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Abstract 

Mitochondria and plastids (collectively called organelles) descended from prokaryotes that 

adopted an intracellular, endosymbiotic lifestyle within early eukarvotes. Comparisons of 

their remnant genomes address a wide variety of biological questions, especially when 

including the genomes of their prokaryotic relatives and the many genes transferred to the 

eukaryotic nucleus during the transitions from endosvmbiont to organelle. The pace of 

producing complete organellar genome sequences now makes it unfeasible to do broad 

comparisons using the primary literature and, even if it were feasible, it is now becoming 

uncommon for journals to accept detailed descriptions of genome-level features. 

Unfortunately no database is currently useful for this task, since they have little 

standardization and are riddled with error. Here I outline what is currently wrong and what 

must be done to make this data useful to the scientific community. 



The several facilities built originally for the Human Genome Project have established 

an enormous capability for high-throughput DNA sequencing. The output of the five largest 

centres now tops 150 billion nucleotides per year, equivalent to 50-fold coverage of the 

human genome. This capacity is now being applied to the complete genome sequencing of 

many other organisms (see http://www.genomesonline.org/), and it appears that we will soon 

have in hand the genome sequences of scores of eukaryotes and many hundreds of 

prokaryotes. 

One of these facilities is the DOE Joint Genome Institute (JGI) in Walnut Creek, 

California. The JGI established the program that I lead in Evolutionary Genomics in 2000 to 

help guide the transition from human genome sequencing to being a comparative genomics 

institution. Of course, then, our program includes comparative analysis of whole genome 

sequences (e.g., Dehal et al. 2002; Dehal and Boore 2005, 2006; http://phigs.org/) but, in 

addition, also sponsors a wide variety of smaller scale projects (see 

http://evogen.jgi.doe.gov/top~level/projects.html), all funded by external grant support from 

the U.S. National Science Foundation (MCB-0242131, EAR-0342392, DEB-0120709, DEB- 

0089624, EF-0228729, EF-0328516, DEB-0416628, DEB-0445047, IOB-0431717, EF- 

0333173, DBI-0421630, OCE-0313708, DBI-0310028), the U.S. National Institutes of 

Health (5ROlDK066288-02, lF32GM067463-Ol), or the U.S. Department of Agriculture 

(VAR-2002-04334; and Phakopsora genome sequencing direct funding). 

Several of these projects focus on sequencing plastid genomes from a wide 

phylogenetic span of organisms. Plastids are descended from cyanobacteria that took up 

residence in an early eukaryote (Gray 1988) and gave rise to three lineages: green algae (from 

which multicellular plants evolved), red algae, and glaucophytes (Moreira, Le Guyader, and 

Philippe 2000). Subsequently several lineages acquired their plastids secondarily by 

engulfing either a green or red algae and co-opting the plastid (Delwiche 1999), in some 



cases even retaining the engulfed nuclear genome as another organelle termed the 

nucleomorph (Cavalier-Smith 2002). During this process, this endosymbiotic organism lost 

many genes, some of which were transferred to form a large component of the nuclear 

genome (Martin et al. 2002; Raven and Allen 2003; Timrnis et al. 2004). 

Plastids all retain genomes and are present in plants and many protist groups. Complete 

sequences are in GenBank for 47 organisms, 35 of which are from Viridiplantae (plants plus 

related algae), and many more have been sequenced and will soon be available. Sizes for 

Viridiplantae plastid genomes range from 116,866 bp (Pinus) to 203,828 bp 

(Chlamydomonas) and numbers of annotated genes from 128 (Calycanthus) to 21 1 

(Chlorella), except for the degenerated plastids of non-photosynthetic plants that can be 

much smaller, with many genes lost (depamphilis and Palmer 1990; Wolfe, Morden, and 

Palmer 1992). For the 12 protists with plastid genome sequences available, the size range is 

from 34,750 bp (the alveolate Eimeria) to 183,883 bp (the rhodophyte Gracilaria) and the 

gene count from 63 (the alveolate Toxoplasma) to 252 (the rhodophyte Porphyra); however, 

there are a few isolated exceptions known where plastid genomes can be very different, as in 

dinoflagellates (Zhang, Green, and Cavalier-Smith 1999). Rates of sequence change are 

generally slow, although genes rearrange commonly in some lineages, mostly by inversions 

(Cosner et al. 1997; Kim and Lee 2005). For many, there is a large inverted repeat that 

separates what are called the "large single-copy region" from the "small single-copy region". 

Introns are occasionally present and post-transcriptional RNA editing can be extensive 

(Kugita et al. 2003). 

Some of our other projects focus on sequencing mitochondria1 genomes, also descended 

from an endosymbiotic prokaryote, in this case an alpha-proteobacteria (Gray 1988; Lang et 

al. 1997). These genomes are similarly much diminished (Boore 1999; Gray et al. 1998), and 

also have contributed a great many genes to the eukaryotic nucleus (Lang, Lavrov, and 



Burger 2004). All but a few groups of eukaryotes - diplomonads, parabasalads, entamoebae, 

and microsporidia - contain mitochondria, and a long-standing hypothesis has been that these 

groups diverged before the endosymbiosis. However, the presence of nuclear genes that 

appear to have been transferred from a bacterium now supports the view that mitochondria 

were secondarily lost in these groups (Roger 1999), or perhaps that the hydrogenosomes 

present are actually homologous to mitochondria (Boore and Fuerstenberg 1999). Why all 

groups retain at least a vestigial genome in their mitochondria (other than in 

hydrogenosomes) is still debated. 

GenBank contains complete sequences for 764 mtDNAs, 679 of which are from 

animals. Even within this latter group the taxonomic sampling is highly biased, with 625 

being either chordates (504), arthropods (101), or mollusks (20), leaving only 54 for all of the 

remaining animal phyla. Based on public statements by various investigators, it appears that 

nearly 1,000 additional complete mtDNA sequences have been determined and are not yet 

published. Further, there are more than 5,000 entries in GenBank of partial mtDNA 

sequences that contain at least three contiguous genes. Sizes of those completely sequenced 

range from 5,957 bp for Plasmodium to 430,597 bp for Nicotiana, although some not yet 

sequenced from plants are known to be several megabases in size, similar to bacterial 

genomes. The number of annotated genes ranges from three for Plasmodium to 183 for 

Nicotiana, although many in the latter case are annotated as "hypothetical". Animals, in 

particular, seem to have conserved an oddly narrow range of variation in both genome size 

and gene content and a generally slow rate of gene rearrangement (Boore 1999). Rate of 

sequence change is generally higher in mtDNAs than in nuclear DNA; the most notable 

exception is plant mtDNAs, which have the lowest rate of evolutionary sequence change of 

any genome studied (Knoop 2004, but see an exception in Cho et al. 2004). 



Much study has been devoted to the molecular biology of mitochondria1 systems 

(Shade1 and Clayton 1997; Clayton 2003). Mitochondria import many proteins from the 

cytoplasm and maintain their own systems for transcription and translation of 

mitochondrially-encoded genes on mito-ribosomes. They initiate protein synthesis with 

formyl-methionine as do their prokaryotic progenitors (Smith and Marker 1968). In some 

cases it is known that genes are transcribed as a polycistron with later enzymatic cleavage of 

the transcript generating gene specific (or in some cases bicistronic) messages (Battey and 

Clayton 1980; Ojala et al. 1980). Several modifications of the genetic code are common, 

including the use of an expanded set of initiation codons (Wolstenholme 1992). In some 

cases in animal mtDNAs, the cleavage of the polycistron generates an mRNA that ends on a 

T or TA such that it depends on post-transcriptional polyadenylation to create a TAA stop 

codon (Ojala et al. 1980); these are called "abbreviated stop codons". Several of these 

features complicate accurate gene annotation. 

Organelle genomes are of interest for a variety of reasons: (1) They form the basis for 

understanding the evolutionary movement of genes among intracellular compartments (i.e., 

mitochondrion, plastid, nucleus) (Nugent and Palmer 1991; Daley et al. 2002; Adams and 

Palmer 2003); (2) Their biochemistry is relatively well understood and includes some of 

life's most important processes such as ATP production and photosynthesis; (3) Their 

sequences are commonly used for phylogenetics (e.g., Leebens-Mack et al. 2005; Parham et 

al. 2006), forensics (e.g., Budowle et al. 2003), population genetics (e.g., Pakendorf and 

Stoneking 2005), and biogeography (e.g., Macey et al. 2005); (4) Their sequences must co- 

evolve (e.g., Dey, Barrientos, and Moraes 2000) with the hundreds of nuclear-encoded 

proteins that are imported and interact, often so intimately as to form multi-subunit enzyme 

complexes; (5) They provide a suite of genome-level characters such as the relative 

arrangement of genes for reconstructing ancient evolutionary relationships (Boore and Brown 



1998); (6) More generally, they are a model system of genome evolution, where one can 

investigate changes in protein and RNA secondary structures, in transcription, translation, 

and replication, in the effect of mutational bias or error correction mechanisms on molecular 

sequence change, in the patterns of gene rearrangement or stability, and many other genomic 

features in a relatively simple system. 

The pace of sequence production has now outstripped the ability of investigators to 

make broad comparisons across all of this dataset of complete organellar genomes. There is 

an urgent need to build a system of databases and query tools that enables comparisons of 

many features for many organisms. Some efforts have been made (Table I), but in general 

they are incomplete and contain many errors. 

NCBI (i.e., GenBank) contains nearly all of the sequenced organellar genomes and the 

corresponding gene annotations, and all other databases are to some extent derivative of these 

records. There are several very useful features available from the organelle genomes page 

(http://www.ncbi.nlm.nih.gov/genomes/static/euk~o.html), including the ability to visualize 

gene arrangements simultaneously for many taxa and to sort entries taxonomically. There are 

links to the original files and to the NCBI taxonomy database. The presentation is based on 

their program called "Refseq" in which they purport to correct and standardize these entries 

and then assign a new accession number to each curated file. However, in practice, even 

these entries are replete with error. Even a casual inspection easily identifies many obvious 

errors, as in these examples: (1) Many files have all of the genes designated on one strand 

even when some subset of genes should be marked as reverse-complement, as for nine genes 

in Refseq NC-006295. Even though gene order has almost no variation among vertebrates 

and these nine genes are on the opposite strand in all other sequenced vertebrate mtDNAs, no 

attention was given to this in the curation for the Refseq program. (2) Some files contain 

obviously extraneous gene designations, such as a second gene for tRNA-pro that is only 



three nucleotides long in Refseq NC-006899 or a tRNA-glu that is 12,712 nucleotides long in 

Refseq NC-005280. (3) Some gene designations are missing even when they can be easily 

found. For example, there is no gene annotation for the small subunit ribosomal RNA (rrnS) 

in Refseq NC-002354, even though it is easily found by a similarity search to be in the 

unannotated region between trnC and cox2 and even though suspicion might have been 

aroused when seeing it missing, since it is universally present in all other animal mtDNAs. 

(4) There are two codon families for each of the amino acids leucine and serine, and so in 

each case there are two different tRNAs. These identities are erroneously switched in some 

records, such as in Refseq NC-002544, where the leucine tRNAs say "codons recognized: 

UUR" and "codons recognized: CUN" in opposite to what is correct, even though a screen of 

the tRNA anticodons makes this error obvious. (5) There is no consistency in gene names, for 

example, as when the Refseq just mentioned, NC-002354, uses gene names ND6 and CYTB, 

whereas others, such as Refseq NC-001637, use nad6 and cob for the same two genes. 

As bad as these obvious errors are, the set of non-curated, partially determined 

sequences is far worse. For example, a large number have the nonsensical gene annotation 

"tRNA-Asx", whereas there would be no such ambiguity between tRNA-Asn and tRNA-Asp 

with the genome sequence in hand. In no case is any attention paid to conventions regarding 

upper vs. lower case lettering for gene names. Oddly, tRNA-encoding genes do not have gene 

designations and are named for their products (e.g., tRNA-cys) instead of using actual gene 

names (e.g., tmC) (except for occasional inconsistencies, such as in Refseq NC-001807, 

wherein some tRNA-encoding genes are properly named whereas others are not, and some 

have gene designations whereas others do not). 

As the literature on organelle genomes has become ever larger, and especially as it 

becomes less common for genomic features to be described in detail in publications, 

researchers must depend on databases for information. Yet if an analysis depended on the 



current set of organelle genome sequences, the results would be grossly in error, with 

conclusions to be drawn for scores or hundreds of gene gains and losses and transpositions 

that have not occurred. This current database is at best of little use, and more troubling, it is 

setting a trap for drawing grossly inaccurate conclusions. This is somewhat ameliorated by 

the lack of standardization of gene designation and naming conventions, because actually 

retrieving the erroneous information for such comparisons using scripted search tools is so 

difficult. 

As can be seen in Table 1, there are a few other efforts. The Organellar Genome 

Retrieval System at McMaster University includes only animal mtDNAs, but allows retrieval 

of several useful types of information. It does not significantly curate the annotations of 

GenBank and its gene order comparison tools identify only those that match exactly to a 

query rather than to a subset of the query gene arrangement. GoBase, the Organellar Genome 

Database in Canada is a sophisticated attempt at curating the errors in other records and 

presenting information to the community and it contains information on RNA structures and 

on RNA editing. A survey of the GenBank errors used as examples above finds that some are 

corrected (as for the rrnS designation in NC-002354 and eight of the nine [all but for the 

tRNA-glu gene] of the reverse complement designations for NC-006295) but others are not 

(as for the three nucleotide tRNA gene in NC-006899 and the misassignment of the two 

leucine tRNAs in NC-002544). Databases at Penn State are offering standardization and 

curation of completely sequenced plastid genomes. Lastly, the Organelle Genomics website 

that we are building at the JGI includes a curated set of all animal mtDNAs that are 

completely sequenced or have at least three contiguous gene sequences and all completely 

sequenced plastid genome sequences. Automated scripts gather information from GenBank 

files that are subject to expert curation and standardization of naming conventions. A tool 

(DOGMA) is provided for semi-automated gene annotation of either organelle (Wyman, 



Jansen, and Boore 2004), although it is not yet useful for non-animal mtDNAs. One can 

browse and search for gene arrangement identities and similarities along with associated 

information. Although scores of errors have been found and corrected in our databases, others 

certainly remain, and the pace of new sequencing is overwhelming our ability to continue 

doing this as a sideline to our main research programs. 

So what should be done? 

1 .  Standardize gene names. Although experienced researchers may be able to recognize 

synonymous gene names, newcomers have difficulty, and scripts used to query databases 

completely fail unless the author properly anticipates and encodes all variations. Any 

standard would be better than the current system, but the best is to use the names of 

bacterial homologs in acknowledgement of the prokaryotic past of organelles, as is 

recommended in Lang et al. (1997), Martin et al. (2002) and Boore, Medina, and 

Rosenberg (2004) and found at GoBase, DOGMA, the Chloroplast Genome Database, 

and the Organelle Genomics site at the JGI (see Table 1 for URLs) (but not used 

consistently in the literature or in other databases). Also, as is conventional, gene names 

should be in lower case (reserving upper case for their products) and tRNA-encoding 

genes should have the form trnX, where X is the one-letter code for the corresponding 

amino acid. 

2. Label tRNAs with anticodon. Homologies are best indicated by appending the anticodon 

in parentheses to the name of tRNA-encoding genes, for example trnL(taa) or trnS(tct). 

Although it is common in publications to use codon recognized, this is one step more 

inferential and could potentially be later shown by experiment to be inaccurate, whereas 

the anticodon is apparent from the genome sequence. (The convention is to use upper 

case for codon, lower case for anticodon.) One must remember, of course, that codons of 



even homologous tRNA genes may vary, as in trnK(ctt) and trnK(ttt), only one of which 

is found for each animal mtDNA, so another possibility is to designate homology with the 

maximally ambiguous anticodon, in this case trnK(ytt). 

3. Standardize the format for designating genes. Database queries are frustrated by having 

inconsistencies such as some files where tRNA-encoding genes are labelled "tRNA" and 

others are labelled "gene". 

4. Establish standards for designating gene boundaries. Gene annotation is complicated by 

the variety of alternative start codons (Wolstenholme 1992), the use of incomplete stop 

codons completed by polyadenylation (Ojala et al. 1980), and post-transcriptional RNA 

editing (Lavrov, Brown, and Boore 2000; Gray 2003; Kugita et al. 2003). Consequently, 

inferring the exact beginning and end of genes from genome sequence alone is sometimes 

ambiguous. Several factors must be considered, including the commonality of these 

variations in related organisms, the degree of similarity of gene predictions with 

homologs, and the possibility of gene overlap. Correction of submitted annotations should 

enforce a standard of inference so that comparisons among these genomes are valid. 

5.  Establish standards for accepting the reality of a gene assignment. Open reading frames 

(ORFs) are found by chance in DNA sequence with a calculable probability. Some 

represent actual genes and others do not. The best evidence from sequence alone is to be 

found in the conservation of an ORF across a phylogenetic distance where sufficient 

sequence change has occurred to expect ORF disruption, indicating that purifying 

selection has been operating. We should establish standards for designating ORFs as 

genes that clearly differentiate the strength of evidence. Names should indicate identified 

homologies. 



Perform systematic error screening. Automated scripts should be built that screen for 

indicators of likely errors of annotation so that these files can be passed to an expert 

curator. For example, one might find organelle genomes that are most similar in sequence 

and identify any gene losses or rearrangements that might indicate a misannotation. 

Include information on RNA editing. Codified in the sequence files should be information 

on known or inferred RNA edit site such that these can be visualized and extractions can 

be made with either edited or unedited sequences. 

Automate sequence alignments andphylogenetic analyses. Automated scripts should be 

used to extract sequences of individual genes, align them, and construct phylogenetic 

analyses, as is being done for limited subsets of taxa at the Chloroplast Genome Database 

and at the Mammalian Mitochondria1 Genomics Database 

(http://www.mammibase.lncc.br/). 

Add more descriptors. Sequence files should commonly include information such as 

collection locality, location of a voucher specimen (ideally with a museum accession 

number), and much more information on the procedures used to determine the sequence, 

since much of this will never be included in any publication. 

10. Fully integrate this information with data from prokaryotic genomes. Plastids and 

mitochondria descended from cyanobacteria and alpha-proteobacteria, respectively, and 

in so doing, contributed a very large number of genes to the eukaryotic nucleus. A 

comprehensive database should be built that reconstructs the grand sweep of this 

evolution, starting with the endosymbioses and leading us to the distribution of genes in 

modem organisms, whether currently resident in the nucleus or in organelles, by 

including the homologous genes in prokaryotes. An aid to this may be in the scripts 

we've written for "PhIGs", or "Phylogenetically Inferred Groups", a system for 



automating accurate gene family construction, phylogenetic analyses, and interpretation 

and presentation of results. 

Little funding has been made available for directly addressing these needs and the tasks 

are now overwhelming the ability of these few investigators to do this as a sideline. With 

focused effort, this could well develop into a set of databases and query tools that not only 

addresses a series of interesting biological questions, but also forms a model for database 

development for larger genomes. 
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Table 1. Databases for organellar genomics 

Name Main features URL 

Whole genome comparisons http://www.ncbi.nlm.nih.gov/g Organelle Genome 

Resources at GenBank 

Organellar Genome 

Retrieval System 

GoBase, Organelle Genome 

Database 

MitoDat, Mendelian 

Inheritance and the 

Mitochondrion 

DOGMA, Dual Organellar 

GenoMe Annotator 

Chloroplast Genome 

Database 

Organelle Genomics at DOE 

Joint Genome Institute 

of both organelles 

Information on animal mt 

gene order and codon usage. 

Database of sequences for 

retrieval. Individual gene 

alignments. 

Curated information on both 

organellar genomes 

Nuclear encoded genes 

producing products that 

function in mitochondria 

Tools for gene annotation of 

mtDNAs and cpDNAs 

Curated annotations for whole 

plastid genome sequences 

Comparisons of a curated set 

of all organelle genome 

sequences both complete and 

partial. Gene order 

comparisons. 

enomes/organelles/organelles.h 

tml 

http://drake.physics.mcmaster. 
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