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Significance: Fast and seamless healing is essential for both deep and chronic
woundstorestoretheskinandprotectthebodyfromharmfulpathogens.Thus,finding
new targets that can both expedite and enhance the repair process without altering
the upstream signaling milieu and causing serious side effects can improve the way
we treat wounds. Since cell migration is key during the different stages of wound
healing, itpresentsan idealprocessand intracellular structuralmachineries to target.
Recent Advances and Critical Issues: The microtubule (MT) cytoskeleton is rising
as an important structural and functional regulator of wound healing. MTs have
been reported to play different roles in the migration of the various cell types
involved in wound healing. Specific microtubule regulatory proteins (MRPs) can be
targeted to alter a section or subtype of the MT cytoskeleton and boost or hinder cell
motility. However, inhibiting intracellular components can be challenging in vivo,
especially using unstable molecules, such as small interfering RNA. Nanoparticles
can be used to protect these unstable molecules and topically deliver them to the
wound. Utilizing this approach, we recently showed that fidgetin-like 2, an un-
characterized MRP, can be targeted to enhance cell migration and wound healing.
Future Directions: To harness the full potential of the current MRP therapeutic
targets, studies should test them with different delivery platforms, dosages, and
skin models. Screening for new MT effectors that boost cell migration in vivo would
also help find new targets for skin repair.
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SCOPE AND SIGNIFICANCE
This review explores the role of mi-

crotubules (MTs), a major component
of the cell’s internal skeleton, in wound
healing, especially during cell migra-
tion. The structure and function of MTs
are spatially and temporally regulated
by microtubule regulatory proteins
(MRPs), which have diverse effects on
cell migration depending on their role
and the cell type being targeted. The
review also presents alternative tech-
niques to identify and examine new
therapeutic wound-healing targets.

TRANSLATIONAL RELEVANCE

We recently characterized the role
of fidgetin-like 2 (FL2), a novel MRP

that can be targeted to enhance cell
migration and healing both in vitro and
in vivo wound-healing models. Identi-
fying other MRPs that are involved in
cell migration and wound healing !can
elucidate how these proteins function
and how they affect cell motility. As a
faster and acute alternative to geneti-
cally modified animal models, RNA in-
terference (RNAi) can be easily used to
deplete these targets directly at the
woundsitesbyutilizingnanotechnology
and other technologies to deliver and
protect small interfering RNA (siRNA).

CLINICAL RELEVANCE

Both chronic and acute wounds
are costly and painful medical issues
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with scarce targeted therapies.1 The ones that are
available use pluripotent growth factors (GFs) that
affect multiple different molecules and cell types
and, thus, might have undesirable and serious side
effects. Since MTs are tightly regulated structures
in the cell and can affect cell migration differently
in various cell types of the skin, MRPs offer an al-
ternative set of therapeutic wound-healing targets
that surpass the use of upstream regulators.

CELL MIGRATION IN WOUND HEALING

Rapid and efficient healing of cutaneous wounds
is essential to protect against infectious agents
while concomitantly properly restoring the struc-
tured layers and functional characteristics of the
skin.1 This extremely intricate and complex pro-
cess relies heavily on the migration of diverse cell
types into the wound (Fig. 1).2,3 Initially, during
the inflammatory stage, neutrophils and macro-
phages are rapidly recruited toward the concoction
of platelets, extracellular matrix proteins, and GFs
that initially plug the wound. While these immune
cells migrate within the wound bed to combat
microorganisms that enter the compromised in-
tegument, they also produce additional GFs and
cytokines, which in turn stimulate the migration of
endothelial cells and fibroblasts that revascularize
and structurally stabilize the wound, respectively.4

Subsequently, epithelial and stem cells migrate in
from the wound edges and nearby hair follicles to
form a protective barrier against the external envi-
ronment.3 These responses in mesenchymal and ep-
ithelial cell motility are part of the proliferative stage
of wound healing.5 Given the central role of cell
migration to wound healing, the development of ap-
proaches to selectively, locally, and reversibly har-
ness this process has immense therapeutic potential.

To date, most efforts to enhance wound healing
via the stimulation of cell migration have focused
on complex extracellular signaling cascades.6,7

Unfortunately, these cascades are extremely
pleiotropic and thus their manipulation can mani-
fest in a multitude of unfortunate and difficult-to-
predict side effects. For example, drugs such as
Becaplermin (Regranex), a human platelet-derived
GF, significantly increase the risk of cancer mor-
tality when used over extended periods of time.8 A
promising alternative to broadly altering the
extracellular signal milieu is to therapeutically
target specific intracellular architectural and me-
chanical elements that control cell movements9—
these include proteins that can be locally and
reversibly manipulated within the wound by
double-stranded RNAi.10,11 This review specifically

examines the evidence supporting the hypothesis
that protein regulators of the MT cytoskeleton—key
components of the cell’s internal skeleton—are ideal
in this regard. Indeed, we have just completed the
first proof-of-principal study showing that a select
MT regulator termed FL2 can be targeted by RNAi
in animal models to effectively promote cutaneous
wound closure and enhance tissue repair.12

WHAT ARE MTS?
MTs form complex and highly dynamic arrays

involved in multiple aspects of cellular develop-
ment and function, such as mitosis, vesicular
trafficking, and cell motility.13–15 They are made
up of a and b tubulin heterodimers that polymerize
and unite together to form a polar polymer with
two distinctly dynamic ends. The plus-end is ‘‘the
working end,’’ where most of the tubulin dimers are
added, polymerizing much more rapidly than the
often capped and protected minus-end.16 This fast
growth at the plus-end is accompanied by depoly-
merization events termed catastrophes, making this
end dynamically unstable with a series of inter-
mingling growth/catastrophe cycles.17,18 MTs are
usually seeded from their minus-ends at MT-
organizing centers (MTOCs),19,20 which are most
often located around the nucleus. The centrosome is
the quintessential MTOC, whereby MT minus-ends
cluster at this organelle while the plus-ends grow out
into the cell periphery, innately polarizing the cell.19

In addition to the inherent dynamic instability of
MTs, there are a number of proteins that tightly
regulate MT organization and dynamics. The ma-
jority of MRPs either stabilize or destabilize the
polymers, and examples of such MRPs include
plus-end–tracking proteins (+TIPs), depolymeriz-
ing enzymes, and severing enzymes (Fig. 2).21–23

Another class of MRPs, the force generating mo-
lecular motors, use MTs as directional railways for
the movement of diverse cellular components as
well as MT polymers (Fig. 2).13,14,24 MT stabilizers,
destabilizers, and motors are emerging as regula-
tory components of the migration machinery of
cells.9,25,26 A summary of key MRPs and their
various functions is presented in Table 1.

MTs are also regulated through post-translational
modifications (PTMs) that affect the organization
and dynamics of the polymers as well as alter their
susceptibility to certain MRPs. PTMs usually oc-
cur on long-lived MTs and include detyrosination,
acetylation, and polyglutamylation.27,28 MT motor
proteins and destabilizers display differential pref-
erences for certain modifications. Mitotic centromere-
associated kinesin (MCAK), for example, mainly
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Figure 2. The MTs and their regulatory proteins. Tubulin dimers nucleate MT polymers at MT-organizing centers, such as the centrosome and the Golgi
apparatus. MTs are robust but have dynamically unstable plus-ends that undergo repeating growth and shrinkage events. There are several MRPs that either
control and/or take advantage of these traits. Depolymerases, severing enzymes, and stathmin destabilize MTs, either by disrupting the polymers or sequestering
free tubulin. Alternatively, MT transport motors use the polymers as tracks to transfer vesicles and proteins, whereas +TIP proteins and MT-actin cross-linkers
form stabilizing complexes at the plus-end. These complexes are known to help MTs target FA. FA, focal adhesion; MRP, microtubule regulatory protein; MT,
microtubule; +TIP, plus-end–tracking protein. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound

Figure 1. Timeline of the appearance of migrating cells involved in wound healing. At the early stages of wound healing, immune cells move in and secrete
growth factors and cytokines, starting the inflammatory response. Fibroblasts and endothelial cells respond by migrating in and forming the granulation tissue that
comprises the provisional matrix and blood vessels. The formation of this tissue is essential for reepithelialization, whereby epithelial cells migrate throughout the
new matrix, resulting in wound closure. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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depolymerizes tyrosinated MTs while spastin prefer-
entially attacks polyglutamylated MTs.29,30 The dif-
ferent selectivities of these proteins and their varied
effects on MT-associated processes can significantly
impact cell migration.31

HOW DO MTS CONTRIBUTE
TO CELL MIGRATION?

Cell migration is a cyclical activity that requires
cells to polarize toward a chemotactic signal,
leading to actin-based lamellipodial protrusions at
the leading edge (i.e., toward the signal) and acto-
myosin contraction in the back.32 Actin polymeri-
zation and the formation of new integrin-based
adhesions at these persistent membrane protru-
sions help cells attain traction, whereas contrac-
tion disrupts them in the back, leading to
membrane retraction and cell movement.33,34

There is growing evidence that MTs exert spa-
tiotemporal control over multiple parameters of
cell movement. Dynamically growing MTs orient
toward and crowd the cell front, leaving behind a
small highly unstable MT population at the cell
rear.35 This asymmetry allows MTs and MRPs to
interact with various components of the cell mi-
gration machinery, affecting the activity of Rho
GTPases, cell polarity, vascular trafficking, and
focal adhesion (FA) turnover.36–38 The Rho family
of GTPases controls actin dynamics and organiza-
tion especially during cell migration. The three key
Rho GTPases, Rho, Rac, and Cdc42, are involved in
polarizing the cell through their different functions
and activity gradients in the cytoplasm.39 Rac is

mainly active at the cell front and induces actin
polymerization while Rho is mainly active at the
cell rear and induces actomyosin contraction. The
activity of both of these proteins has been shown to
be partly regulated by MT dynamics.38 For exam-
ple, stable MTs at the cell front regulate Rho ac-
tivity by sequestering its activator Rho-GEFH1,40

while the instability in the back frees Rho-GEFH1
to activate Rho and in turn influence actomyosin
contraction as well as adhesion turnover.41 The
opposite is true in the case of Rac, which binds free
tubulin.42 It is sequestered in the back portion of
the cell but is free and active in the front, allowing
for actin polymerization and FA.43 In addition, the
MTs and motor proteins of mesenchymal and epi-
thelial cells, such as fibroblasts, are used as a de-
livery system to transport various components of
the migration machinery, such as post-Golgi car-
riers and mRNA of an actin-related protein, to their
target destination.44,45 However, leukocytes, such
as neutrophils, rely mostly on diffusion and not on
the MT cytoskeleton for transport.

Therefore, mesenchymal and epithelial cells and
leukocytes use MTs differently when they migrate.
While MTs are not essential for the chemokinesis,
that is, motility, of leukocytes, they do impact their
chemotactic directionality toward the wound. In
Zebrafish, the MT antipolymerizing agent, nocoda-
zole, diminishes the recruitment of both neutrophils
and macrophages to the wound bed.46,47 Studies
done in human neutrophils show similar effects on
directionality in vitro. In Drosophila melanogaster
embryos, specifically disrupting a subset of MTs in
macrophages hinders their directionality, causing

Table 1. An abbreviated list of various microtubule regulatory proteins and their assorted functions

MT Stabilizers Examples Key Functions

Plus-TIPs EB1,82,83 CLASPs,84,85 P150glue,86 APC,87 CLIP17088 Track growing MT plus-ends; stabilize MT
plus-ends; deliver proteins

MT lattice binding and
cortical proteins

CLIP170,89 APC,90 ACF7,61 CLASPs48 Coordinate the interaction between MTs
and actin; regulate FAs

MT Destabilizers Examples Key Functions

Depolymerases Kif2A, Kif2B, Kif2C (MCAK)91 Depolymerize MTs
Severing enzymes Katanin,92 spastin,93 fidgetin,94 fidgetin-like 212 Remove tubulin from MT lattice;

depolymerize MTs
Antipolymerizer Stathmin95 Sequesters tubulin

MT Motors Examples Key Functions

Plus-end–directed motors Kinesins96: kinesin-1,
kinesin-9, kinesin-5*97

Transport proteins and vesicles toward the cell
periphery; *cross-links and slides antiparallel MTs

Minus-end–directed motors Dynein98 Transports proteins and vesicles toward the cell
interior; shifts MT orientation at the cell cortex

*means function specific to Kinesin-5 only.
ACF7, actin cross-linking factor 7; APC, adenomatous polyposis coli; CLASP, cytoplasmic linker-associated protein; EB1, end binding protein 1; FA, focal

adhesion; MCAK, mitotic centromere-associated kinesin; MT, microtubule; +TIP, plus-end–tracking protein.
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them to reach the wound site later than controls.48

These macrophages fair better than Rac mutants
that generally fail to move at all during develop-
ment.49 Indeed, disrupting MTs in all these systems
makes cells move at the same or even at a faster rate
than controls, although aimlessly.

In contrast, large slow moving cells are too
complex to depend on the simple diffusion of mol-
ecules. They utilize MTs to transport different
components of cell motility.38 Mesenchymal and
epidermal cells require centrosome reorientation
and asymmetrical MT organization to establish
polarity and to properly deliver and traffic mole-
cules and vesicles along its tracks.44,45 Moreover,
unlike leukocytes, epithelial and mesenchymal
cells depend on strong adhesion complexes to sta-
bilize and adjust their grip in the front and the rear
for them to move.38,50 Stable MTs at the front edge
of the cell membrane are utilized as delivery docks
for proteins and vesicles essential for adhesion and
maturation.38,51 For instance, in an ex vivo chick
embryo cataract surgery model, exposure of the
wounded lens epithelium to nocodazol collapses the
lamellipodia of cells at the wound periphery and
impairs healing.52

ROLE OF MRPS IN CELL MIGRATION
Studies have generally used harsh agents that

disrupt the whole MT cytoskeleton, such as noco-
dazol and taxol, to study the role of MTs in cell
migration. The use of these agents results in un-
specific effects on cell behavior that impede the
understanding of the true function of MTs in cell
motility. Case in point, whether cells are subjected
to stabilizing or destabilizing agents, their move-
ment will be hindered.53,54 Studies that pursue
specific MRPs enable us to explore particular
functions of MTs in cell migration to eventually
fine-tune our desired effect on wound repair.

Role of MT destabilizers in cell migration
MT destabilizers can have antagonistic effects

on cell migration. Our laboratory has previously
shown that katanin, an MT severing and depoly-
merizing enzyme located at the cell cortex, is a
negative regulator of cell migration in Drosophila
cells.55 The loss of katanin significantly increases
cell motility but reduces cell directionality. More-
over, others have revealed that the overexpression
of another severing enzyme, spastin, in hemocytes
of Drosophila embryos results in defects in direc-
tional persistence during epithelial wound heal-
ing.48 In human cells, spastin depletion leads to a
drop in the rate of cell movement.56 Likewise,
stathmin, an antipolymerization protein, has re-

cently been shown to support cell migration in
cultured human keratinocytes and to be a positive
regulator of cell migration and proliferation in
murine cutaneous wounds. This is expected since
stathmin is active at the cell rear, the hotspot for
the unstable MTs needed for motility facilitated by
actomyosin contraction.57 In contrast, MCAK, a
member of the MT depolymerizing kinesin 13s, has
an interesting effect on cell migration: both its
overexpression and knockdown impair endothelial
cell movement. MCAK is mainly spatially inhibited
when on the tips of MTs at the cell front, suggesting
that there is a fine balance between its localization
and activity to ensure proper cell motility.58 These
antagonistic functions have been further sup-
ported by an siRNA screen of different MT desta-
bilizers assaying for effects on cell migration in
cultured cells (D.J.S., data not shown), suggesting
that MT dynamics and organization are coordi-
nated by a highly intricate spatiotemporally con-
trolled system.

Role of MT stabilizers in cell migration
MTs are known to interact with (Fig. 3), target,

and dissolve mature adhesions by repeated growth/
catastrophe cycles.38,50 They are also captured and
stabilized by young adhesions supplying tracks for
MT-associated motors to deliver additional com-
ponents. Several MT stabilizers involved in actin
polymerization and FA turnover, such as adeno-
matous polyposis coli (APC), actin cross-linking
factor 7 (ACF7), and cytoplasmic linker-associated
proteins, have been identified.59–62 Besides their
interaction with MT +TIP protein end binding
protein 1 (EB1), they are also targeted to adhesion
neighboring regions at the cell membrane where
they capture and stabilize MTs. Spectraplakin
ACF7, for instance, cross-links MTs to filamentous
actin (F-actin) and directs them to adhesion con-
tacts.61 The individual depletion of these stabiliz-
ers inhibited cell migration in various cell types,
implying that these proteins positively affect mo-
tility by specifically regulating adhesions (Fig. 2).
In vivo studies specifically targeting MT stabilizers
also support the fact that the presence of a stable
MT population at the front is essential for proper
cell migration and wound healing. For instance,
conditional ablation of ACF7 in the mouse epider-
mis hinders reepithelialization by disrupting MT
growth along F-actin and toward FAs, interrupting
their disassembly.63 This further supports the idea
that cells use these stable MTs at the front to dis-
solve adhesions, an essential step in the epithelial/
mesenchymal cell motility cycle. In contrast, al-
though a mutation in MT capping protein, EB1,
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Figure 3. MTs interact with FAs. Fluorescent micrograph of a cultured human cell labeled for MTs in magenta, filamentous actin (F-actin) in green, and FA
marker Paxillin (Pax) in cyan. Arrowheads indicate MTs interacting with FAs. To see this illustration in color, the reader is referred to the web version of this
article at www.liebertpub.com/wound

Figure 4. A simplified schematic representation of a wound-healing screen using topical nanoparticle siRNA treatment. Full-thickness excision wounds are
inflicted on the flank of shaven mice (top). Wounds are treated topically with either control NPsi or a specific MRP NPsi (bottom). Healing progression is
assayed through measuring wound size and histomorphic analysis. NPsi, nanoparticle-encapsulated siRNA; siRNA, small interfering RNA. To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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does compromise MT dynamics, it only delays the
initiation of the contraction stage with no overall
effect on Drosophila embryonic wound healing.64 It
is unclear whether this specific delay is due to a
disruption of cellular protrusions or an impairment
in recruitment of repair components that ulti-
mately form the actomyosin purse string at the
wound edge, which are the two main mechanisms
involved in the contraction phase of embryonic
wound healing.64

Role of MT motors in cell migration
Even though they do not affect MT dynamics and

organization per se, MT-associated motors signifi-
cantly impact cell migration. Motor proteins, such
as dynein and kinesins, ‘‘walk’’ along MTs and use
them as directional highways to transport vesicles,
proteins, and mRNA to the cell periphery.14,44,45 In
addition, the MT minus-end–directed motor, dy-
nein, impacts fibroblast polarity and movement
through tugging on the MT tips at any particular
location on the cortex, forcing the centrosome to
orient and the cell to polarize and move in that
direction.65

UTILIZING ANIMAL MODELS AND RNAI

TECHNOLOGY TO STUDY AND TARGET
MT DYNAMICS

So how do we study and use these various MRPs
for a more advantageous healing? Our knowledge
about the consequences of the loss of various GFs,
signaling molecules, extracellular matrix proteins,
cytoskeletal components, and adhesion molecules
during wound healing has been advanced through
the use of model organisms. Conditionally dis-
rupting those genes has been crucial in determin-
ing their functions and importance in wound
healing.66 Wound repair studies have been espe-
cially prolific in Drosophila and Zebrafish because
of the ease of genetic manipulations and live mi-
croscopic imaging in these models.46,48,49 They
provide straightforward and rapid platforms to
study different structural proteins during repair,
many of which are further investigated in the more
relevant mouse model that offers conditional skin/
epidermal transgenic options.66

Thus, animal studies can be used to investigate
the functions of the various MT stabilizers and
destabilizers that have been reported to regulate
cell migration in cultured cells and to look for new
targets through assaying for differential gene ex-
pression of cytoskeletal components and their ef-
fectors in wounds. Generating conditional knockout
animals can be one way to further help examine the

importance and impact of these molecules, but uti-
lizing a more rapid and transient technique, such as
RNAi technology, to deplete gene expression is
easier to perform.67 In fact, using siRNA to specifi-
cally target and silence genes locally at the wound
site can quickly and specifically assay what these
proteins do and gauge their therapeutic potential.
This approach can even facilitate the use of pigs, as
they are the quintessential model for human cuta-
neous wound repair, but they are not a genetically
malleable model organism.68 However, delivering
siRNA can pose a problem for in vivo studies be-
cause of various issues with the molecule’s size,
charge, and stability.11

Solutions to applying siRNA
on cutaneous wounds

RNAi has been standardly used to target and
deplete mRNA levels and, thus, protein levels in
cultured cells or tissues, which has resulted in
discoveries regarding the functions of a number of
MRPs in cell migration. Since chemically unmodi-
fied siRNA is highly unstable, impermeable to cells,
and can have off-target effects, it is hard to utilize
‘‘naked’’ or unpackaged siRNAs in vivo let alone as
therapeutic oligomers.11 However, recent advances
in siRNA stability and specificity have led to an
increased interest in utilizing RNAi approaches in
clinical medicine. For instance, the use of better
algorithms to predict siRNA specificity has limited
off-target effects, making it an easier alternative to
creating novel and specific small molecule inhibi-
tors.69 Moreover, chemical modifications of siRNA
have resulted in the construction of hyperstable
oligomers, called locked nucleic acid,70 that are
membrane permeable, bypassing the need of a ve-
hicle in a process termed gymnosis.71 In fact, self-
delivering RNAi has been suggested to be ideal for
studies in skin.72 Alternatively, the utilization of
various nanotechnology delivery platforms has
further enhanced the stability and deliverability of
therapeutic siRNA.73–75 For example, different
types of nanoparticles (NPs) can encapsulate and
protect siRNA and acutely and locally deliver it to
cells at the injury site.

The use of nanotechnology for siRNA delivery
Nanotechnology has been effectively utilized as

a delivery platform for many biomolecules in vari-
ous biological processes for either research or
therapeutic purposes.74 Depending on the physio-
chemical properties of these biomolecules, different
types of NPs can package, protect, and deliver them
to their intended target.76 As mentioned above,
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usage of siRNA in animal studies and as a
therapeutic molecule is limited because of
a number of different issues that hinder
its delivery and cellular uptake, such as
their susceptibility to nucleases, hydro-
philicity, and negative charge.77 Several
natural and synthetic molecules have
been used to consolidate or encapsulate
siRNA and allow its uptake into cells.
NPs can comprise sugar/polymers, saline/
gel, a combination of both, or a number
of different polymers/biomolecules mixed
together.78–81 Luckily, wound-healing
therapeutics permit local administration
of nanoparticle-encapsulated siRNA (NPsi) at the
wound site, forgoing the need for NP-targeting
conjugates such as ligands and antibodies. This
advantage can be exploited in animal wound-
healing studies screening various MRPs (Fig. 4).
Most of the nontargeting NPs use cationic mole-
cules that conceal the negative charge of siRNA
and facilitate its entrance into the cell mem-
brane.77 The most efficient cationic molecules are
synthetic polymers that can further protect siRNA
from enzymatic degradation inside the cell. How-
ever, they are nondegradable and cytotoxic and,
hence, unsuitable for pharmacological uses.81 In
addition to nontoxic and efficient cellular uptake,
the solubility of NPs and the kinetics of the release
of encapsulated siRNA are important in protect-
ing the molecule and controlling its action.79 After
testing different mixtures and combination of
polymers with hydrogel-based NPs, the laboratory
of Dr. Joel Friedman found that a simple TMOS
(tetramethyl orthosilicate)-based protocol ob-
tained the most cohesive hydrogel NP-siRNA
mixture. These saline-based hydrogel NPs were
previously shown to be capable of encapsulating
other biomolecules and to gradually release their
load over time.80 Our laboratory was able to suc-
cessfully show that the NPsi crossed the cell
membrane barrier (D.J.S., data not shown) and, as
we will see below, targeted and depleted mRNA
levels in vivo.

FL2 AS NOVEL THERAPEUTIC TARGET
FOR WOUND HEALING: A CASE STUDY

Taking advantage of this nanotechnology de-
livery platform, we were able to successfully use
NP-encapsulated siRNA to locally deplete the ex-
pression of FL2, an uncharacterized MT-severing
enzyme, promoting in vivo wound repair in the
process.12 This discovery stemmed from an siRNA
screen that was used to find the human equivalent

of katanin, the severing enzyme whose depletion
enhances the rate of Drosophila cell migration.55

We assumed that if we could harness the same
activity in human cells, we would have a poten-
tially viable therapeutic target for enhancing
wound healing. Indeed, when FL2 is locally and
acutely depleted from the wounds, wound closure
and repair are significantly enhanced through
expedited reepithelialization and collagen depo-
sitions and remodeling. Therefore, cells not only
enter the wound earlier than controls but also
know how to behave once they arrive, probably
because the signaling milieu has not been chan-
ged. In vitro studies support this concept since
both mammalian keratinocytes and fibroblasts
also exhibit this phenotype: After FL2 knockdown,
these cells migrate faster and in a more productive
manner. This is due to a decrease in MT acetyla-
tion, a rise in MT growth at the cell front, and a
subsequent increase in FA size to an optimal area
for cell movement. Interestingly, like katanin,
FL2 localizes to the frontal cortex of the cell, fur-
ther supporting the idea that MT destabilizers are
also needed at the cell front.12,55 Accordingly,
equilibrium and asymmetry in MT organization/
PTMs are not only present between the front and
the back of the cell but are also more spatially
dynamic and tightly regulated.

FUTURE DIRECTIONS
AND CONCLUDING REMARKS

Since MTs are tightly and spatially regulated
and function differently among cell types, we be-
lieve that targeting MT dynamics in different ways
can impact wound repair early at two consequent
stages: the inflammatory stage and the proliferative
stage. We can target specific MRPs to slightly
hamper the productive movement of leukocytes,
which would help ease certain chronic wounds
correlated with aberrant inflammation. In con-

TAKE-HOME MESSAGES
� Cell migration is an essential process during wound healing.

� The MT cytoskeleton controls key components and processes in cell
migration.

� MRPs tightly regulate MT structure and function, thus, influencing cell
migration in a specific manner.

� MRPs offer viable targets for wound-healing therapies.

� siRNA can be used in translational studies to deplete and assess the
therapeutic potential of specific MRPs in animal wound models.

� Nanotechnology and other siRNA protective and stabilizing technologies
can be utilized to protect and deliver siRNA in vivo.
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trast, we can use MRPs that target particular
subtypes of MTs, bypassing the need for GFs and
cytokines to activate endothelial cells, fibroblasts,
and keratinocytes. These approaches can cause
the skin to heal in a manner analogous to embry-
onic wound healing by synergistically expediting
dermal restoration and reepithelialization, while
concomitantly reducing scarring. Ultimately, we
would like to test whether FL2 and other similar
MRPs are sustainable targets in clinical trials for
both acute and chronic wounds. Meanwhile, we
need to find and standardize the right siRNA
dosages and delivery platforms for new targets
that are able to shift the MT organization and
equilibrium toward better wound healing through
enhancing cell migration.
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Abbreviations and Acronyms

APC ¼ adenomatous polyposis coli
ACF7 ¼ actin cross-linking factor 7

CLASP ¼ cytoplasmic linker-associated protein
EB1 ¼ end binding protein 1

FA ¼ focal adhesions
F-actin ¼ filamentous actin

FL2 ¼ fidgetin-like 2
GEFH1 ¼ guanine nucleotide exchange

factor H1
GF ¼ growth factors

GTP ¼ guanosine-5¢-triphosphate
MRP ¼ microtubule regulatory proteins

MT ¼ microtubule
MTOC ¼ microtubule-organizing center
MCAK ¼ mitotic centromere-associated

kinesin
NP ¼ nanoparticle

NPsi ¼ nanoparticle-encapsulated siRNA
PTM ¼ post-translational modification
RNAi ¼ RNA interference

siRNA ¼ small interfering RNA
+TIP ¼ plus-end–tracking protein
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