrxR1 activity may also directly signal Nrf2
activation through some yet unrecognized mechanism
of action. It is clear, however, that complete loss of
TrxR1 activity triggers robust Nrf2 activation.

3. Inhibition of TrxR1 by electrophilic agents is a highly
efficient event, for most compounds due to targeting of
the reactive and accessible Sec residue in the enzyme.
Such derivatization typically leads to Nrf2 activation,
which may be partly be due to loss of TrxR1 capacity.
However, the Nrf2 activation on treatment with elec-
trophilic compounds can, in this case, also be due to
formation of SecTRAPs, which due to a gain of
function in the inhibited TrxR1 enzyme exaggerates
such insults and converts the electrophilic challenge to
an oxidative signal.

The evident links between TrxR1 targeting by electro-
philic compounds to Nrf2 activation may also, possibly, be
part of the longstanding question of the evolutionary pressure
that resulted in an Sec-depending TrxR1 in mammals. Be-
cause Drosophila melanogaster is an animal that relies on a
TrxR1 orthologue with Cys in place of Sec, this makes that
enzyme much less susceptible to inhibition by electrophiles
(105). In that context, it is interesting to note that the Nrf2/
Keap1 orthologous system of D. melanogaster (286) seems to
be even more important for xenobiotic responses than in
mammals and, moreover, regulated by a smaller number of
converging signals than found in mammals (218). It fur-
thermore should be noted that although the fly relies on a
TrxR1 orthologue without an excessively reactive Sec resi-
due (105), the enzyme instead has the dual roles of keeping
the Trx as well as the GSH system active, because the fly
lacks GR (159). Thus, it may be possible that a biochemically
less reactive TrxR1 orthologue in the fly might still signal to
the corresponding Nrf2/Keap1 system, because its targeting
would impair both of the two main reductive systems of the
fly. In mammals, however, the Sec reactivity of TrxR1 may
therefore have evolved to keep it sensitive to electrophiles,
while GR in mammals is not and can therefore maintain the

GSH pool in a reduced state even if TrxR1 becomes inhibited.
However, these are only mere speculations as seed for
thought for future research projects. The notion of TrxR1
targeting being intimately linked to Nrf2 activation in the fly
has to our knowledge not yet been scrutinized, and in that
particular case, it is not clear why the Cys-dependent TrxR1
would be more susceptible to electrophiles than the Cys
residues in the Keap1 orthologue itself. We, therefore, do not
currently know whether the tight functional links between
TrxR1 targeting and Nrf2 activation is unique for animals
that express a TrxR1-containing Sec, which would mainly
include mammals (234), or whether the close functional links
between TrxR1 and Nrf2 are more evolutionarily conserved
and thus found also beyond the mammalian class of animals.
If future studies would show that only Sec-containing TrxR1
is closely linked to Nrf2 activation, that aspect would indeed
help explain why the enzyme has evolved to be a seleno-
protein. The evolutionary pressure of retaining Sec-contain-
ing TrxR once it has been acquired seems to be high (47, 48),
but the reason for this has remained a topic that is unanswered
and still debated, although it has been suggested that the
higher chemical reactivity of Sec in TrxR1 compared with
Cys variants should be part of the answer (17, 105, 129, 195).
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Abbreviations Used

ARE/EpRE¼ antioxidant/electrophile responsive
element

Crm1¼ chromosome region maintenance 1;
exportin

DNTB¼ 5,5¢-dithiobis(2-nitrobenzoic) acid
ECG¼ epicatechin-gallate

EGCG (-)¼ -epigallocatechin-3-gallate
GPx¼ glutathione peroxidase
GR¼ glutathione reductase
Grx¼ glutaredoxin

GSH¼ glutathione
GSTs¼ glutathione-S-transferases
HNE¼ 4-hydroxy-2-nonenal

Keap1¼Kelch-like ECH-associated protein 1
NAPQI¼N-acetyl-p-benzoquinone imine

NES¼ nuclear export signal
NLS¼ nuclear localization signal
Nrf2¼Nuclear factor

(erythroid-derived 2)-like 2
PKC¼ protein kinase C

Prx¼ peroxiredoxin
PTP1B¼ protein-tyrosine phosphatase 1B

ROS¼ reactive oxygen species
Sec¼Selenocysteine

SecTRAPs¼Selenium-compromised thioredoxin
reductase-derived apoptotic proteins

TRP14¼ thioredoxin-related protein of 14 kDa
Trx¼ thioredoxin

TrxR¼ thioredoxin reductase
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