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Abstract

Significance: The mitochondrial energy-transducing capacity is essential for the maintenance of neuronal
function, and the impairment of energy metabolism and redox homeostasis is a hallmark of brain aging, which is
particularly accentuated in the early stages of neurodegenerative diseases. Recent Advances: The communica-
tions between mitochondria and the rest of the cell by energy- and redox-sensitive signaling establish a master
regulatory device that controls cellular energy levels and the redox environment. Impairment of this regulatory
devise is critical for aging and the early stages of neurodegenerative diseases. Critical Issues: This review
focuses on a coordinated metabolic network—cytosolic signaling, transcriptional regulation, and mitochondrial
function—that controls the cellular energy levels and redox status as well as factors which impair this metabolic
network during brain aging and neurodegeneration. Future Directions: Characterization of mitochondrial
function and mitochondria-cytosol communications will provide pivotal opportunities for identifying targets
and developing new strategies aimed at restoring the mitochondrial energy-redox axis that is compromised in
brain aging and neurodegeneration. Antioxid. Redox Signal. 20, 353–371.

Introduction

The brain, similar to most organs, undergoes a gradual
decline in energy metabolism during aging (30, 68, 170,

223). Since neurons require large amounts of energy for the
firing of action potential, neurotransmission, and other pro-
cesses, the age-related decline in metabolism contributes to
the cognitive declines associated with aging (22, 30). Clini-
cally, age-dependent reduction of glucose utilization was
observed in most human brain regions (185). Similarly, an
age-dependent decrease in O2 uptake was observed in
the rodent brain (171). Aging is also a risk factor for age-
associated diseases such as neurodegenerative disorders.
These diseases may occur when neurons fail to respond
adaptively to an age-related decline in basal metabolic rates
and in energy-driven tasks, such as neuromuscular coordi-
nation, cognitive performance, and environmental awareness
(222). In human beings, cerebral glucose hypometabolism is an
early and consistent event in the progression of Alzheimer’s
disease, Parkinson’s disease, Huntington’s disease, and mild
cognitive impairment, before the onset of pathologies in the
brain (9, 59, 73, 83, 120). Decreased frontal cortex O2 uptake
has been reported in Parkinson’s disease and in dementia with
Lewy bodies (172).

The energy-transducing capacity of mitochondria meets
the cellular energy demands, thus supporting metabolic,

osmotic, and mechanical functions. Mitochondria are sources
of H2O2, and play a pivotal role as mediators of the intrinsic
apoptotic pathway. Thus, they play significant roles in the
function and plasticity of neurons and are implicated in
the pathogenesis of a variety of neurological disorders (155).
The most prominent metabolic process carried out by mito-
chondria is oxidative phosphorylation (OXPHOS) that gen-
erates ATP, the universal energy currency. On the other hand,
high levels of H2O2 have been associated with mitochondrial
redox changes and macromolecule oxidation during aging
and are believed to mediate the detrimental effects associated
with mitochondrial dysfunction in brain aging (14) and neu-
rodegenerative disorders (18, 20, 214). The cellular composi-
tion of the brain consists mainly of terminally differentiated
neurons, its regenerative capacity is relatively reduced as
compared with other organs, and a dramatic decline in neu-
rogenesis with age and in neurodegenerative diseases may
contribute to the impairment of learning and memory (140).
Thus, the brain is highly susceptible to neuronal loss due to
hypometabolic states and the impairment of redox homeo-
stasis. Age-related changes in energy production and redox
status cannot be viewed as independent variables, but rather
as an interdependent relationship reflected in the mitochon-
dria energy-redox axis that represents a dual pronged ap-
proach to assess the changes in mitochondrial function as a
function of age and disease (250).
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The generation of H2O2 by mitochondria depends on the
respiratory state (faster rates of H2O2 release in state 4 respi-
ration and slower rates in state 3 respiration) and shows an
exponential dependence on the mitochondrial membrane
potential (32, 132). Mitochondrial H2O2 is implicated in the
regulation of the cellular redox status, thus transducing redox
signals into a wide variety of responses, such as proliferation,
adaptation, differentiation, and cellular death pathways (199).
Low to intermediate levels of H2O2 are involved in the regu-
lation of redox-sensitive signaling and transcription, whereas
high levels are involved in oxidative damage to cell constit-
uents. The release of oxidants from mitochondria as a function
of the mitochondrial metabolic and redox states serves as a
coordinated response between these seemingly autonomous
organelles and the rest of the cell through the modulation of
redox-sensitive signaling and transcription pathways. Con-
versely, mitochondria are the recipients of cytosolic signaling,
such as mitogen-activated protein kinases (MAPKs) and the
phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt)
pathway of insulin signaling, which elicit profound changes
in the mitochondrial energy-transducing capacity.

This review focuses on the role of a coordinated metabolic
triad (Fig. 1) entailing a regulatory devise encompassed by
mitochondrial function (maintenance of the energy-redox
axis), cytosolic kinase signaling, and transcriptional path-
ways.

The Mitochondrial Energy-Redox Axis

Mitochondria provide most of the energy needed for cel-
lular functions by the metabolism of fuel molecules into ATP
through OXPHOS. The generation of ATP entails the oxida-
tion of acetyl-CoA in the tricarboxylic acid (TCA) cycle with
the concomitant generation of reducing equivalents (NADH,
FADH2) that flow through the respiratory chain, generating a

proton motive force (154); electron leakage leads to the gen-
eration of O2

. - , which is further disproportionate to H2O2,
either catalyzed by the superoxide dismutases (matrix Mn-
SOD and intermembrane space Cu, Zn-SOD) or, secondarily,
through spontaneous dismutation (161). Steady-state levels of
mitochondrial H2O2 are determined by both energy metabo-
lism and the redox systems. A decrease in the mitochondrial
energy-transducing capacity is a common feature of brain
aging and neurodegeneration and is associated with a pro-
gressive increase of H2O2 steady-state concentrations that can
shift the cell from a reduced state to an oxidized state. Thus,
the maintenance of mitochondrial redox homeostasis be-
comes crucial for cell function.

Mitochondrial energy metabolism

The effects of aging on mitochondrial energy metabolism
are tissue specific and are more prominent in tissues whose
parenchyma contains mostly postmitotic cells such as brain,
heart, and skeletal muscle. Partial loss of the energy-
transducing capacity has been documented in mitochondria
isolated from aged animals and attributed to changes in
protein expression and activities. Glucose is the primary fuel
for brain, whereas metabolism of ketone bodies represents
an alternative fuel source during glucose deprivation (89)
(Fig. 2). Pyruvate, generated from glycolysis, undergoes oxi-
dative decarboxylation by the pyruvate dehydrogenase
(PDH) complex to acetyl-CoA that feeds into the TCA cycle.
PDH activity in the brain was found to decrease with age (263,
264). In addition, there is an age-dependent decrease in suc-
cinyl-CoA:3-oxoacid Co-A transferase (SCOT) activity (137), a
key mitochondrial matrix enzyme that metabolizes ketone
bodies to acetyl-CoA (Fig. 2); the decreased SCOT activity as
a function of age was due to irreversible protein post-
translational modifications (137). In a triple transgenic mouse
model of Alzheimer’s disease, ketone body metabolism is a
temporary mechanism that prevents the further decline of
brain mitochondrial bioenergetic capacity (248) which is as-
sociated with decreased activities of PDH and cytochrome
oxidase. 2-Deoxy-D-glucose treatment induced ketogenesis in
the same mouse model, and this resulted in increased ketone
body metabolism in the brain and a significant reduction
of both amyloid precursor protein and amyloid-b (248).
The activities of TCA enzymes, such as aconitase and a-
ketogluterate dehydrogenase (a-KGDH), also decline as a
function of age (251) and the activities of PDH, a-KGDH, and
isocitrate dehydrogenase (IDH) are also lower in Alzheimer’s
disease (37, 249). It may be surmised that alterations in the
activities of TCA cycle enzymes and of enzymes controlling
the entry of acetyl-CoA into the TCA cycle, such as PDH and
SCOT, affect NADH levels and contribute significantly to the
decline in mitochondrial bioenergetics during aging and
neurodegeneration.

Mitochondrial OXPHOS is a process that encompasses
electron transfer through the complexes I, II, III, and IV of the
respiratory chain; this exergonic electron transfer is the driv-
ing force for the vectorial H + release into the inter-membrane
space and for the H + re-entry to the matrix through F0 of
complex V with ATP synthesis by F1-ATP synthase. Electron
transfer in mitochondria decreases in the aged brain (21, 170),
with more marked changes in complexes I, III, and IV (135,
168, 169, 173). The inhibition of complex I activity on aging

FIG. 1. Regulatory device encompassing the coordinated
interactions of mitochondrial function and redox-sensitive
signaling and transcription. PI3K, phosphatidylinositol
3-kinase; Akt, Protein kinase B; MAPK, mitogen-activated
protein kinases; Nrf2, nuclear factor erythroid 2-related
factor.
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occurs with a decrease in NAD + levels (26) that leads to the
impairment of the turnover efficiency of the TCA cycle, irre-
spective of the presence of acetyl-CoA. Moreover, reduced
electron transfer can also lead to decreased mitochondrial
inner membrane potential, which is observed in the aged rat
brain (136, 205). The F1-ATPase activity of complex V also
decreases with age due to the nitration of Tyr269 close to the
Mg + + binding site of the F1b subunit (137).

The operational concepts of mitochondrial metabolic states
and respiratory control are defined as state 4 (resting or pro-
ton motive force controlled-respiration), with the availability
of respiratory substrates but not ADP, and state 3 (active
respiration) with ample respiratory substrate and ADP
availability (45). Mitochondrial active respiration decreases in
aging in terms of a marked decline in state 3 respiration and
the related respiratory control ratio and membrane potential,
as well as an increase in state 4 respiration (29, 137, 173), all of
which indicate a lower energy-transducing efficiency.

Components of the electron transport chain (ETC) exist
as large macromolecular assemblies or so-called super-

complexes (208), the ultra-structure of which determines the
activity of mitochondrial OXPHOS and, therefore, plays a
vital role in mitochondrial phenotype in aging and neuro-
degeneration (84, 211). The supramolecular architecture of
OXPHOS complexes in rat brain cortex is affected by aging:
The largest decreases were observed with supercomplexes
IlIII2, I1III2IV2, and I1III2IV1 (80).

Mitochondrial function is also regulated by$NO, largely on
reversible binding to cytochrome oxidase (36), and at higher
concentrations, it inhibits electron transfer at the bc1 segment
of the respiratory chain (190–192). Although not free of dis-
crepancy (236), multiple studies have shown the occurrence of
a mitochondrial nitric oxide synthase (mtNOS) in several
tissues [including brain (233) and with a function in rat brain
development (200)] by its biochemical activity and by the
inhibition of mitochondrial respiration elicited by NOS sub-
strates and inhibitors (167, 171, 172). Mitochondrial metabolic
states regulate the diffusion of both$NO and H2O2 from mi-
tochondria to cytosol (32, 200). Interestingly, the tissue levels
of mtNOS have been reported to decrease with age,

FIG. 2. Metabolism of pyruvate and ketone bodies by brain mitochondria. Glucose is the primary fuel for the brain and
the secondary fuel for ketone bodies; metabolism of pyruvate (from glucose) is regulated by the PDH complex; metabolism of
ketone bodies requires the activity of succinyl-CoA transferase (SCOT) (which is expressed in brain mitochondria). Acetyl-
CoA, generated by PDH or SCOT activities, is further oxidized in the tricarboxylic acid cycle with the formation of NADH.
The arrows indicate protein post-translational modifications found in the brain as a function of age: (a) phosphorylation
(inactivation) of PDH on the translocation of JNK to the outer mitochondrial membrane (263, 264); (b) and (c) the nitration of
SCOT and F1-ATPase, respectively on the diffusion of .NO to the mitochondria due to the increased expression and activity of
nNOS as a function of age (137). PDH, pyruvate dehydrogenase; SCOT, succinyl-CoA:3-oxoacid Co-A transferase.
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particularly in the brain, and it has been suggested to be a
biomarker of brain aging.$NO can signal through the cGMP-
PKG pathway to activate Sirt1 and PGC1a (33, 171, 175).

The levels of neuronal NOS (nNOS) in the rat brain increase
with age (137), and this is associated with the S-nitrosylation
of cytosolic proteins and the nitration of a discreet set of mi-
tochondrial proteins (40, 137). Excessive production of$NO in
the brain has been implicated in a number of neurodegener-
ative diseases, including Alzheimer’s and Parkinson’s disease
(156, 247). Thus, during brain aging and neurodegeneration,
the physiological regulation of mitochondrial function by
lower concentrations of$NO appears to decrease due to de-
clined mtNOS and, in a separate phenomenon, increased
pathophysiological levels of$NO (generated by nNOS and
inducible NOS [iNOS]) lead to the replacement of specific$NO
signaling by random$NO-mediated modifications to proteins.

Mitochondrial redox homeostasis

After the initial reports on intact heart and liver mito-
chondria as an active source of H2O2 by Chance and Boveris
(28, 31), further work established that superoxide anion
(O2
� - ) was the stoichiometric precursor of mitochondrial

H2O2 and that it was primarily generated during ubisemi-
quinone auto-oxidation (25, 27, 39) and, secondarily, by re-
verse electron transfer at the NADH-dehydrogenase segment
(229). Components of complex I and complex III were re-
ported to generate O2

� - (38, 228). Since the activities of
complexes I, III, and IV decrease during aging, higher oxidant
production is observed: The rates of O2

� - and H2O2 formation
increase with age and are higher in mitochondria from tissues
of ad libitum-fed mice than in those on caloric-restricted diets
(139, 215). O2

� - , formed on oxidation of the outer UQ pool
(UQO), can be vectorially released into the cytosol, in part,
through a voltage-dependent anion channel (91). Thus, cyto-
solic levels of H2O2 reflect the mitochondrial energy status, for

mitochondrial H2O2 generation in state 4 respiration is about
4–5 times higher than that during effective OXPHOS (state 3
respiration) (29). A comprehensive review conducted by
Murphy points out the difficulties in the determination of the
rates of O2

� - and H2O2 generation in vivo and under physio-
logical conditions and recognizes four main determining
factors: the ratios NADH/NAD + and UQH2/UQ, the local
mitochondrial [O2], and the Dw of the inner membrane (164).

In brain mitochondria, H2O2 is eliminated mainly by
glutathione (GSH)- or thioredoxin (Trx)-driven catalysts that
depend on NADPH as ultimate electron donors (Fig. 3).

GSH-based systems

GSH, synthesized in the cytosol from glycine, gluta-
mate, and cysteine in a two-step process by the enzymes
c-glutamylcysteine synthetase and GSH synthase (87), is im-
ported into the mitochondria through the dicarboxylate- and
oxoglutarate carriers on the inner mitochondrial membrane
(88, 262). The role of mitochondrial thiols in redox signaling
(165) and cell death pathways (252) has been recently re-
viewed. The redox potential—which is calculated of the mi-
tochondrial GSH/glutathione disulfide (GSSG) or Trx2red/
Trx2ox couples—is *–300 and –340 mV (116, 124), respec-
tively. The mitochondrial GSH pool can apparently function
autonomously from the cytosolic GSH pool in response to local
changes in the production of mitochondrial oxidants (107).

Mitochondrial GSH protects against oxidative stress
largely as a cofactor for glutathione peroxidases (GPxs),
glutathione-S-transferases, sulfiredoxins, and glutaredoxins
(Grxs) (152, 197). GPx1 localizes mainly in the mitochondrial
matrix, whereas GPx 4 (also referred to as phospholipid hy-
droperoxide GPx) (210, 232) occurs in the inner mitochondrial
membrane; the latter detoxifies mainly phospholipid hydro-
peroxides, and its significance is underscored by the embry-
onic lethality that follows systemic ablation of GPx4, which is

FIG. 3. The mitochondrial energy-redox axis. Energy–The energy-transducing capacity of mitochondria entails the flow of
reducing equivalents (NADH) through the ETC to generate a proton motive force and ATP; the electron leak accounts for
2%–3% of O2 consumed in the form of O2

. - and H2O2. Redox–Reduction of H2O2 to H2O (and maintenance of a mitochondrial
[H2O2]ss is accounted for by thiol-based systems, for which the ultimate reductant is NADPH. Sources of NADPH in brain
mitochondria: NNT, IDH2, and ME. GPx1, glutathione peroxidase-1; GPx4, glutathione peroxidase-4 or phospholipid hy-
droperoxides glutathione peroxidase (in intermembrane space); GR, glutathione reductase; GSTj, glutathione transferase
class kappa; IDH2, isocitrate dehydrogenase-2; ME, malic enzyme; NNT, nicotinamide nucleotide transhydrogenase; Prx3,
peroxiredoxin 3; Prx5, peroxiredoxin 5; TCA, tricarboxylic acid; TrxR, thioredoxin reductase.
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explained in part by studies conducted on the expression of
GPx4 in the embryonic brain and its role in organogenesis
(24). The mouse brain showed a decreased GSH/GSSG ratio
and a slight shift toward a more pro-oxidizing redox potential
with regard to age (195, 196). Among the glutathione S-
transferases (GST), the GST class j is mitochondrion specific
and also exhibits some selenium-independent peroxidase ac-
tivity; in addition to the GST class j, the a, p, and l classes
have also been reported in brain mitochondria (85, 194);
however, the specific function of these GST classes in brain
mitochondria is not clear, except as a response to xenobiotic
inducers. It is worth noting that in a cross-species comparison
study on the conservation of longevity assurance mecha-
nisms, GST was the common denominator in Caenorhabditis
elegans, Drosophila, and mice (158), thus supporting the hy-
pothesis that detoxification reactions, such as those catalyzed
by GSTs, are an important part of longevity assurance
mechanisms (265).

Protein thiols are sensitive to changes in the redox envi-
ronment (57): the GSH/GSSG redox couple regulates protein
function through the reversible formation of mixed disulfides
between protein cysteine sulfhydryls and GSH in a process
termed S-glutathionylation. Mixed-disulfide formation affects
the activity of enzymes, transcription factors, and transport-
ers, thus enabling them to respond to the redox environment
by reversible activation/inactivation (78, 227, 261). Thus, S-
glutathionylation reflects the redox status of the mitochondria
(207) and is viewed as a regulatory device for the proteins
involved in energy metabolism, redox signaling, and cell
function (61, 62, 99, 130, 162). A number of proteins have been
identified to be S-glutathionylated during oxidative condi-
tions, including components of the energy metabolism: (a)
SCOT and the E2 subunit of PDH (82, 107); (b)TCA cycle
enzyme such as aconitase (92), a-KGDH (177), and IDH
(126), and (c) complexes I (226), II (50), and V (82, 240).
S-glutathionylation of SCOT and ATP synthase (F1 complex,
a-subunit) in brain mitochondria resulted in a decrease of
activity and a reduction potential of -171 mV; supplementa-
tion of mitochondria with respiratory substrates to complex I
or complex II increased NADH and NADPH levels, restored
GSH levels through a reduction of GSSG, elicited deglu-
tathionylation of mitochondrial proteins, and resulted in a
more reducing mitochondrial environment ( - 291 mV) (82).
Complex I is persistently glutathionylated under conditions
of oxidative stress, and this resulted in increased generation of
O2

. - and decreased mitochondrial function (226). Conversely,
S-glutathionylation of adenine nucleotide translocase (ANT)
protects against mitochondrial membrane permeabilization
and apoptosis (193). These data provide evidence of mito-
chondrial redox changes that modulate energy metabolism
through protein thiol modifications.

The reversible formation of protein-GSH mixed disulfides
has been suggested as a protective mechanism that masks
critical sulfhydryls from irreversible oxidation; the revers-
ibility of this process acquires further significance because of
its involvement in the redox regulation of signal transduction
(98, 130). Protein-mixed disulfides are specifically reduced by
Grxs (Grx2 is the mitochondrial isoform) through a monothiol
mechanism (102). Oxidized Grx2 is reduced by GSH, which is
regenerated from GSSG by NADPH-supported glutathione
reductase (GR). Grx2 is constitutively expressed in neurons
and glia in mouse and human brain (122), and the knockdown

of cytosolic Grx1 is associated with a loss of mitochondrial
membrane potential (203) and is essential for maintaining the
functional integrity of brain mitochondrial complex I (125).
Grx2 protects cells against oxidative damage (72) involving
Akt signaling and the redox-sensitive transcription factor NF-
jB and anti-apoptotic Bcl-2 (166). In addition, Grx2 has been
characterized as being a part of an iron-sulfur cluster that
senses redox changes and controls the activation of Grx2
during conditions of oxidative stress (103), thus expanding
the interaction between oxidants, mitochondrial redox status,
and protein glutathionylation.

Trx-based systems

The reducing power for peroxiredoxins (Prx) is transmitted
through thiols of the Trx system: NADPH/Thioredoxin
reductase (TrxR)/Trx/Prx (257). A comprehensive study
on immunohistochemical mapping of all six Prx subtypes in
the mouse brain revealed that astrocytes and microglia were
reactive to Prx6 and Prx1, respectively; immunoreactivity for
Prx1 and Prx4 in the nuclei of oligodendrocytes; in neurons,
Prx3 and Prx5 were found in the stratum lucidum of the
hippocampus and Prx2 in the habenular nuclei (115). Of
these Prxs, Prx2 was critical for the maintenance of hippo-
campal synaptic plasticity against age-associated oxidative
damage (129) by a mechanism entailing the oxidant- and age-
dependent mitochondrial decay of hippocampal neurons; in
addition, the expression of Prx2 in hippocampal neurons in-
creased as a function of age.

Mitochondrial Prx3 and Prx5 (Fig. 3) are involved in the
enzymatic degradation of H2O2; Prx5 can also reduce
ONOO - (69, 183). Trx2 is highly efficient at reducing dis-
ulfides in proteins (163), thus impacting cellular functions
such as antioxidant defenses and the redox control of tran-
scription and signal transduction (8, 101). Using a polaro-
graphic method for real-time detection of H2O2, it was
concluded that the removal of H2O2 by energized brain mi-
tochondria was largely dependent on the Trx/Prx system
with a modest contribution by the GSH/GPx system (66).
Prx3 and Prx5 are constitutively expressed in human neuro-
blastoma Sh-SY5Y cells, and their silencing by small hairpin
RNAs renders the cells more susceptible to oxidative damage
and apoptosis (63). Prx3 protects hippocampal neurons
against excitotoxicity, and its up-regulation prevented or re-
duced gliosis, that is, proliferation of astrocytes in certain ar-
eas of the brain (96). The overexpression of Prx-3 reduces
H2O2 production and lipid peroxidation and protects cells
from hypoxia-, TNFa-, cadmium-, and oxidant-induced cell
death (46, 49, 176, 243), and a neuroprotective effect was ob-
served when administered into ischemic brains (108). The
increased Prx3 (along with TrxR2 and Trx2) immunoreactiv-
ity in the hippocampus of aged dogs as compared with adult
dogs was interpreted as a reduction of neuronal damage
(against oxidative stress) during aging (3). Prx3 levels are
found to be significantly lower in the brains of Alzheimer’s
disease patients (128), and a deficiency in Prx3 is also associ-
ated with multiple neurodegenerative disorders such as
amyotrophic lateral sclerosis, Parkinson’s disease, and Down
syndrome (133, 244). Trx2 + / - mice show reduced ATP pro-
duction and electron-transport chain rates (184); this notion is
further supported by the increased apoptosis in early embryos
of Trx2 - / - mice (embryonic lethal) with mitochondria
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maturation. The systemic ablation of mitochondrial TrxR-2
also yielded embryonic lethal phenotypes (54). The levels of
TrxR2 decrease with age in different tissues and is accompa-
nied by enhanced susceptibility to apoptosis (201), also sug-
gesting that NADPH supply and TrxR activity rather than
activities of Trx2 may be rate limiting for the protection
against oxidants and be of importance in dysregulated redox
status during aging and neurodegeneration (182). The sig-
nificance of the redox couples and redox catalysts for brain
aging and age-related neurodegeneration just mentioned is
underscored by the highly oxidized mitochondrial and cel-
lular redox environment that is involved in these processes
(146, 168, 252).

Interdependence of energy- and redox components—
role of nicotinamide nucleotide transhydrogenase

The ultimate reductant of mitochondrial redox systems is
NADPH (supporting the activities of GR and of TrxR) (Fig. 3).
The age-dependent decrease in the ratio of NADPH/NADP +

in kidney mitochondria (251) indicates that NADPH defi-
ciencies are another factor in mediating mitochondrion-
dependent aging. Mitochondrial NADPH is mainly formed
through three pathways: NADP + -dependent IDH2, malic
enzyme, and nicotinamide nucleotide transhydrogenase
(NNT) (Fig. 3). Of these pathways, 50% of the mitochondrial
NADPH pool is uncoupler sensitive, thus suggesting that the
NNT-catalyzed reduction of NADP + accounts for more than
50% of the mitochondrial NADPH pool (202). NNT, a nuclear
encoded mitochondrial 110 kDa protein located on the inner
mitochondrial membrane (100), catalyzes the reversible re-
duction of NADP + to NADPH coupled to the oxidation of
NADH to NAD + . The proton gradient across the mitochon-
drial inner membrane strongly stimulates the forward reac-
tion, that is, the generation of NADPH and the subsequent
capacity for H2O2 reduction (255). NNT plays an important
role in regulating cellular redox homeostasis, energy metab-
olism, and apoptotic pathways (150, 253). Knockdown of
NNT in PC12 cells results in an altered redox status en-
compassed by decreased cellular NADPH levels and GSH/
GSSG ratios and increased H2O2 levels, as well as an impaired
mitochondrial energy-transducing capacity. The activation
of redox-sensitive signaling (c-Jun N-terminal kinase, JNK)
by H2O2 after NNT suppression induces mitochondrion-
dependent intrinsic apoptosis and results in decreased cell
viability (253). NNT activity provides a link between the mi-
tochondrial metabolic function (energy-transducing activity)
and redox homeostasis by coupling NADPH generation to the
TCA cycle and active respiration (Fig. 3). This supports the
notion that changes in cellular bioenergetics and changes in
the redox status of the cell cannot be viewed as independent
events, but rather as an interdependent relationship estab-
lished by the mitochondrial energy-redox axis (250). Disrup-
tion of electron flux from fuel substrates to redox components
due to NNT suppression not only compromises mitochon-
drial dysfunction, including energy-transducing capacity
and redox homeostasis, but also affects cellular functions
through interactive communication between mitochondrion-
generated second messengers and cytosolic redox-sensitive
signaling (see section III). The modulation of NNT function
could be considered important in the collective impairments
of the interdependent mitochondrial energy-redox axis and

the regulation of cytosolic redox-sensitive signaling that is
inherent in several pathophysiological situations. This study
(253) potentially explains the underlying mechanisms of
the poor response of NNT - / - C57Bl/6J mice to glucose (79).
It also explains the shortened life span of mice when the
SOD2 deficiency (lethal with *3 weeks life span) is combined
with NNT deletion (*1 week life span) (106, 141, 143). NNT
activity decreases during brain aging in rats and mice and
is up-regulated on caloric restriction. Investigations of the
physiological and pathological roles of NNT expands the un-
derstanding of the mechanisms that support energy- and/or
redox deficits in the early or late stages of neurodegenerative
diseases (146, 249, 264), diabetes (119, 149), cardiovascular
disease (213), and aging (156, 169, 235).

Mitochondrial dynamic remodeling

Mitochondria are highly dynamic organelles and undergo
continuous fusion and fission throughout their life cycle (44).
These processes regulate not only mitochondrial morphology,
but also their biogenesis, transportation, cellular localization,
quality control, and degradation (mitophagy) (44, 231). Mi-
tochondrial fusion is regulated by GTPases optic atrophy-1
(OPA1) and mitofusin-1/2 (Mfn1/Mfn2), which are respon-
sible for the fusion of outer- and inner mitochondrial mem-
branes, respectively (216). Mitochondrial fission is controlled
by dynamin-related protein 1 (Drp1) and fission protein 1
homolog (Fis1), with the former as scissors of the mitochon-
drial membrane and the latter probably as a recruiter of Drp1
to mitochondria (110, 121, 256).

Mitochondrial dynamics are closely related to the energy-
redox axis. A coordinated balance between fission and fusion
is essential for cell function, and its perturbation is associated
with pathologies (43, 47, 48, 144). OPA1 deficiency has been
associated with decreased mitochondrial ATP production,
increased oxidant production, mitochondrial fragmentation,
decreased life span, and neurodegeneration (47, 53, 225, 258).
The suppression of Mfn2 results in a loss of mitochondrial
membrane potential, reduced OXPHOS complexes expres-
sion, and decreased glucose oxidation and respiration (13,
187). Similar effects on mitochondrial metabolism are shown
when mitochondrial fission is inhibited: The down-regulation
of Drp1 leads to a loss of mitochondrial membrane potential
and DNA content, a decrease of mitochondrial respiration
and cellular ATP levels, as well as an oxidized cellular redox
status and cytochrome c release (77, 181). Repression of Fis1
decreases mitochondrial respiration with the accumulation of
oxidized mitochondrial proteins (230). Conversely, the mito-
chondrial dynamics machinery could also be regulated by the
energy and redox change: The energy-consuming OPA1
cleavage reflects the mitochondrial energy-transducing ca-
pacity and the inner membrane potential (70). It is also rec-
ognized that nitrosative stress activates mitochondrial fission
through the S-nitrosylation of Drp1 (SNO-Drp1) by$NO and
further induce synaptic loss and neuronal damage (52), and
levels of active forms (S-nitrosylated and phosphorylated
forms) of Drp1 are higher in brains of Alzheimer’s patients
than in control subjects (238). It has also been shown that
increased generation of mitochondrial O2

� - or H2O2 induced
by respiratory chain inhibitors or ionizing radiation en-
hances mitochondrial fragmentation (fission) and cell death
(131, 147, 189), which is proposed to be due to an oxidative
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stress-induced transcriptional regulation of fusion and fission
proteins (114). Accordingly, the overexpression of Mfn2 or
OPA1 inhibits H2O2-induced mitochondrial fission and cell
death (112, 113). The inter-regulation between mitochondrial
dynamics machinery and the energy-redox axis, therefore,
allows the mitochondria to meet various specialized and lo-
calized metabolic needs in a timely and positional manner.

The Energy-Redox Axis with Cytosolic Signaling

The energy-transducing and redox-regulation capacity of
mitochondria are highly affected in aging and age-related
neurodegeneration. Mitochondria generate second messen-
gers (redox: H2O2 and$NO; energy: ATP) that are involved
in the regulation of redox/energy sensitive cell signaling
pathways, thus coordinating functional responses between
mitochondria and other cellular processes. Conversely, mi-
tochondria are the recipients of cytosolic signaling molecules,
which translocate to mitochondria under specific conditions
and elicit profound metabolic or redox effects in the organ-
elles. The communication between mitochondria and other
components of the cell establishes a regulatory device that
controls cellular energy levels and the redox environment
(Fig. 1); impairment of this regulatory device may serve as the
basis for the mechanisms which are inherent in aging and age-
related degenerative disorders.

Mitochondrial regulation of cytosolic signaling

Mitochondrial-generated oxidants regulate important
signaling pathways such as the insulin and insulin-like
growth factor (IGF-1) signaling (IIS) and the MAPK (e.g., JNK)
pathways. The PI3K/Akt route of IIS in the brain (Fig. 4) is
implicated in neuronal survival and synaptic plasticity via,
among other effects, maintenance of the metabolic function of
mitochondria. Aging is associated with decreases in the levels
of both insulin/IGF-1 and their receptor (81). Mitochondrial
H2O2 is involved in the regulation of insulin signaling, which
is not surprising given the large quantity of redox-sensitive
cysteine residues on the insulin and IGF1 receptors and in-
sulin receptor substrates (IRS): Oxidation of specific cysteine
residues promote tyrosine autophosphorylation of the insulin
receptor (219) and inhibition of phosphatases (PTEN and
PTP1B) involved in the IRS node of insulin signaling on the
oxidation of critical cysteines to disulfides (151). Aged cells
are more vulnerable to H2O2-induced apoptosis, which is
accompanied by reduced activation of Akt, and caloric re-
striction can prevent this loss of Akt activation (109). In ad-
dition, Akt activation is also inhibited by nitrosative stress
through tyrosine nitration (55). Akt inhibits GSK-3b on
phosphorylation at Ser,9 thereby protecting cell against apo-
ptosis, because activated GSK3b stimulates phosphorylation
of the anti-apoptotic member of the Bcl-2 family, Mcl-1, thus
leading to its degradation and the ensuing cytochrome c re-
lease and apoptosis (157, 180).

The MAPKs are also sensitive to oxidative or nitrosative
stress conditions, entailing an enhanced generation of H2O2 or
peroxynitrite, which results in their activation (174, 188, 253,
263) (Fig. 5); H2O2 may act at multiple levels to activate JNK
(and p38): dissociation of thioredoxin from the ASK-1 com-
plex (204), disruption of the glutathione transferase (GT)-JNK
complex (1), or inhibition of MAPK phosphatase activity (76).
Basal JNK activity, but not its protein levels, is increased in

mouse brain and liver, rat kidney and splenic lymphocytes,
and human skeletal muscle during aging (105, 127, 142, 221,
242). Basal activities of ERK and p38 kinase, but not their
protein levels, are reported to decrease in the brain cortex
during aging, a phenomenon that was prevented by caloric
restriction (259); conversely, basal p38 and ERK activities
were increased in mouse liver, rat kidney, and human skeletal
muscle (104, 127, 242). It is unclear whether or not these
discrepancies are due to tissue specificity of p38 and ERK
responses to the aging process. Nevertheless, the activation of
ERK in response to epithelial growth factor is decreased in
cortical brain slices and hepatocytes from old rats (148, 259),
indicating reduced sensitivity to stimuli in these tissues
during aging.

In addition, JNK also plays a central role in the progression
of insulin resistance; a likely mechanism that entails the
phosphorylation of the IRS-1 at Ser307, leading to inhibition of
the insulin-promoted tyrosine phosphorylation of IRS (2).
Conversely, the MLK3-mediated JNK activation is inhibited
by Akt on the phosphorylation of MLK3 both in vitro and
in vivo (19). Due to the distinct downstream signaling be-
tween PI3K/Akt and JNK (survival vs. apoptosis; growth vs.

FIG. 4. Oxidative conditions and the PI3K/Akt pathway
of insulin signaling. The large number of cysteinyl moieties
in the IR and IRS renders them susceptible to oxidation (and
activation) by H2O2; Akt is also redox sensitive. In NIH/3T3
cell lines, Akt translocation to the mitochondria is associated
with a second phosphorylation, which is dependent on the
mitochondrial [H2O2]ss (7); in neuroblastoma cells, the
translocation of Akt to mitochondria resulted in the phos-
phorylation of a mitochondrial constitutive form of GSK3b
and of ATPase (23). IGF-1, insulin-like growth factor-1; IRS,
insulin receptor substrate.
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differentiation), the counterbalance of the IIS and JNK path-
ways induced by different concentrations of H2O2 is expected
to determine the coordinated response of the cell. These dis-
parate effects of mitochondrial H2O2 are important, as they
refer to a healthy aging or accelerated aging, and they need to
be assessed in terms of the cellular peroxide tone, that is, a
quantitative assessment of a mitochondrial steady-state con-
centration of H2O2 in connection with domain-specific sig-
naling. Hence, the mitochondrial energy-redox axis is one of
the factors that regulate the peroxide tone of the cell in a
domain-specific signaling fashion.

Despite its role in regulating the activities of kinases,
phosphatases, and other redox-sensitive enzymes on the time
scale of minutes to hours, dynamic H2O2 signaling is also
involved in sub-second signaling via ion channel activation in
neuronal cells (198). In dopamine neurons of the substantia
nigra, mitochondrial H2O2 inhibits neuron firing by activating
ATP-sensitive K (KATP) channels, thus linking metabolic state
to cell excitability (10, 15). The mitochondrial energy and re-
dox status are also connected with suppressed dopamine re-
lease in the striatum through the activation of KATP channels
by glutamatergic AMPA receptor-induced H2O2 generation
(11, 12). False regulation of H2O2 signaling due to mitochon-
drial dysfunction could compromise striatal dopamine release
and, thus, be implicated in nigrostriatal degeneration and
Parkinson’s disease (16). H2O2 can also activate the transient
receptor potential (TRP) channels that increase the excitability

of striatal GABAergic medium spiny neurons (16). The ex-
pression of the redox-sensitive ion channels, either inhibitory
(KATP) or excitatory (TRP), in coordination with cell-specific
mitochondrial metabolic and redox regulation, defines the
specificity of dynamic neurotransmission (198).

Cytosolic regulation of mitochondrial function

Mitochondria are also important targets of cytosolic sig-
naling molecules. It was shown that the expression and acti-
vation of JNK1 increases in the brain as a function of age and
that active (bisphosphorylated) JNK translocates to the mi-
tochondrion, where it triggers a phosphorylation cascade
which results in phosphorylation (inhibition) of PDH, a key
mitochondrial enzyme complex that bridges anaerobic and
aerobic brain energy metabolism. PDK2 is an essential inter-
mediate in this phosphorylation cascade. The outcome is a
bioenergetic crisis translated into decreased cellular ATP and
an increase in lactate levels (anaerobic glycolysis as a com-
pensatory mechanism) (263, 264) (Fig. 5).

The PI3K/Akt pathway promotes neuronal survival and
synaptic plasticity (234) by mechanisms entailing the phos-
phorylation of proapoptotic Bcl-2 family members (Bad) of
GSK3b (thus inhibiting tau hyperphosphorylation) and of
FoxO factors (that drives nuclear FoxO factors to the cytosol,
thus inhibiting the transcription of some apoptotic genes and
those involved in heme degradation) (51). In NIH/3T3 cell
lines, mitochondrial H2O2 modulates the entrance of cytosolic
Akt (phosphorylated at Ser473) to the mitochondria and in-
duces the further phosphorylation at Thr308 that is required
for nuclear translocation (7). Akt translocates to the mito-
chondrion in human neuroblastoma cells, and its phosphor-
ylation targets are a constitutive form of GSK3b in the
mitochondrion and the b-subunit of ATPase (23) (Fig. 4).

ATP is the universal energy currency in the cell, and mi-
tochondrial produced by ATP is transported to the cytosol by
ANT in exchange with ADP. The cytosolic ADP/ATP ratio is
an important parameter of not only the cellular consumption
of ATP but also ATP synthesis as a reflection of mitochondria
bioenergetic profile. The ubiquitously expressed adenylate
kinases in all cell types, which catalyzed the inter-conversion
of adenine nucleotides (2ADP4ATP + AMP), make AMP/
ATP another important indicator of energy status. 5¢ adeno-
sine monophosphate-activated protein kinase (AMPK) is a
kinase with its activity controlled by intracellular AMP/ATP
ratio and, therefore, rendered a sensor of cellular energy
status. In fact, recent studies have suggested that AMPK
activity can also be regulated by ADP (178, 246). AMPK is
activated on various stress conditions, including glucose
deprivation, ischemia, and hypoxia, and is also a key player
involved in the cellular response to exercise (218). Moreover,
AMPK is redox sensitive (237) and interacts with mitochondrial
redox status through the mitochondrial aldehyde dehydroge-
nase (ALDH-2) (60). On activation, AMPK induces multiple
responses, including enhanced glucose metabolism and fatty
acid oxidation, to switch cellular metabolism from anabolism to
catabolism by (a) increasing glucose uptake by stimulating
glucose transporters expression (260) and its translocation
to the plasma membrane (17, 134); (b) enhancing glycolysis
by activating 6-phosphofructo-2-kinase (PFK2) (153); and (c)
simultaneously inhibiting fatty acid synthesis and activating
mitochondrial b-oxidation by blocking acetyl-CoA carboxylase

FIG. 5. Oxidative stress-induced activation (bispho-
sphorylation) of JNK and its translocation to the mito-
chondrion. Anisomycin or H2O2 (via MLK7 or MKK4,
respectively) leads to the bisphosphorylation of JNK, which
translocates to the outer mitochondrial membrane and trig-
gers a phosphorylation cascade (including PDK2 activity)
that results in phosphorylation (inactivation) of the pyruvate
dehydrogenase complex (PDH) (263, 264). JNK, c-Jun N-
terminal kinase.
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(ACC1/2) activity (95). AMPK is regarded a central regulator
of the pathways that are implicated in aging and a potential
longevity regulator in worms (86), and it is also involved in
the beneficial effects of caloric restrication (118). Mixed results
were reported regarding the change of AMPK activity during
aging in different tissues, but growing evidence suggests that
decreased AMPK activity and/or decreased responsiveness
to AMPK activity is associated with declined mitochondrial
function as a function of age (75), thus indicating an inter-
relationship between mitochondrial energy status and AMPK
activity.

It may be surmised that the cross-talk between IIS, JNK,
and AMPK signaling in the brain, their modulation by mito-
chondrial signaling molecules, and how these signaling
impinge on mitochondrial function is of importance in un-
derstanding the process of aging and their relevance for some
neurodegenerative disorders. Since active JNK can also initi-
ate mitochondrion-dependent apoptosis, impairment of the
communication between mitochondrion-supported redox
signaling and cytosolic signaling pathways may serve as the
basis for the mechanisms inherent in cell death pathways and
the loss-of-cell function that is associated with aging and age-
related degenerative disorders.

The Energy-Redox Axis and Nuclear
Transcriptional Pathways

Transcriptional control of mitochondrial biogenesis

The majority of the mitochondrial proteins are nuclear en-
coded and cytosol synthesized before being transported to
mitochondria (186), and mitochondrial DNA encodes 13
subunits of the complexes in the electron transport chain. The
transcription of mtDNA is primarily controlled by mito-
chondrial transcription factor A (TFAM), while the coordi-
nated expression of nuclear-encoded mitochondrial proteins
involves multiple transcription factors such as Sp-1, YY-1,
CREB, MEF-2, and nuclear respiration factors (NRFs) such as
NRF-1, NRF-2, ERRa, and REBOX/OXBOX, among others
(75, 206). The coordination of these transcriptional pathways
is integrated by the peroxisome-proliferator-activated recep-
tor c coactivator-1 (PGC-1) family of transcriptional coacti-
vators, and PGC-1a is currently the best-characterized
member (93). The ability of PGC-1a in regulating the tran-
scription of mtDNA by coactivating NRF-1 on the promoter of
TFAM and mitochondrial transcription specificity factors
TFB1M and TFB2M, as well as its role as a co-activator of
major transcription factors involved in nuclear-encoded mi-
tochondrial gene expression, renders PGC-1a the master
regulator of mitochondrial biogenesis (Fig. 6).$NO can signal
through cGMP-PKG pathway to activate Sirt1 and PGC1a
(33, 171, 175).

The decline of mitochondrial function with age and in
neurodegeneration is associated with reduced mitochondrial
biogenesis and decreased activity of its major regulator, PGC-
1a. PGC-1a levels were found to be decreased with age, and
the decline was rescued by caloric restriction in skeletal
muscle (97); PGC-1a levels and mitochondrial function were
positively linked to lifespan extension in several rodent
genetic models (4, 123). Overexpression of PGC-1a in a
model of mitochondrial myopathy significantly prolonged
lifespan (239). PGC-1a knockout mice are more sensitive to
the neurodegenerative effects of 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) and kainic acid; conversely,
increased PGC-1a levels protect neurons against oxidative stress-
mediated death by inducing expression of antioxidant genes
(217). Mitochondria from a Huntington’s disease transgenic
mouse brain show reduced PGC-1a levels and OXPHOS gene
expression (241), and PGC-1a null mice also show increased
degeneration of striatal neurons and lesions in the striatum,
which is the primary brain region affected by Huntington’s
disease (145). Conversely, the overexpression of PGC-1a in the
striatum provides neuroprotection by reversing the toxic effects
of mutant huntingtin (56). Notably, despite its major role in
modulating mitochondrial function, the impact of PGC-1a
activity modulation is stimulus- and tissue dependent (5).

As a key regulator of mitochondrial biogenesis and func-
tion, PGC-1a is regulated at multiple levels, including its
transcription, post-translational modification, localization,
and degradation. The regulation of PGC-1a expression in-
volves CREB (245) and mTOR-YY1 (58) pathways, making
them important modulators of mitochondrial metabolic
function in aging (209). Post-translationally, PGC-1a is acti-
vated by Sirt1 by deacetylation after the translocation of the
former into the nucleus during stress conditions (6). AMPK is
another regulator of PGC-1a activity either by direct phos-
phorylation of PGC-1a (111) or by indirectly enhancing Sirt1
activity (42) (Fig. 6). The regulation of PGC-1a turnover by
GSK3b phosphorylation and subsequent degradation (6)
provides an additional layer of control on PGC-1a function.

FIG. 6. The mitochondrial energy-redox axis in mito-
chondrial biogenesis and mitochondrial dynamics. Acti-
vation of the co-activator PGC1a requires phosphorylation
and deacetylation, pathways involving AMPK and Sirt1; the
former is sensitive to the energy levels (expressed as [ATP]/
[AMP] + [ADP], whereas the latter requires NAD + as a co-
substrate. Changes in the regulators of fission/fusion im-
pinge on the mitochondrial energy-transducing capacity (see
text). AMPK, 5¢ adenosine monophosphate-activated protein
kinase; Drp1, dynamin-related protein 1; OPA, optic atro-
phy; PGC-1, peroxisome-proliferator-activated receptor c
coactivator-1.
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Taken together, the spatiotemporal regulation of PGC-1a at
multiple levels and time points enables the fine tuning of
mitochondria activity and energy homeostasis by integrating
transcriptional pathways driven by Sirt1, AMPK, and mTOR
in response to extracellular signals and specific cell demands.

Mitochondrial regulation of transcriptional pathways

The signal communications between the nucleus and
mitochondria are not unidirectional. Perturbations of mito-
chondrial energy and redox status can also be transmitted
to the nucleus to induce cellular adaptive or compensatory
responses. This process involves several mitochondrion-
generated second messengers, such as ATP, H2O2,$NO, and
processes involved in the dysregulation of Ca2 + homeostasis
and the maintenance of cytosolic NAD + /NADH ratios. As
the primary indicator of mitochondrial metabolic status,
altered ATP levels in the cells affect AMPK activity and
positively modulate energy-consuming anabolic processes
through mTOR either directly (64) or indirectly (90, 212) in-
volving a variety of transcription factors, such as p300,
HNF4a, MEF-2C, and p53 (94, 159). ATP signaling is also
involved in the regulation of mitochondrial biogenesis
through the AMPK-PGC1a pathway (41, 111) (Fig. 6). Hence,
the mitochondrial bioenergetic state is an important modu-
lator of cell growth and proliferation. It is still controversial
whether ATP levels or ATP production rate declines with age
(67, 135, 138); thus, future studies should focus more on the
sensitivity of these adenine nucleotides signaling pathways to
altered mitochondrial energy status during aging.

As important intermediate metabolites, both NAD + and
NADH, and their ratio, affect mitochondrial function by
modulating mitochondrial permeability transition pore and
Ca2 + homeostasis (254). Cytosolic/nuclear NAD + can serve
as a substrate of Sirt1 to regulate mitochondria biogenesis by
the deacetylation of PGC1a (42) and as a substrate of poly
(ADP-ribose) polymerase, which is an important DNA nick
sensor. The age-dependent decline in intracellular NAD +

levels and NAD + /NADH ratio were observed in parallel
with decreased Sirt1 activity (34). Although the inner mito-
chondrial membrane is impermeable to NAD + and NADH, it
was found that the malate-aspartate NADH shuttle could
play a critical role in the activation of the downstream targets
of caloric restriction, such as sir2 (Sirt1 homolog), and is re-
quired for caloric restriction-mediated lifespan extension in
yeast (71). This indicates that alterations in the mitochondrial
energy status are capable of influencing the cytosolic and
nuclear NAD + /NADH pool and further affecting the NAD + -
dependent sirtuin pathways (Fig. 6).

A variety of transcriptional pathways are redox sensitive
and can be activated on extracellular stimuli or intracellular
redox changes (35). Transcription factors, such as HSF-1, p53,
and NF-jB, can be directly activated on oxidative stress (74),
while some other factors, including NRF-1, NRF-2, and FoxO,
can be activated/inhibited indirectly via redox-sensitive ki-
nase signaling pathways such as JNK, ERK, p38, and PI3K/
Akt (35) (see Section III). The role of H2O2 in NF-jB activation
has been critically reviewed (179), and it was concluded that
H2O2 does not function as an inducer of NF-jB but it is largely
involved in the regulation of NF-jB-related pathways. An-
other redox-sensitive transcription factor is nuclear factor
erythroid 2-related factor (Nrf2), which on its dissociation

from Keap1, activates antioxidant responses. Altered redox
status leads to the oxidation of Keap1 (via thiol/disulfide
exchange) and the release of Nrf2; the latter translocates to the
nucleus and activates the antioxidant response element-
mediated Phase II enzyme expression (65). Multiple key en-
dogenous antioxidant enzymes that are involved in GSH
synthesis and reduction and O2

� - /H2O2 homeostasis are
regulated by Nrf2 (117); the levels of Nrf2 and the expression
of its downstream genes decrease with age (220), suggesting
the potential role of the Nrf2 pathway in the age-related de-
cline of redox capacity.

Mitochondria are also important regulators of Ca2 + storage
and homeostasis. Ca2 + signaling is involved in cell- and
stimuli-specific responses through various transcriptional
networks such as NFAT, MEF2, TORC, CREB, and NF-jB
(160). A comprehensive study on the role of mitochondrial
Ca2 + in the regulation of cytosolic and nuclear redox signal-
ing is previously reviewed (224).

Conclusions and Perspectives

Aging and neurodegeneration are associated with declines
in energy production in the brain as well as parallel changes in
redox status with a pro-oxidant shift that may be due in part
through the mitochondrial generation of O2

� - and H2O2.
Mitochondria regulate distinct cytosolic signaling pathways
and have vital roles: (a) They are the cellular organelles that
generate ATP, which supports the cellular energy demands;
(b) generate second messengers, such as H2O2 and .NO, that
are implicated in the modulation of redox-sensitive kinase
signaling and transcriptional pathways; and (c) are involved
in the regulation of NAD + /NADH homeostasis, which, in
turn, influence mitochondrial biogenesis and dynamic re-
modeling. Conversely, mitochondria are targets and recipi-
ents of cytosolic redox-sensitive signaling and nuclear
transcriptional pathways. The pathways discussed in this
review are part of an intricate signaling network that has
evolved around mitochondrial metabolism, generation of
H2O2, and cellular responses, further supporting the link be-
tween the mitochondrial formation of signaling molecules,
the rate of aging, and the course of age-related diseases.
Characterization of the signaling events originating from
mitochondria and converging on mitochondria might unravel
the molecular links between strategies aimed at restoring the
mitochondrial energy-redox axis that is compromised in brain
aging and neurodegeneration.
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Abbreviations Used

Akt¼protein kinase B
AMPK¼ 5¢ adenosine monophosphate-activated

protein kinase
ANT¼ adenine nucleotide translocase
Drp1¼dynamin-related protein 1
ETC¼ electron transport chain
Fis1¼fission protein 1
GPx¼ glutathione peroxidase
GR¼ glutathione reductase
Grx¼ glutaredoxin

GSH¼ glutathione
GSSG¼ glutathione disulfide

GST¼ glutathione S-transferases
IDH¼ isocitrate dehydrogenase

IGF-1¼ insulin-like growth factor-1
IIS¼ insulin/IGF-1 signaling

IRS¼ insulin receptor substrates
JNK¼ c-Jun N-terminal kinase

MAPK¼mitogen-activated protein kinases

mtNOS¼mitochondrial nitric oxide synthase
nNOS¼neuronal NOS
NNT¼nicotinamide nucleotide transhydrogenase
NRF¼nuclear respiration factor
Nrf2¼nuclear factor erythroid 2-related factor

OPA1¼ optic atrophy-1
OXPHOS¼ oxidative phosphorylation

PDH¼pyruvate dehydrogenase
PGC-1¼peroxisome-proliferator-activated

receptor c coactivator-1

PI3K¼phosphatidylinositol 3-kinase

Prx¼peroxiredoxin

SCOT¼ succinyl-CoA:3-oxoacid Co-A transferase

SOD¼ superoxide dismutases

TCA¼ tricarboxylic acid

TFAM¼mitochondrial transcription factor A

TRP¼ transient receptor potential

Trx¼ thioredoxin

TrxR¼ thioredoxin reductase

a-KGDH¼ a-ketoglutarate dehydrogenase
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