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Significance of Brain Tissue Oxygenation
and the Arachidonic Acid Cascade in Stroke
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Abstract

The significance of the hypoxia component of stroke injury is highlighted by hypermetabolic brain tissue
enriched with arachidonic acid (AA), a 22:6n-3 polyunsaturated fatty acid. In an ischemic stroke environment in
which cerebral blood flow is arrested, oxygen-starved brain tissue initiates the rapid cleavage of AA from the
membrane phospholipid bilayer. Once free, AA undergoes both enzyme-independent and enzyme-mediated
oxidative metabolism, resulting in the formation of number of biologically active metabolites which themselves
contribute to pathological stroke outcomes. This review is intended to examine two divergent roles of molecular
dioxygen in brain tissue as (1) a substrate for life-sustaining homeostatic metabolism of glucose and (2) a
substrate for pathogenic metabolism of AA under conditions of stroke. Recent developments in research con-
cerning supplemental oxygen therapy as an intervention to correct the hypoxic component of stroke injury are
discussed. Antioxid. Redox Signal. 14, 1889–1903.

Brain Oxygen Consumption and Regulation

The human brain is one of the most metabolically active
organs in the body, despite not performing mechanical

work like skeletal muscle or the heart. The normal human
brain consumes 3.5 ml of O2 per 100 g of brain tissue per
minute, a value which remains constant throughout periods
of wakefulness and sleep. This relatively high rate of oxygen
consumption is appreciable when compared to the metabolic
rate of the entire body. The average man weighs 70 kg and
consumes *250 ml of O2 per minute in the resting state. With
the average human brain weighing 1400 g (*2% of total body
weight), it therefore consumes *49 ml O2 per minute, or 20%
of total body oxygen consumed while at rest (21a, 46, 82)
(Table 1). Within the brain, oxygen consumption is highly
dynamic and region specific. Gray matter consumes more
than twice as much oxygen as white matter, with highest
consumption occurring in the medial occipital lobe (125).
Oxygen transport from blood to tissue is driven by the oxygen
concentration gradient between blood and tissue, moving
from the source to the sink. While literature supports capil-
laries as the principal suppliers of blood to brain tissue, a
growing body of evidence suggests that precapillary arteri-
oles also play an active role in oxygen transport (169). Indeed,
the major oxygen concentration gradient has been found at
the blood–tissue interface of arterioles, not capillaries (38).

At the cellular level, oxygen-sensing systems have evolved
to ensure tight regulation of cerebral blood flow and oxygen

homeostasis in the brain to avoid metabolic compromise. The
average rate of blood flow in the human brain as a whole is
800 ml=min, or *15% of the total basal cardiac output. By
adjusting vascular tone, brain perfusion is tightly controlled
over a wide range of blood pressures, a process termed ce-
rebral autoregulation (2). This powerful autonomic response
permits a dynamic flux of cerebral blood flow on the basis of
changes in neural activity and metabolic demand within brain
regions. This phenomenon is the foundation of functional
magnetic resonance imaging (fMRI) which uses blood oxy-
genation level-dependent (BOLD) contrast imaging to iden-
tify changes in the hemodynamic response related to neural
activity (73).

When cerebral autoregulation is impaired, or in patholog-
ical conditions such as stroke in which cerebral blood flow is
disrupted, neuron function is both directly and indirectly
regulated in response to brain hypoxia. Direct regulation of
neuronal excitation occurs in a hypoxic state by O2-sensing
ion channels that are reversibly inhibited by hypoxia (70).
Hypoxia-induced modulation of these channels lead to
increased excitability, including ‘‘leak’’ Kþ currents from
TWIK-related acid sensitive (TASK) channels (114). Hypoxia-
induced Kþ leak in TASK channels is an instantaneous open-
rectifier current that influences both neuronal resting
membrane potential and the duration of action potential (19).
In contrast, hypoxia-inducible factor (HIF) transcriptional
complex is an indirect regulator of neuronal activity and ex-
citability under hypoxic conditions. Widely conserved among
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mammalian species and invertebrates alike, the HIF complex
exists as a heterodimer composed of constitutively expressed
HIF-b and O2-sensitive HIF-a subunits. Oxygen-dependent
enzymatic hydroxylation of proline residues within HIF-a
subunits governs protein stability, and transcriptional activity
of the HIF complex. More than 70 putative HIF-target genes
have been identified to date, expression of which governs an
array of vital cellular processes including energy metabolism,
angiogenic response, and cell survival (145).

Stroke-Induced Disruption of Cerebral Oxygen Delivery

Today, stroke is the leading cause of long-term disability
and the third leading cause of death in the United States, with
more than 795,000 Americans afflicted by a new or recurring
stroke each year (98). Broadly defined by a cerebrovascular
disruption of blood supply to the brain, stroke etiology is
classified as either ischemic or hemorrhagic in origin (Fig. 1).
Given the hypermetabolic activity of brain tissue and the
relatively high oxygen consumption rate, the brain is depen-
dent upon an uninterrupted blood borne supply of substrate
for oxidative metabolism. Oxygen is utilized in the brain al-
most entirely for the oxidation of carbohydrate (21a). Glucose
is the preferred metabolic substrate for brain, and without

glucose and oxygen stores available to maintain oxidative
metabolism, homeostatic brain function is quickly lost. In the
case of global cerebral blood flow arrest, consciousness is lost
within 10 seconds. The critical level of brain tissue pO2 be-
neath which consciousness and normal EEG pattern are lost is
20 mmHg (127). The high oxidative metabolic demands of
brain tissue therefore exacerbate the pathological conse-
quences of interrupted circulation of blood to brain tissue as
compared to other organs. Irreversible pathological injury to
brain tissue occurs within minutes of cerebral blood flow in-
terruption. The adage ‘‘time is brain’’ is commonly expressed
to emphasize that human nervous tissue is rapidly and irre-
trievably lost as the duration of cerebral blood flow disruption
progresses. A quantitative assessment of ‘‘time is brain’’ in
supratentorial acute ischemic stroke estimated that 1.9 million
neurons, and 14 billion synapses are lost per minute due to
ischemic cerebrovascular disruption (141).

Ischemic Stroke

The word ischemia originates from the Greek words
ischaimos which means ‘‘to restrain’’ and haima meaning
‘‘blood’’. In simple terms, ischemic stroke occurs when an
artery of the brain is blocked. The brain depends on contin-
uous blood flow to deliver oxygen, nutrients (i.e., glucose,
vitamins), and to remove carbon dioxide and cellular waste.
When cerebral blood flow is obstructed and brain tissue is no
longer able to sustain homeostatic function, the terminal re-
sult is energetic failure and cell death. Ischemic stroke has
several etiological origins. The most common is due to the
narrowing of the arteries in the neck or head. This is most
often caused by atherosclerosis—a chronic disease process
directly influenced by diet. High fat diets leading to elevated
LDL cholesterol and triglyceride levels are significant risk
factors for atherogenesis. If cerebrovascular arteries become
too narrow, blood cells collect and form blood clots. These
blood clots can block the artery where they are formed
(thrombosis), or can dislodge and become trapped in smaller
or more distant arteries of the brain (embolism).

A thrombotic stroke occurs when diseased or damaged
cerebral arteries become blocked by the formation of a blood
clot within the brain. Clinically referred to as focal cerebral
thrombosis or cerebral infarction, this classification of stroke is
responsible for 50% of all clinically presented stroke cases.
Cerebral thrombosis can also be divided into an additional
two categories that correlate to the location of the blockage
within the brain: large vessel thrombosis and small vessel
thrombosis. Large vessel thrombosis is the term used when
the blockage is in one of the brain’s larger blood-supplying
arteries such as the carotid or middle cerebral artery, while
small vessel thrombosis involves one (or more) of the brain’s
smaller, yet deeper penetrating arteries (F:0.2–15 mm). This
latter type of stroke is also referred to as a ‘‘lacunar’’ stroke
event.

An embolic stroke is also caused by cerebrovascular oc-
clusion, but in this case the clot (or emboli) is formed in pe-
ripheral arteries outside of the cerebrovascular system. Often
from the heart, these emboli will travel the bloodstream until
they become lodged in the brain and cannot travel any fur-
ther. This naturally restricts the flow of blood to the brain
and results in almost immediate physical and neurological
deficits. While thrombotic and embolic events are the most

Table 1. Oxygen Consumption by Tissue

Tissue
O2 consumption

(ml O2=min=100g)
% of total body

O2 consumption*

Skin 0.2 5
Resting muscle 1 20
Liver 2 20
Brain 3.5 20
Kidney 5 7.2
Resting heart 8 10–12
Contracting muscle 50 NA

FIG. 1. Stroke etiology. Stroke is a general term used to
define pathological conditions in which cerebral blood flow
is disrupted. The cause of stroke can be classified as one of
two etiological origins: ischemic (left) and hemorrhagic
(right). Ischemic stroke describes the arrest of cerebral blood
flow by narrowing and blockage of a cerebral artery
(thrombosis) or by a peripheral artery clot (emboli) traveling
to and blocking a cerebral artery. Hemorrhagic stroke de-
scribes the rupture of a cerebral artery in intracerebral space
(ICH) or subarachnoid space (SAH). (To see this illustration
in color the reader is referred to the web version of this article
at www.liebertonline.com=ars).
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common cause of ischemic stroke, there are many other
pathological events, including traumatic injury to the blood
vessels of the neck, or disorders of blood clotting, which also
induce ischemic stroke of the brain.

Focal Ischemic Stroke and the Ischemic Penumbra

Following focal cerebral ischemia, arrest of blood flow at
the site of occlusion produces an ischemic infarct core in
which local tissue pO2 approaches anoxic levels. Liu et al. re-
ported that in a rodent model of middle cerebral artery oc-
clusion (MCAO) focal cerebral ischemia rapidly decreased
interstitial brain tissue pO2 to *4% of baseline at the infarct
core as measured by electron paramagnetic resonance (EPR)
oximetry (96). Moving away from the ischemic core, cerebral
blood perfusion and tissue oxygenation gradually improves
(Fig. 2) (96, 133). Still hypoperfused as compared to baseline,
neurons in this region of tissue, termed the ischemic penum-
bra, are still able to preserve ion homeostasis and trans-
membrane electrical potentials (12, 165). While stringent
delineation of the ischemic penumbra is difficult, the most
clinically relevant and straightforward definition character-
izes it as the ischemic region which, without intervention,
would evolve into ischemic infarction over time (175a). This
definition, while vague, can be readily applied to characterize
the penumbra in a preclinical setting where reproducible
stroke-induced infarct is compared across control and stroke
intervention groups (133). Additional criteria used to define
the ischemic penumbra include site specific cerebral blood
flow measurement, documenting diminished protein syn-
thesis in approaching the ischemic core, and spatially resolved
mRNA expression analysis of heat-shock protein 70 (hsp70)
that is reported to be selectively expressed in the penumbra 3h
after permanent MCAO in mice (58, 59, 63).

While rapid restoration of cerebral blood flow at the is-
chemic site via thrombolytic therapy or mechanical inter-
vention reduces infarct lesion size by salvage of the ischemic
penumbra, reperfusion itself also paradoxically contributes to
ischemic stroke brain injury. Specifically, reperfusion of ce-
rebral blood flow following ischemia rapidly increases cere-
bral pO2 in tissue that is metabolically compromised and
highly susceptible to oxidative stress (133). In this state, the

sudden rise in tissue oxygenation contributes to oxidative
damage of brain tissue. Reperfusion also enables peripheral
leukocyte recruitment to stroke-affected tissue (124). Leuko-
cytes contribute to stroke pathology by obstructing the mi-
crocirculation, disrupting the blood–brain barrier, and
infiltrating brain tissue where they release cytokines and
propagate inflammation. Furthermore, leukocytes contribute
to platelet aggregation in the stroke affected microcirculation
causing vasogenic brain edema and hemorrhagic transfor-
mation following stroke (135).

Molecular Mechanisms of Ischemic Stroke Pathology

Ischemic stroke-induced hypoxia causes energetic failure
(ATP deficiency) due to the lack of oxygen required to
maintain cellular respiration. Within 15 minutes of ischemic
stroke onset, ATP levels of stroke-affected brain tissue de-
crease by one-third. As a result, ATP-dependent ion pumps
(i.e., Naþ=Kþ ATPase) fail to maintain transmembrane ion
gradients, resulting in Ca2þ influx through voltage-sensitive
Ca2þ channels. Ischemia-induced energetic failure in brain
tissue also results in excessive extracellular glutamate release.
Consequently, glutamate-mediated overstimulation of iono-
tropic NMDA receptors continues to drive intracellular Ca2þ

uptake. The subsequent rapid accumulation of intracellular
Ca2þ results in activation of lipases (i.e., phospholipase A2)
that contribute to membrane degradation and lipid perox-
idation in stroke-affected brain tissue enriched with polyun-
saturated fatty acids (PUFAs). Moreover, the intracellular
Ca2þ influx also induces Ca2þ and calmodulin co-dependent
activation of neuronal and endothelial nitric oxide synthase
(NOS). NOS generates nitric oxide (NO) gas, a signaling
molecule with well-characterized vasodilatory effects. The
potential for NO to improve ischemic stroke-affected cerebral
blood flow via vasodilation is clear, however increasing evi-
dence suggests that NO also contributes to oxidative damage
during ischemic stroke. With one unpaired electron, NO re-
acts with most free radicals at near diffusion-limited rates
(178). Reaction of NO with superoxide radical (O2

-) leads to
the production of highly reactive peroxynitrite (ONOO-). As
much as 2% of oxygen consumed by mitochondria is con-
verted to superoxide anion under normal respiratory condi-
tions (18, 170). In a pathological setting of ischemic stroke,
generation of superoxide is greatly enhanced and in combi-
nation with elevated NO levels contributes to a massive in-
crease in peroxynitrite formation (154, 155). In addition to
evidence supporting peroxynitrite-mediated lipid peroxida-
tion, peroxynitrite also exerts cytotoxic effects directly on
mitochondria by inhibiting respiration at complexes I, II, III
and V (97, 174).

Hemorrhagic Stroke

Intracerebral hemorrhage (ICH) occurs when a vulnerable
blood vessel within the brain bursts, allowing blood to leak
inside the brain. The sudden increase in pressure within the
brain can cause damage to the brain cells surrounding the
blood. If the amount of blood increases rapidly, the sudden
buildup in pressure can lead to unconsciousness or death.
ICH usually occurs in selective parts of the brain, including
the basal ganglia, cerebellum, brainstem, or cortex. The most
common cause of ICH is high blood pressure (hypertension).
Since high blood pressure itself is asymptomatic, many people

FIG. 2. Characterization of the ischemic penumbra in
focal ischemic stroke. In a focal ischemic stroke event, brain
tissue oxygenation increases toward baseline (normoxia,
green) with distance from the ischemic core (red). Ischemic
penumbra and core are delineated by quantitative molecular
and physiological differences. (To see this illustration in color
the reader is referred to the web version of this article at
www.liebertonline.com=ars).
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at risk for ICH are not aware that they have high blood
pressure, or that it needs to be treated. Less common causes of
ICH include trauma, infection, tumors, blood clotting defi-
ciencies, and abnormalities in blood vessels.

Subarachnoid hemorrhage (SAH) occurs when a blood
vessel just outside the brain ruptures and the area between the
arachnoid membrane and the pia mater rapidly fills with
blood. A patient with SAH may have a sudden, intense
headache (referred to as a thunderclap headache), neck pain,
and nausea or vomiting. SAH may arise spontaneously or due
to trauma with the sudden buildup of pressure outside the
brain, causing rapid loss of consciousness or death. SAH is
most often caused by cerebral aneurysms—small areas of
rounded or irregular swellings in the arteries. Where the
swelling is most severe, the blood vessel wall becomes weak
and prone to rupture.

In addition to a disruption of cerebral perfusion which by
itself imposes similar patterns of oxidative stress as compared
to ischemic stroke, hemorrhagic stroke also incorporates
patterns of oxidative stress associated with iron-mediated free
radical injury. Specifically, the rupture of cerebral blood ves-
sels and subsequent red blood cell lysis results in release of
heme in hemorrhagic stroke-affected tissue. Heme is metab-
olized by heme oxygenase (HO) in the brain into iron, carbon
monoxide, and biliverdin (64). Following heme degradation
by HO, free iron concentration can reach as high as
10 mmol=L, which induces significant brain edema and di-
rectly contributes to free radical formation and lipid perox-
idation (65). Free iron greatly enhances hydroxyl radical
production and subsequent lipid peroxidation via the Fenton
reaction (137, 138). Furthermore, as iron deposition in brain
tissue increases with age, iron-mediated free radical forma-
tion, lipid peroxidation, and neurotoxicity become increas-
ingly relevant in hemorrhagic stroke pathology (158). This is
particularly noteworthy given the elevated risk of a cerebral
stroke event with age, and the risk for intracranial bleeding in
ischemic stroke cases—a phenomenon termed ‘‘hemorrhagic
transformation’’ that occurs in as many as 70% of all ischemic
stroke patients (13, 90). Finally, carbon monoxide produced
by HO-mediated heme metabolism also amplifies generation
of reactive oxygen species in brain mitochondria (182),
thereby further contributing to elevated oxidative stress un-
der hemorrhagic stroke conditions.

Stroke-Mediated Oxidative Stress in PUFA-Rich Brain

Regardless of stroke mechanism, brain tissue is highly
susceptible to oxidative stress as it: a) consumes an inordinate
amount of oxygen to meet high metabolic demands, b) con-
tains high concentrations of polyunsaturated fatty acids
(PUFAs) that are vulnerable to lipid peroxidation, and c) has
lower antioxidant capacity as compared to other organ sys-
tems. Neurons are particularly vulnerable to oxidative dam-
age in stroke-affected brain tissue due to lower levels of
endogenous antioxidant, glutathione, as compared to resident
glial cells (35). The consequence of increased generation of free
radical species in stroke-affected brain tissue enriched with
PUFAs is an accumulation of lipid peroxidation products that
have proven to be culpable neuromodulators of the cell death
cascade. Brain tissue is highly enriched with the n-6 PUFA
arachidonic acid (AA, 20:4n-6) and the n-3 PUFA doc-
osahexaenoic acid (DHA, 22:6n-3), which are major compo-

nents of phospholipid membranes. Together, AA and DHA
account for *20% of all fatty acids in the mammalian brain
(34). Both AA and DHA are nutritionally essential to brain
function and structure during early development (26–28, 116,
132, 171), and influence membrane fluidity, signal transduc-
tion, and gene transcription throughout life (39, 72, 132, 177).
Neither AA nor DHA are synthesized de novo, but are ob-
tained from the diet and circulated to the brain directly in the
plasma (132), or elongated from n-6 and n-3 PUFA linoleic
(18:2n-6) and a-linolenic acid (18:3n-3) precursors in the liver
(156). A number of pathological conditions in the human
brain are associated with disturbed PUFA metabolism of AA
(42, 131), including stroke.

Arachidonic Acid Metabolism in Brain

In resting cells, AA is stored within phospholipid mem-
branes, esterified to glycerol. A receptor-dependent event,
requiring a transducing G-protein coupled receptor, initiates
phospholipid hydrolysis and releases AA into the intracellu-
lar space. Three enzymes mediate this deacylation reaction:
phospholipase A2 (PLA2), phospholipase C (PLC), and
phospholipase D (PLD), each with different sites of attack on
the phospholipid backbone. PLA2 catalyzes the hydrolysis of
phospholipids at the sn-2 position, releasing AA in a single-
step reaction. By contrast, PLC and PLD do not release free
AA directly. Rather, they generate lipid products containing
arachidonate (diacylglycerol and phosphatidic acid, respec-
tively), which can be released subsequently by diacylglycerol-
and monoacylglycerol-lipases.

Phospholipase A2

Phospholipase A2 (PLA2) isozymes encompass a diverse
family of at least 15 different isozyme groups (20) classified
into five distinct categories: (a) secreted small molecular
weight sPLA2, (b) larger cytosolic calcium-dependent cPLA2,
(c) calcium-independent iPLA2, (d) platelet-activating factor
acetylhydrolases (PAFA), and (e) lysosomal PLA2 isozymes.
The entire PLA2 family is characterized by a common func-
tion; the enzymatic hydrolysis of the sn-2 ester bond of gly-
cerophospholipids, thereby producing a free fatty acid (i.e.,
AA) and lysophospholipid (i.e., lysophosphatidylcholine,
LPC). Currently, only sPLA2 and cPLA2 have well-defined
roles in stroke-mediated AA metabolism and are therefore the
focus of discussion here.

Under conditions of stroke in which reactive oxygen and
nitrogen species are abundant, there occurs a rapid accumu-
lation of free fatty acids, due to increases in intracellular Ca2þ

and activation of PLA2s (3, 32, 61, 91, 94, 123, 134, 139, 159,
172). The sPLA2s are characterized by the requirement of
histidine in their active site, Ca2þ for catalysis and the pres-
ence of six conserved disulfide bonds (20). Under ischemic
stroke conditions, sPLA2 mRNA and protein expression is
significantly upregulated (5, 94) and activity is induced by
inflammatory cytokine tumor necrosis factor-alpha (TNF-a)
(10). The cPLA2s are the only PLA2 which demonstrate a
preference for AA in the sn-2 position of phospholipids (21).
Localized predominantly in gray matter (160), they lack the
disulfide bonding network of sPLA2s and function through
the action of a serine=aspartic acid dyad (20). Following is-
chemic stroke, cPLA2 subunit mRNA and protein expression
is elevated (123, 159). Recently, a hypoxia-sensitive domain in
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the human cPLA2 promoter region has been characterized,
suggesting oxygen-specific transcriptional regulation as well
(6). Stroke-induced intracellular Ca2þ accumulation mediates
cPLA2 subunit translocation to the membrane phospholipid
bilayer (176) and activity is induced by phosphorylation of
serine residue 505 by mitogen-activated protein kinase (93,
118, 175). In addition to AA, glycerophospholipid metabolism
by PLA2s following stroke also elevate LPC levels in blood,
cerebrospinal fluid, and brain tissue following ischemic and
hemorrhagic stroke (61, 62, 79, 164). LPCs act as potent me-
diators of inflammation in the brain following stroke via
stimulated release of interleukin 1b (162) and subsequent ac-
tivation of microglia (122, 143).

Once released, free AA has three potential fates: re-
incorporation into phospholipids, diffusion outside the cell,
and metabolism. In a pathological setting, such as ischemic
and hemorrhagic stroke, free AA accumulates and undergoes
uncontrolled oxidative metabolism by both enzymatic and
nonenzymatic processes (Fig. 3). This uncontrolled metabo-
lism, referred to as the ‘‘arachidonic acid cascade’’, includes
the formation of prostaglandins, leukotrienes, thromboxanes,
isoprostanes, and nonenzymatic lipid peroxidation products
(129). The arachidonic cascade amplifies the overall produc-
tion of free radicals, both reactive oxygen and nitrogen spe-
cies, and subsequently oxidative damage to lipids, proteins,
and nucleic acids. Taken together, the release of AA by PLA2

and downstream metabolism plays a significant role in oxi-
dative tissue injury following stroke-induced hypoxia.

Nonenzymatic Oxidative Lipid Metabolism

Beyond the initial damage to lipid membranes, reaction of
free radical species with double bonds of PUFAs produce
alkyl radicals, which in turn react with molecular oxygen
to form a peroxyl radical (ROO�). Peroxyl radical can abstract
hydrogen from adjacent PUFAs to produce a lipid hy-
droperoxide (ROOH) and a second alkyl radical, thereby
propagating a chain reaction of lipid oxidation (38a). Lipid

peroxides degrade and give rise to a,b-unsaturated aldehydes
that include 4-hydroxynonenal (4HNE), malondialdehyde
(MDA), and acrolein (4, 40, 76, 126). These aldehydes cova-
lently bind to proteins through reaction with thiol groups and
alter their function. They also react with amino groups to form
cyclic adducts.

The most well-characterized of the lipid peroxide alde-
hydes is 4HNE; a nine-carbon a,b-unsaturated aldehyde that
at low concentration modulates cellular signaling in brain
tissue. Under pathological conditions such as stroke, 4HNE-
mediated protein carbonylation induces a number of delete-
rious effects in cells, including inhibition of nucleic acid
synthesis, elevation of intracellular calcium, and inhibition of
mitochondrial respiration (43). The localized concentration
of 4HNE may increase to as high as 4.5 mM within the
phospholipid bilayer, causing protein cross-linking of essen-
tial membrane transporters (i.e., glucose and glutamate
transporters, sodium=potassium ATPases) (77, 101, 107). The
modification of adenine nucleotide translocation by 4HNE
also suppresses ADT and ATP transport through the inner
mitochondrial phospholipid membrane. Taken together,
these actions significantly attenuate the energy-producing
capacity of mitochondria in tissue already devastated by
stroke-induced energetic failure. The C-3 position of 4HNE is
highly reactive: undergoing Michael addition reaction with
cellular thiol. This leads to the formation of adducts with
endogenous antioxidant glutathione, and ultimately efflux
from the cell via glutathione conjugate transporter RLIP76
(51). 4HNE-mediated inactivation of thioredoxin and thior-
edoxin reductase through modification of cysteine and sele-
nocysteine residues at the active site has also been linked to
dysregulation of cellular redox status (41).

Reactive species attack on lipid hydroperoxides also re-
sult in the formation of isoprostanes via b-cleavage of the
peroxyl acid and subsequent molecular rearrangement.
Isoprostanes have D-, E-, and F-ringed structures similar to
cyclooxygenase-generated prostaglandins, except that their
hydrocarbon chains are in the cis position in relation to the

FIG. 3. Stroke-induced hypoxia me-
diates oxidative metabolism of ara-
chidonic acid. Following release from
the lipid membrane bi-layer by oxygen-
sensitive phospholipase A2 (PLA2),
arachidonic acid (AA) undergoes ox-
idative metabolism under enzymatic
and nonenzymatic mechanisms. FLAP,
5-LOX activating protein; 4HNE, 4-
hydroxynonenal; 5-HPETE, 5-hydro-
peroxyeicosatetraenoic acid; 12-HPETE,
12-hydroperoxyeicosatetraenoic acid;
15-HPETE, 15-hydroperoxyeicosatetra-
enoic acid; 5-LOX, 5-lipoxygenase;
12-LOX, 12-lipoxygenase; 15-LOX, 15-
lipoxygenase; LTA4, leukotriene A4;
LTB4, leukotriene B4; LTC4, leukotriene
C4; LTD4, leukotriene D4; MDA, mal-
ondialdehyde; PGD2, prostaglandin D2;
PGF2a, prostaglandin F2a; PGG2, pros-
taglandin G2; PGH2, prostaglandin H2;
PGI2, prostaglandin I2; TXA2, throm-
boxane A2.
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pentane ring as opposed to the trans position observed in
prostaglandins. While measurement of isoprostanes is em-
ployed as a ‘‘gold standard’’ to quantify cumulative oxidative
stress from neurological stress, their bioactivity remains
poorly characterized (109, 179). One particular isoprostane
metabolite, 15-A2t-IsoP, has been shown to induce neurode-
generation in cultured neurons via mitochondrial ROS pro-
duction, glutathione depletion, 12-lipoxygenase activation,
and caspase cleavage (109). Furthermore, 15-A2t-IsoP has re-
cently been shown to potentiate hypoxia-induced neuronal
cell death, suggesting a greater role in stroke pathology (179).
Finally, the F2-isoprostane acts as a potent vasoconstrictor
of brain capillaries by inducing COX-mediated synthesis
of thromboxane in endothelial cells (88). In a stroke setting,
vasoconstriction and platelet aggregation by thromboxane is
counterproductive to resolving arteriothrombosis.

Enzymatic Oxidative Lipid Metabolism

Cyclooxygenase, lipoxygenase, and epoxygenase enzymes
are pivotal players in the generation of oxygenated deriva-
tives of AA in the pathological setting of stroke. Cycloox-
ygenases convert AA to prostaglandins and thromboxanes,
lipoxygenases catalyze the metabolism of AA into leukotri-
enes and lipoxins, and epoxygenase activity produces epox-
yeicosatrienoic acids. The functional role of these enzymes
and downstream lipid-derived products is largely dependent
upon environment and cellular localization. In a stroke set-
ting, several products of these pathways act within neurons to
modulate the activities of ion channels, protein kinases, ion
pumps, and neurotransmitter uptake systems. The newly
formed eicosanoids may also exit the cell of origin and act at a
distance, by binding to G-protein-coupled receptors present
on nearby neurons or glial cells. Finally, the actions of the
eicosanoids may be terminated by diffusion, uptake into
phospholipids, or enzymatic degradation.

Cyclooxygenase

The cyclooxygenase (COX) family of isozymes is composed
of heme-containing bifunctional enzymes with two catalytic
sites. The first active site adds two oxygen molecules to AA to
form the hydroxy endoperoxide prostaglandin G2 (PGG2).
Subsequently, PGG2 translocates to a second active site for
peroxidative reduction to prostaglandin H2 (PGH2). As there
is no channel within the COX monomer to shuttle PGG2 to the
active reducing site, PGG2 may be reduced on the same or a
neighboring enzyme (150). Importantly, the peroxidase ac-
tivity of COX converts PGG2 to PGH2 by removal of oxygen,
which may thereby serve as a source of oxygen radicals (86,
153). It has recently been demonstrated that COX-dependent
neuronal death is linked to superoxide anion generation (68).

Three cyclooxygenase isoforms (COX-1, COX-2, and
COX-3) exist in brain tissue (67). COX-1 and COX-2 are both
constitutively expressed in neural tissue (30, 50). COX-1 is
traditionally characterized as a ‘‘housekeeping’’ enzyme in
homeostatic production of prostaglandins for activities that
include maintenance of glycerophospholipid levels and
membrane remodeling (37, 103). Unlike COX-1, however,
COX-2 expression and activity is induced in response to
pathogenic stimuli including ischemic and hemorrhagic
stroke (66, 106, 110, 120, 121). Suggestive evidence supports
COX-2 isozyme coupling with upstream phospholipase and

downstream synthase activity for the production of lipid
signaling eicosanoids. Both cPLA2 and COX-2 knockout mice
share phenotypic similarities and decreased susceptibility to
ischemia=reperfusion brain injury (140, 166, 167), supporting
a functional coupling between cPLA2 and COX-2 enzymes
(111, 144, 167). While COX-1 and COX-2 are homodimers,
sharing 60% homology in cDNA and amino acids, subtle yet
significant differences in substrate binding and catalytic sites
confer unique properties. COX-1 contains valine residues at
positions 434 and 523, while COX-2 possesses isoleucine. This
small difference results in a larger and more flexible active site
in COX-2 as compared to COX-1; thus accounting for greater
eicosanoid production by COX-2 at low AA concentration (87,
129, 152). COX-3 is a recently identified acetaminophen-
sensitive COX isoform, highly abundant in astrocytes, endo-
thelial cells, and pericytes, though absent in neurons (29, 81).
First described in canines in 2002, COX-3 mRNA is identical to
that of COX-1 with the exception that intron 1 is retained. The
existence of a COX-1 splice variant that includes intron 1 has
also been reported in humans, however, whether this putative
human COX-3 encodes a functional COX protein remains
questionable and the source of controversy (80).

The COX-mediated metabolism of AA to PGH2 is a pre-
cursor to five primary bioactive prostanoids (PGD2, PGE2,
PGF2a), thromboxane (TXA2), and prostacyclin (PGI2). The
highest levels of extracellular protanoid release in an ischemic
stroke setting occurs during reperfusion (161). The prosta-
noids bind to G protein-coupled receptors that differ in their
effects on cAMP and=or phosphoinositol turnover, and in-
tracellular Ca2þ mobilization (92). For example, PGE2 has
been shown to elicit both neuroprotective and neurotoxic ef-
fects following cerebral ischemia that are dependent on re-
ceptor class binding. PGE2 activation of the E-prostanoid 1
receptor (EP1) disrupts neuronal calcium homeostasis by
impairing sodium=calcium exchange, further agonizing Ca2þ

activation of phospholipase and the arachidonic acid cascade.
Pharmacological and gene inhibition of EP1 receptor has been
demonstrated to reduce stroke-induced brain injury, oxygen-
glucose deprivation, and neurotoxicity (75). Conversely, PGE2

signaling via EP2 receptor is neuroprotective in cerebral is-
chemia and dependent on activation of the cAMP–PKA
pathway (102). Such paradoxical outcomes suggest an addi-
tional level of complexity in the prostanoid response to is-
chemic injury that warrants further investigation.

Lipoxygenases

The first human lipoxygenase (LOX) activity was described
in platelets via the transformation of AA to a prostaglandin-
like endoperoxide (54). Today, the LOX enzyme family in-
cludes four members that are classified on the basis of the
carbon position in which they oxidize arachidonic acid: 5-, 8-,
12-, and 15-LOX. Despite variances in amino acid sequences
and tissue distribution amongst family members, the active
site of each isozyme is highly conserved (11). The structure of
LOX at the active site is composed of an N-terminal beta-
barrel domain and a C-terminal domain containing a hydro-
phobic substrate-binding site (49). A non-heme iron atom is
coordinated by three histidine residues and the carboxy-
terminal isoleucine. The oxidation of ferrous iron (Fe2þ) to
ferric iron (Fe3þ) activates the enzyme that is then capable of
excising a hydrogen atom from a hydrocarbon at one of the
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four double bonds. This abstraction generates a radical
metabolite of AA that rapidly reorganizes its double bonds
to take on a more stable conformation. Next, insertion of
molecular oxygen generates a hydroperoxide radical which is
reduced to the hydroperoxide anion by the simultaneous
oxidation of iron to the ferric state (49). A proton is then ac-
cepted to form a highly reactive fatty acid hydroperoxide;
hydroperoxyeicosatetraenoic acid (HPETE). These hydro-
peroxide derivatives of AA are short-lived, and readily
metabolized into more stable compounds, including hydro-
xyeicosatetraenoic acids (HETEs) and leukotrienes.

While each LOX isoform carries out the same general re-
action, namely hydrogen abstraction from arachidonic acid,
each has a unique gene structure, amino acid sequence, and
tissue distribution profile. Only three forms of LOX are
present in brain tissue, 5-, 12-, and 15-LOX (129). Of these, 12-
LOX is the most abundant isoform found in the brain (55),
with significant mRNA expression in rat cortical neurons,
astrocytes, and oligodendrocytes (16). 5-LOX activity requires
a small 18 kDa protein known as FLAP (5-LOX activating
protein) for leukotriene synthesis (22). Evidence suggests that
FLAP binds AA for presentation to 5-LOX (1, 100). The LOX-
mediated metabolites of AA serve as second messengers fol-
lowing stroke by modulating inflammation, apoptosis, and
synaptic activity.

Hydroperoxy- and Hydroxy- Eicosatetraenoic Acids

While short-lived, HPETEs are potent neurotoxins. Highly
reactive oxygen radicals are produced during the conversion
of HPETEs to HETEs (74), contributing to the overall burden
of oxidative stress following stroke. Under conditions of
glutathione (GSH) depletion, as in acute focal stroke, 12-LOX
derived 12-HPETE triggers nitric oxide (NO) induced neural
cell death (24). Meanwhile, inhibitors of cPLA2 and 12-LOX
have been demonstrated to prevent neurotoxicity in vitro (84).
Recent evidence supports that the hydroxy- (HETE) deriva-
tives of LOX-mediated metabolism also possess potent bio-
logical activity as well. 12-HETE has been shown to increase
mitochondrial NO production, to induce cytochrome C re-
lease, and subsequently cause mitochondrial dysfunction
(112). 5-, 12-, and 15-HETE are potent mediators of increased
vascular permeability (57). Elevated levels of HETEs in a
setting of ischemic and hemorrhagic stroke may therefore
contribute to the documented phenomenon of blood brain
barrier breakdown and stroke-induced edema (71).

Leukotrienes

The 5-LOX catalyzed dehydration reaction generates an
epoxide intermediate, leukotriene A4 (LTA4) (129). LTA4 is a
highly unstable intermediate that is readily hydrolyzed to
LTB4 or conjugated with glutathione by cysteinyl leukotriene
C4 synthase to produce leukotriene C4 (LTC4), leukotriene D4

(LTD4), and leukotriene E4 (LTE4) (147). Together, LTC4,
LTD4, and LTE4 are collectively referred to as cysteinyl-
leukotrienes (Cys–LTs). Total leukotriene levels accumulate
in the mammalian brain and cerebral spinal fluid during
and after cerebral ischemia (130, 173). LTB4 is characterized as
a powerful chemotactic agent that induces adhesion of pro-
inflammatory leukocytes to the endothelium; stimulates
phagocytosis, and activates neutrophils and other leukocytes
in a paracrine manner (25, 33, 44, 146). The Cys-LTs are potent

vasoconstrictors of both venous and arterial smooth muscle
(105, 142), and are also reported to produce vascular leak and
vasogenic edema (36). Furthermore, pharmacological inhibi-
tion of Cys–LT receptors attenuates pathological outcomes in
a rodent model of focal cerebral ischemia, suggesting roles for
Cys–LTs in mediating ischemic injury (31, 44). Like LTB4,
Cys–LTs also operate as potent activators and chemoat-
tractants for leukocytes, particularly eosinophils and mono-
cytes, thereby indirectly propagating inflammation and
oxidative stress (44).

Cytochrome P450

Cytochrome P450 epoxygenases (cP450) are heme-contain-
ing enzymes that use molecular oxygen to oxidize PUFAs by
transfer of one atom of oxygen to their substrate and the other
to water. Brain cP450 epoxygenases metabolize AA by insert-
ing a single oxygen atom into an unactivated hydrocarbon at
one of the four double bonds; thereby producing four re-
gioisomers: 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic
acids (EETs). Compared to other organs, expression of cP450

in brain tissue is quite low, accounting for only 1%–10% of
levels observed in liver (60, 163). Relative expression of cP450

in brain tissue is found to be highest in astrocytes localized
near blood vessels, as well as the adjacent vascular endothe-
lium (128). The activity of cP450 epoxygenases localized in and
around the cerebrovasculature has been shown to modulate
angiogenesis via capillary endothelial migration and tube
formation (104, 108). In a pathological setting, such as ische-
mic stroke, EETs also serve as potent vasodilators of cerebral
arterioles by increasing Kþ currents in cerebral arteriole
smooth muscle cells (47). Elevated extracellular glutamate, as
released by neurons and astrocytes under conditions of acute
ischemic stroke, increases the formation of EETs in cultured
astrocytes (8). Importantly, glutamate alone has no effect on
isolated cerebral blood vessels (56, 168). However, when
injected into rat brain tissue via cranial window, glutamate
induces significant dilation of pial arterioles (8). A cP450 in-
hibitor, miconazole, abrogates this effect (7, 8), suggesting that
glutamate-stimulated activity of cP450 enhances EET forma-
tion and vasodilation.

In addition to their vasodilatory effects, beneficial roles
of EETs have been demonstrated within the vasculature
that are independent of smooth muscle cell relaxation (85).
Specifically, it has been shown that EETs possess potent anti-
inflammatory effects by inhibiting cytokine-induced endo-
thelial cell adhesion molecule expression and preventing
leukocyte adhesion to the vascular wall (23, 119, 181). More
recently, EETs have been shown to protect neurons (83) and
astrocytes (95) against ischemic cell death induced in vitro by
oxygen–glucose deprivation. Like other eicosanoids, the bio-
logical activity of EETs is expected to occur via cell surface
receptors. To date, however, the identification of putative EET
receptors and mechanisms of protection remain to be ade-
quately characterized (85).

Once metabolized by cP450, AA-derived EETs are subject to
several metabolic fates, including incorporation back into
membrane phospholipids, and hydration by soluble epoxide
hydrolase (sEH) (180) to di-hydroxyeicosatrienoic acids
(DHET). No essential function of DHETs has yet to be iden-
tified (157). Strategies to inhibit sEH activity in order to pro-
long the neuroprotective action of EETs are currently of
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therapeutic interest. Inhibitors of sEH have historically been
developed as anti-hypertensive agents, but recent data indi-
cate they also decrease vascular smooth muscle proliferation,
prevent cardiac hypertrophy, and improve renal hemody-
namics (157).

Supplemental Oxygen Therapy in Focal Ischemic Stroke

In 1662, an English physician and clergyman named Hen-
shaw was the first to use compressed air controlled by large
organ bellows to manipulate the atmospheric pressure in a
sealed room. He suggested that ‘‘in times of good health this
domicilium is proposed as a good expedient to help digestion,
to promote insensible respiration, and consequently, of ex-
cellent use for the prevention of most affections at the lungs’’
(31a). Two centuries later, a French physician, Junod, was the
first to commission the construction of a hyperbaric chamber
dedicated for medical use (151). While the purported benefits
of early hyperbaric chambers were anecdotal, they laid the
foundation for rigorous scientific development. In 1960,
Dutch surgeon and engineer Ite Boerema published ground-
breaking research demonstrating the capacity for hyperbaric
oxygen (HBO)-induced plasma-dissolved oxygen to sustain
life in exsanguinated pigs (17). Five years after Boerema’s
pivotal discovery, Swedish physicians Ingvar and Lassen re-
ported improved outcomes in four stroke patients treated
with HBO—reversing neurological deficits and electroen-
cephalography abnormalities (69).

Since then, a number of small animal and clinical case re-
ports have demonstrated both efficacious and deleterious
outcomes for HBO and normobaric oxygen (100% O2, 1 ATA,
NBO) in the treatment of AIS. Three clinical pilot studies to
probe the efficacy of HBO to treat acute ischemic stroke re-
ported mixed and potentially harmful outcomes with HBO
treatments that overlapped thrombolytic therapy or were
applied as late as 2 weeks after the onset of stroke (9, 117, 136).
Indeed, preclinical investigation by our laboratory has un-

covered specific application phases during ischemia and fol-
lowing reperfusion in which HBO mediates both protective
and harmful outcomes (Fig. 4) (133). HBO applied during
MCAO-induced ischemia was found to correct the hypoxia
component of stroke injury sufficienty. Mice were selectively
implanted with oxygen-sensitive EPR probe in cortical tissue
of the ischemic penumbra (Fig. 5). This region was identified
as ischemic penumbra as it was spared from stroke-induced
lesion when HBO was applied during ischemia. In addition to
reduction of stroke lesion volume, rodents receiving HBO
during ischemia had significantly attenuated markers of oxi-
dative stress (i.e., 4HNE) in the penumbra region (133). Con-
versely, HBO at the onset of ischemic stroke reperfusion,
when ROS are known to be elevated (78), exacerbated oxi-
dative stress while worsening stroke outcomes. Others have
reported a limited window between 3 h and 6 h acute ischemic
stroke reperfusion in which HBO is beneficial, but harmful at
12 h and beyond (14, 99). Given the distinct and limited
window of HBO therapy, the challenge now comes in trans-
lating these findings to an efficient and effective clinical re-
sponse. Improved diagnostic processes to rapidly and
repeatedly monitor cerebral perfusion of acute ischemic
stroke patients would benefit the clinical prescription of HBO
therapy.

Conclusions

When one considers the unique physiological and bio-
chemical properties of hypermetabolic brain tissue, with a
voracious appetite for oxygen in an environment enriched
with oxidation-prone PUFAs such as arachidonic acid, the
dire physiological consequences of stroke-induced hypoxia is
readily apparent. Preclinical models of stroke have revealed
substantive evidence of elevated oxidants as early as 20
minutes following the onset of stroke (89, 113), and uncon-
trolled oxidative metabolism of AA as early as 1 hour fol-
lowing hemorrhagic and ischemic stroke (45, 148). In the case

FIG. 4. Hyperbaric oxygen
therapy reduces during, ex-
acerbates at reperfusion,
acute ischemic stroke infarct
volume. (A) Representative
T2-weighted MR images were
acquired 48 h after MCAO in
rodents kept in room air dur-
ing ischemia (RA, control), or
receiving hyperbaric oxygen
(100% O2 at 2 ATA) during
ischemia (iHBO) or immedi-
ately following reperfusion
(rHBO). Color look up table
applied—shift from blue to
red denotes edema and stroke-
induced infarct. Three-
dimensional reconstruction of
coronal slices permits visuali-
zation of the brain from dorsal
and oblique positions. HBO

during MCAO significantly decreased stroke-induced lesion volume in iHBO animals, while in rHBO animals is increased
lesion volume. (B) Percent hemispherical lesion volume corrected for edema >5 *p< 0.05 vs RA, {p< 0.05 vs iHBO. (To see
this illustration in color the reader is referred to the web version of this article at www.liebertonline.com=ars).
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of ischemic stroke, a significant increase in reactive oxygen
species and AA metabolism accompany reoxygenation of
brain tissue following reperfusion of stroke-affected tissue
(52). The rapid and overwhelming imbalance of pro-oxidants
over antioxidants in stroke injury leads to a pathological set-
ting that is highly resistant to late phase (>6 h after stroke
onset) therapeutic intervention. Potential neuroprotective
agents administered after the onset of stroke that aim to sal-
vage ischemic tissue, limit infarct size, and resolve stroke-
mediated oxidative stress and inflammation have failed in
clinical studies. Of 114 neuroprotective agents tested during
the 20th century, none were proven successful in clinical trials
(48). As clinicians and scientists recognize the significant
contribution of the hypoxia component of stroke injury to the
limited therapeutic window for intervention, research em-
phasis is shifting from late phase treatment modalities toward
acute phase (<6 hours) and prophylactic treatment regimens.
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Abbreviations Used

4HNE¼ 4-hydroxynonenal
AA¼ arachidonic acid
AIS¼ acute ischemic stroke

BOLD¼ blood oxygenation level-dependent
COX¼ cyclooxygenase
cP450¼ cytochrome P450

cPLA2¼ cytosolic calcium dependent
phospholipase A2

Cys-LTs¼ cysteinyl-leukotrienes
DHA¼docosahexaenoic acid

DHET¼dihydroxyeicosatrienoic acid
EETs¼ epoxyeicosatrienoic acids

EP1¼E-prostanoid 1 receptor
EPR¼ electron paramagnetic resonance
Fe2þ ¼ ferrous iron
Fe3þ ¼ ferric iron

FLAP¼ 5-LOX activating protein
fMRI¼ functional magnetic resonance imaging
HBO¼hyperbaric oxygen

HETE¼hydroxyeicosatetraenoic acid
HIF¼hypoxia-inducible factor
HO¼heme oxygenase

HPETE¼hydroperoxyeicosatetraenoic acid
ICH¼ intracerebral hemorrhage

iHBO¼hyperbaric oxygen during ischemia
iPLA2¼ calcium independent phospholipase A2

LDL¼ low density lipoprotein
LOX¼ lipoxygenase
LPC¼ lysophosphatidylcholine

LTA4 ¼ leukotriene A4

LTB4 ¼ leukotriene B4

LTC4 ¼ leukotriene C4

LTD4 ¼ leukotriene D4

LTE4 ¼ leukotriene E4

MCAO ¼ middle cerebral artery occlusion
MDA ¼ malondialdehyde

NO ¼ nitric oxide
NOS ¼ nitric oxide synthase

O2
- ¼ superoxide radical

ONOO- ¼ peroxynitrite
PAFA ¼ platelet-activating factor acetylhydrolase
PGF2a ¼ prostaglandin F2a
PGG2 ¼ hydroxy endoperoxide prostaglandin G2

PGH2 ¼ prostaglandin H2

PGI2 ¼ prostacyclin I
PLA2 ¼ phospholipase A2

PLC ¼ phospholipase C
PLD ¼ phospholipase D

PUFA ¼ polyunsaturated fatty acid
rHBO ¼ hyperbaric oxygen after reperfusion
ROO- ¼ peroxyl radical

ROOH ¼ lipid hydroperoxide
ROS ¼ reactive oxygen species
SAH ¼ subarachnoid hemorrhage
sHE ¼ soluble epoxide hydrolase

sPLA2 ¼ secreted small molecular weight
phospholipase A2

TASK ¼ TWIK-related acid sensitive channel
TNF-a ¼ tumor necrosis factor alpha
TXA2 ¼ thromboxane A2
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