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Discovering Local Structure in Gene Expression Data:
The Order-Preserving Submatrix Problem
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ABSTRACT

This paper concerns the discovery of patterns in gene expression matrices, in which each
element gives the expression level of a given gene in a given experiment. Most existing
methods for pattern discovery in such matrices are based on clustering genes by comparing
their expression levels in all experiments, or clustering experiments by comparing their
expression levels for all genes. Our work goes beyond such global approaches by looking
for local patterns that manifest themselves when we focus simultaneously on a subset G
of the genes and a subset T of the experiments. Speci� cally, we look for order-preserving
submatrices (OPSMs), in which the expression levels of all genes induce the same linear
ordering of the experiments (we show that the OPSM search problem is NP-hard in the
worst case). Such a pattern might arise, for example, if the experiments in T represent
distinct stages in the progress of a disease or in a cellular process and the expression levels
of all genes in G vary across the stages in the same way. We de� ne a probabilistic model
in which an OPSM is hidden within an otherwise random matrix. Guided by this model,
we develop an ef� cient algorithm for � nding the hidden OPSM in the random matrix. In
data generated according to the model, the algorithm recovers the hidden OPSM with a
very high success rate. Application of the methods to breast cancer data seem to reveal
signi� cant local patterns.
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1. INTRODUCTION

The advent of DNA microarray technologies has revolutionized the experimental study of gene
expression. Thousands of genes are routinely probed in a parallel fashion, and the expression levels

of their transcribed mRNA are reported. By repeating such experiments under different conditions (e.g.,
different patients, different tissues, or variation of the cells’ environment), data from tens to hundreds
of experiments can be gathered. The analysis of the resulting large datasets poses numerous algorithmic
challenges.
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So far, the main approach taken for analyzing gene expression data is clustering (and variants thereof).
Clustering methods have indeed proved successful in many contexts. There is a very large body of literature
on clustering in general and on applying clustering techniques to gene expression data in particular. The
following list of examples represents the viewpoint of the authors and is not comprehensive or representa-
tive. The pioneering paper (Eisen et al., 1998) develops an initial approach to analyzing expression data,
mostly adapting hierarchical clustering techniques for this purpose. These methods are successfully applied
to yeast cell cycle data in Spellman et al. (1998). In Ben-Dor et al. (1999) and Sharan and Shamir (2000),
more direct approaches to clustering are taken, using graph theoretic methods. Studies where combinations
of clustering and classi� cation methods were applied are reported by Golub et al. (1999), Bittner et al.
(2000), and Alizadeh et al. (2000). Surveys of analysis approaches appear in Bassett et al. (1999) and
Gaasterland and Bekiranov (2000).

A major drawback of clustering, however, is the dif� culty in identifying patterns that are common to
only a part of the expression data matrix. Based on general understanding of cellular processes, we expect
subsets of genes to be coregulated and coexpressed under certain experimental conditions, but to behave
almost independently under other conditions. Discovery of such local expression patterns may be the key
to uncovering many genetic pathways that are not apparent otherwise. It is, therefore, highly desirable to
move beyond the clustering paradigm and to develop algorithmic approaches capable of discovering local
patterns in microarray data.

Ben-Dor et al. (2001) and Xing and Karp (2001) discuss approaches to unsupervised identi� cation of
patterns in expression data that distinguish two subclasses of tissues on the basis of a supporting set of
genes. “Supporting” here means that high-success-rate classi� cation can be performed based on this set
of genes. Ben-Dor et al. (2001) describe subclasses that correlate with lymphoma prognosis, based on
analyzing data reported (Alizadeh et al., 2000). The present work extends the class discovery task to a
progression of more than just two stages.

The � rst to consider local patterns (biclusters) in gene expression data sets were Cheng and Church
(2000). Their biclusters are based on uniformity criteria, and they use a greedy algorithm to � nd them.
The plaid model (Lazzeroni and Owen, 2000) is a statistical model for gene expression and other data.
The plaid model describes two-sided clusters where overlap is allowed. Like our model, their two-sided
clusters are not necessarily supported on the entire set of either genes or tissues. The plaid model seeks
submatrices that have almost uniform entries. It also affords the identi� cation of submatrices where, over
a prescribed set of tissues, genes differ in their expression levels by an almost constant vector. Our work
focuses on the uniformity of the relative order of the tissues rather than on the uniformity of the actual
expression levels as in the plaid model. This approach is potentially more robust to the stochastic nature
of the expression levels and to the variation caused by the measurement process.

In this work, we address the identi� cation and statistical assessment of coexpressed patterns for large
sets of genes. For example, in expression data that comes from a population of patients (such as in Bittner
et al. [2000]), it is reasonable to expect that each individual is in a particular stage of the disease. There is
a set of genes that are coexpressed with this progression, and we therefore expect the data to contain a set
of genes and a set of patients such that the genes are identically ordered on this set of patients. The same
situation occurs when considering data from nominally identical exposure to environmental effects, data
from drug treatment, data representing some temporal progression, etc. In many cases, the data contains
more than one such pattern. For example, in cancer data, patients can be staged according to the disease
progression, as well as according to the extent of genetic abnormalities. These two orders on some subset
of tissues are not necessarily correlated. Therefore, even in data where some nominal order is given a
priori, we are seeking related or unrelated hidden orders and the sets of genes that support them. In this
work, we take � rst steps towards automatically performing this task.

2. GOAL OF THE PAPER

The readout of a DNA chip containing n genes consists of n real numbers that represent the expression
level of each gene, either as an absolute or as a relative quantity (with respect to some reference). When the
readouts for m experiments (tissues) are combined, each gene yields a vector of m real numbers. To make
our results independent of the scaling of the data, we consider only the relative ordering of the expression
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Table 1. The Ranks of the Three Genes g1; g2; g3 Induce a Common
Permutation When Restricted to Columns t1; t2; t3; t4; t5

Gene n tissue t1 t2 t3 t4 t5

g1 7 13 19 2 50
g2 19 23 39 6 42
g3 4 6 8 2 10

Induced permutation 2 3 4 1 5

levels for each gene, as opposed to the exact values. This motivates us to consider the permutation induced
on the m numbers by sorting them. Thus, we view the expressed data matrix, D, as an n-by-m matrix,
where each row corresponds to a gene and each column to an experiment. The m entries in each row are
a permutation of the numbers f1; : : : ; mg. The .i; j/ entry is the rank of the readout of gene i in tissue j ,
out of the m readouts of this gene. Typical values for n and m are in the ranges 500 · n · 15,000 and
10 · m · 150.

We are seeking a biological progression that is represented as a “hidden” k-by-s submatrix G £ T

inside the data matrix D. The k genes from G are coexpressed in the s tissues from T . This means that
the expression levels of all the genes in G move up and down together within the set T . Consider, for
example, three genes g1; g2; g3 2 G and the three rows in D corresponding to g1; g2; g3, restricted to the
columns in T D ft1; : : : ; tsg. The s ranks in each row correspond to a partial permutation of f1; : : : ; mg.
By projecting the three partial permutations on the subset f1; : : : ; sg, we get three identical permutations.
For a concrete example, see Table 1, where s D 5 and m ¸ 50.

The computational task we address is the identi� cation of large order-preserving submatrices (OPSMs)
in an n £ m matrix D. A submatrix is order preserving if there is a permutation of its columns under
which the sequence of values in every row is strictly increasing. In the case of expression data, such a
submatrix is determined by a set of genes G and a set of tissues T such that, within the set of tissues T ,
the expression levels of all the genes in G have the same linear ordering.

To motivate our heuristic approach to the OPSM problem, we � rst show that the OPSM problem is
NP-Hard, and thus we cannot hope to solve it ef� ciently in the worst case scenario. The goal of the
present paper is to develop an algorithm for � nding large submatrices having the strict OPSM condition
and to report the performance of the algorithm on both real and simulated data. We begin by formulating a
probabilistic model of the expression data to be analyzed. The data consists of an n £ m matrix D, where
the rows correspond to genes and the columns to tissues (or, more generally, to experimental samples).
Each row of the matrix is a permutation of f1; 2; : : : ; mg, giving the linear ordering of the expression levels
of one gene over all the tissues. We assume that within the matrix D there is a hidden planted submatrix
G £ T determined by a set of rows G, a set of columns T , and a linear ordering of the columns of T .
Within each row of G £ T , the ordering of the entries is consistent with the linear ordering of T . The
parameters of the model are n, m, s, and p, where s is the number of elements in T and p is the probability
that any given row belongs to G. The s-element set T and the linear ordering of T are randomly chosen.
The parameters s and p are not known to the algorithm.

In crafting the algorithm, we are strongly guided by the properties of the probabilistic model. Of course,
we do not expect real expression data to conform in detail to such a simple model, but we expect the
performance of the algorithm to be robust enough to apply to real data, and preliminary indications are
that this is the case.

2.1. Organization

The remainder of this paper is organized as follows. In Section 3, we show that the OPSM problem is
NP-hard. In Section 4, we describe the probabilistic model used in the simulation. This model motivates
our algorithm design and is used in the simulations. In Section 5, our algorithm is presented. Section 6
contains the results of running our algorithm on simulated and real data. Finally, Section 7 contains some
concluding remarks and directions for further research.
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3. OPSM IS NP-COMPLETE

In this section we show that the decision version of OPSM is NP-complete. We consider the following
decision problem:

Instance: a real valued n-by-m matrix, A, and two integers, k and s.

Question: In A, is there an order-preserving submatrix of size k-by-s? That is, is there a set of row indices
K D fr1; : : : ; rkg and a sequence of column indices S D .c1; : : : ; cs/ such that A.ri; cj / < A.ri ; cjC1/ for
all 1 · i · k; 1 · j · s ¡ 1?

Theorem 3.1. OPSM is NP-complete.

Proof. The hardness proof is by reduction from the balanced complete bipartite subgraph problem
that is known to be NP-complete (Garey and Johnson, 1979):

Instance: bipartite graph G D .V ; U; E/, positive integer k.

Question: Are there two disjoint subsets X ½ V ; Y ½ U such that jXj D jY j D k, and for all x 2 X, and
y 2 Y , .x; y/ 2 E?

The reduction: Given a bipartite graph G D .V ; U; E/, de� ne the matrix A D fAij g as follows: if
.vi; uj / 2 E, then Ai;j D j ; otherwise, Ai;j D ¡1. To � nish the reduction, we add an extra column to A

consisting of “¡1” entries. Thus, the size of A is jV j-by-.jU j C 1/.
We now show that G contains a balanced complete bipartite graph of size k if and only if the matrix

A contains an order preserving submatrix of size k-by-.k C 1/. The theorem follows. The � rst direction
follows by construction, if G contains a balanced complete subgraph of size k, then at the same indices we
have an order-preserving submatrix of size k-by-k. Note that we can extend this submatrix by the “¡1”
column to get a k-by-.k C 1/ order-preserving submatrix.

To show the other direction, assume that there exists an OPSM B of size k-by-.k C 1/ in the matrix
A. Note that at most one column of B can contain a “¡1” entry. Otherwise, we contradict the order
preserving property. Thus, A contains a k-by-k order-preserving submatrix that consists of only positive
numbers. This matrix corresponds to a complete bipartite graph in G (at the same indices).

4. THE STOCHASTIC MODEL

We model the gene expression data set by a random data matrix D in which an unknown order-preserving
submatrix G£T has been planted. The process of generating a data matrix with a planted order-preserving
submatrix consists of three stochastic steps. First, we choose at random the indices for the planted rows
and columns. Second, we choose a random ordering for the planted columns. Finally, we assign ranks at
random to the data matrix in a way which is consistent with the planted submatrix. More formally, the
parameters of the stochastic process are n (number of genes), m (number of experiments), s (size of T ),
and p (probability that a row i is in the subset G).

1. To determine the set of genes G, toss iid coins Xi for every i (i D 1; 2; : : : ; n), with probability p of
coming up heads (Xi D 1). The set G is the set of indices i with Xi D 1, and the expected size of
G equals p ¢ n. For the set of experiments, we choose a subset T ½ f1; : : : ; mg of size s uniformly at
random.

2. Pick uniformly at random a linear ordering t1; t2; : : : ; ts of the elements of T .
3. For every row i, assign the m entries in the i-th row of D independently by a random permutation of

f1; : : : ; mg.
4. For each row i with Xi D 1 (i 2 G), rearrange the ranks in the columns corresponding to T : The entry

in column t1, D[i; t1], will be assigned the lowest rank among these s entries, the entry in column t2
will be assigned the second rank among the entries corresponding to T , and so on. The entry D[i; ts]
will be assigned the highest rank among the entries of T .
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At the completion of these three steps, the data matrix D with the planted submatrix G£T is determined.
Note that in addition to the set of planted rows, G, every nonplanted row has a probability of 1

s! to satisfy
the same ordering constraints as the planted rows. Given D and T , those “spuriously planted” rows are
indistinguishable from the “genuinely planted” rows. Thus, the algorithmic goal is, for a given D, to
recover the set of planted columns T and their planted linear order ¼ . The set of rows supporting this
model (“genuinely planted” together with the “spuriously planted”) is then uniquely de� ned.

5. ALGORITHM

5.1. Complete models

Let T ½ f1; : : : ; mg be a set of size s. Let ¼ D .t1; t2; : : : ; ts/ be a linear ordering of T . The pair
.T ; ¼/ is called a complete OPSM model or simply a complete model . We say that a row i 2 f1; : : : ; ng
supports .T ; ¼/ if the s corresponding entries, ordered according to the permutation ¼ , are monotonically
increasing, namely, D[i; t1] < D[i; t2] < ¢ ¢ ¢ < D[i; ts]. Given a complete model .T ; ¼/, we can ef� ciently
� nd out which rows support it (in time O.n ¢ m/). Intuitively, our algorithm aims at � nding a complete
model with the maximum number of rows supporting it. Obviously, there always is a model with s D 2 that
is supported by at least n=2 rows. In general, the absolute number of rows we expect to support a complete
model decreases with the model size s. Therefore, rather than a maximum support, our algorithm actually
aims at � nding a complete model with highest statistically signi� cant support. To assess the signi� cance,
we compute an upper bound on the probability that a random dataset of size n-by-m (i.e., a dataset in
which each row is an independent random permutation of f1; 2; : : : ; mg) will contain a complete model of
size s with k or more rows supporting it.

For a given value of s, the probability that a random row supports a given model .T ; ¼/ is .1=s!/. As
the rows are assumed to be independent, the probability of having at least k rows supporting a model

.T ; ¼/ is the k-tail of the .n; .1=s!// binomial distribution, namely,
Pn

iDk

¡
n
i

¢ ±
1
s!

²i ±
1 ¡ 1

s!

².n¡i/

. As there

are ms D m.m ¡ 1/ ¢ ¢ ¢ .m ¡ s C 1/ ways to choose a complete model of size s, the following expression
U.s; k/ is an upper bound on the probability of having a model of size s with support k or greater:

U.s; k/ D m ¢ ¢ ¢ .m ¡ s C 1/

nX

iDk

³
n

i
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1
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s!

´.n¡i/

:

We use this bound as our estimate of the signi� cance of a given model of size s. To account for the fact
that s is unknown, we could try all values of s (s D 2; 3; : : : ; m), � nd the best complete model for each,
and take the one with the largest statistical signi� cance, namely, the one with the smallest U.¢; ¢/.

5.2. Partial models

To � nd the best model for a given s, an exhaustive algorithm could try all ms D m.m¡1/ ¢ ¢ ¢ .m¡ s C1/

complete models. This approach yields an O.nmsC1/ time algorithm, which is infeasible for s ¸ 4 and
realistic values of the parameters m and n. Instead , our approach is to “grow partial models” iteratively,
with the goal of “converging” to the best complete model. A partial model of order .a; b/ speci� es, in
order, the indices of the a “smallest” elements ht1; : : : ; tai and the indices of the b “largest” elements
hts¡bC1; : : : ; ts i of a complete model .T ; ¼/. A partial model also speci� es the size s of the complete
model.

Let µ D fht1; : : : ; tai; hts¡bC1; : : : ; tsi; sg be a partial model. If a C b < s, then such a µ can be
extended to several complete models. What we do next is to describe a way to evaluate the quality of a
given partial model. Once we do that, our algorithm will be the following: Start by trying all m.m ¡ 1/

partial models of order .1; 1/. Pick the best ` partial models of order .1; 1/, and for each of them try
all m ¡ 2 extensions to partial models of order .2; 1/. Record the best ` of these and for each one try
all m ¡ 3 extensions to partial models of order .2; 2/. Pick the best ` of these and keep going this
way until we reach ` models of order .ds=2e; bs=2c/. These are full models, so we output the best one.
The computational complexity of this approach is O.m2 C ms`/ times the complexity of evaluating the
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quality of a partial model. Our algorithm takes O.n ¢ s/ for this subtask, so its overall complexity is
O.ns.m2 C ms`// D O.nm2s C nms2`/ D O.nm3`/.

In de� ning partial models, we chose to focus on columns at the extremes of the ordering, leaving the
internal columns unspeci� ed. This is done because, in a planted row, the distribution of ranks in an extreme
column is more concentrated than the distribution in an interior column and more distinguishable from
the rank distribution in a nonplanted column. Thus, the extreme columns are more useful in identifying
planted rows.

To further illustrate the power of the extreme columns to distinguish the correct partial model from incor-
rect ones, we de� ne a simple statistic associated with a partial model µ D fht1; : : : ; tai; hts¡bC1; : : : ; tsi; sg
and a row i . This statistic is de� ned as follows:

range.i; µ/ D max.0; D[i; ts¡bC1] ¡ D[i; ta/]:

It is closely related to the gap de� ned in Section 5.3.
For the correct partial model of order .a; b/, the expected value of range.i; µ / is m.sC1¡a¡b/

sC1 for a
planted row and m

.aCbC1/! for a nonplanted row (both values are approximations that are highly accurate
when m is large). Thus, the correct partial model tends to draw a sharp distinction between planted and
nonplanted rows. For a partial model of order .a; b/ which has no columns in common with the correct
partial model of order .a; b/, the expected value of range.i; µ / is m

.aCbC1/! for both planted and nonplanted
rows, and such a model exhibits no distinction between planted and nonplanted rows. Also, the expected
valued of

P
i range.i; µ/ is signi� cantly higher for the correct model than for an incorrect one unless k,

the number of planted rows, is very small. This comparison can be extended to partial models that are
incorrect but have some columns in common with the correct one. The results support the claim that it
should be possible to distinguish the correct partial model from incorrect partial models of the same order.

5.3. Scoring partial models

In this section, we explain in detail the objective function employed to determine the quality of a partial
model, µ . Let us denote by ¿ the underlying (hidden) complete model used to generate the data matrix D,
and let p denote the (unknown) probability for rows to be planted with respect to ¿ . To score the partial
model µ , we assume that ¿ is an extension of µ and estimate p. We use the estimated p as the quality
measure of µ—the more rows seem to be planted with respect to µ , the more con� dent we are in µ .

Let Dµ .i/ denote the vector of ranks in the i-th row within the columns speci� ed by the partial model
µ . Let

Ai D Prob[Dµ .i/jXi D 1];

and let

Bi D Prob[Dµ .i/jXi D 0]:

That is, Ai denotes the probability of observing the ranks Dµ .i/, given that i is a planted row, and Bi

denotes the probability of observing Dµ .i/, given that row i is not planted. We show in Section 5.4 how to
compute Ai and Bi . We are interested in the probability that a given row is planted (by a complete model
extending µ) after observing Dµ .i/. This probability can be computed using Bayes’ Theorem:

Prob[Xi D 1jDµ .i/] D
Aip

Aip C Bi.1 ¡ p/
: (1)

Consider a partial model µ . Assuming that the observed data was generated by some full model extending
µ and by planting rows with probability p (0 < p < 1), we have two ways of evaluating the expected
number of planted rows:

1/ n ¢ p;

2/

nX

iD1

Prob[Dµ .i/jXi D 1]:
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Recalling the formula for Prob[Xi D 1jDµ .i/] (Equation [1]), we get the implicit equation

nX

iD1

Aip

Aip C Bi.1 ¡ p/
D np: (2)

This equation always has p D 0 as a solution, but we are interested in strictly positive solutions. Cancelling
p from both sides, we obtain

Pn
iD1

Ai
Ai pCBi .1¡p/

D n. The left-hand side of this equation is a sum of convex
functions, so it also is convex. In Appendix I, we further show that the equation always has at most a
single solution p, which we � nd numerically. Denote the resulting solution by pµ .

Thus, given a partial model µ assumed to be compatible with the hidden complete model, the expected
number of rows supporting the hidden complete model is npµ . Accordingly, pµ measures the quality of
the partial model µ , and we can rank partial models of order .a; b/ according to this measure.

5.4. Computing Prob[Xi D 1jDµ .i/]

Let µ be a partial model of rank.a; b/, assumed to be correct, µ D fht1; : : : ; tai; hts¡bC1; : : : ; ts i; sg, and
let Dµ .i/ denote the corresponding vector of ranks in the i-th row,

Dµ .i/ D .D[i; t1]; : : : ; D[i; ta]; D[i; ts¡bC1]; : : : ; D[i; ts ]/:

In this section, we show how to compute Prob[Xi D 1jDµ .i/], the probability that the i-th row is planted
given the rank vector. By Equation 1, this reduces to computing Ai and Bi .

In a planted row, per the stochastic model (Section 4), the rank vector Dµ .i/ is in ascending order.
De� ne the gap at row i with respect to µ as gµ

i D D[i; ts¡bC1] ¡ D[i; ta] ¡ 1. That is, gµ
i is the number

of “unused” ranks lying between the a-leftmost planted column and the b-rightmost planted column.
Following the analysis described in Appendix II, we obtain

Ai D Prob[Dµ .i/jXi D 1] D

³
gµ

i

s ¡ .a C b/

´

³
m

s

´ : (3)

In a nonplanted row, all m! possible linear orderings of the m columns are equally likely. Thus, in
particular, if we consider the ranks in a C b speci� c columns, as indicated by µ , the probability of
observing any particular sequence of a C b ranks is equally likely as other sequences. Thus,

Bi D B D 1³
m

.a C b/

´
.a C b/!

:

Combining it all together, we get

Prob[Xi D 1jDµ .i/] D
Aip

Aip C B.1 ¡ p/

D

³
gµ

i

s ¡ .a C b/

´
p

³
m

s

´

³
gµ

i

s ¡ .a C b/

´
p

³
m

s

´ C 1³
m

.a C b/

´
.a C b/!

.1 ¡ p/

:
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Table 2. Probabilities of Identifying the Planted Tissues
(in the Correct Order)a

p n s 3 4 5 7 10

0.025 0.0 0.01 0.21 0.72 0.92
0.05 0.17 0.7 0.94 1.0 1.0
0.075 0.69 0.98 1.0 1.0 1.0
0.1 0.92 1.0 1.0 1.0 1.0

aFor all experiments n D 1,000, m D 50. Probabilities are based on 100 simulations
per entry. Pool size (number of partial models maintained) equals ` D 100.

6. RESULTS

We have implemented our algorithm (in Matlab). We then ran it on simulated as well as real data. In
this section, we report the outcomes of these runs. For simulated data, all our datasets were 1,000-by-50
matrices. The number of planted columns s varied over the � ve values s D 3; 4; 5; 7; 10. The number
of rows in G was determined by � ipping a p biased coin per row, where p varied over the four values
p D 0:025; 0:05; 0:075; 0:1. Table 2 reports the probabilities that the algorithm recovers correctly the set of
planted columns and their correct internal order. (All these probabilities are over � nite spaces, representing
the proportion of certain cases out of the total number of cases.) Each entry of the table is based on one
hundred random datasets. The running time of the algorithm (for one dataset) is 23 seconds (running in
Matlab on a 500 MHz PC).

In cases where the algorithm fails to recover the planted submatrix, we compared the size (number of
rows) of the recovered submatrix to the size of the planted submatrix. For certain values of the parameters,
the algorithm recovered submatrices that are larger than the planted one. Clearly, those cases should not be
considered as failures of the algorithm, but rather as indication that for the simulation parameters applied
there is no hope of recovering the planted submatrix. We report in Table 3 the failure rate of the algorithm,
i.e., cases in which the search returned a smaller (less signi� cant) submatrix than the planted one. The
success rate of the algorithm (proportion of cases where the algorithm produced a submatrix at least as
large as the planted one) is obviously 1 minus the failure rate. It is typically very high and was below
0:5 for only one entry in the parameters’ space. The maximal failure rate (0:57) occurred for s D 5 and
p D 0:025. Our interpretation is that 25-by-5 OPSMs do not occur at random. However, the 25 (expected)
planted rows do not give enough advantage to the correct partial model (1,1); it is not among the top
` D 100 pairs, and therefore the submatrix will not be recovered. Increasing ` would clearly improve
results but will come at a cost of a higher running time. We have kept ` to low values to allow extensive
simulations. Running the same parameter with ` D 500, we get a success rate of 0:7. For real data (that
needs to be analyzed only once), we can afford much longer running time than the 23 seconds our algorithm
currently utilizes on problems of this size, so it would be possible to set a much higher value for `.

In addition to simulated datasets, we also ran our algorithm on a breast tumor dataset (Chen et al., 2001).
This dataset has n D 3,226 genes and m D 22 samples: 8 with brca1 mutations, 8 with brca2 mutations,
and 6 sporadic breast tumors. (Of course, this information is not known to the algorithm). We found several
statistically signi� cant order-preserving submatrices in this dataset. One such OPSM had s D 4 tissues

Table 3. Failure Probabilities: Identifying a Submatrix
Less Signi� cant than the Planted Onea

p n s 3 4 5 7 10

0.025 0.0 0.06 0.57 0.28 0.08
0.05 0.0 0.18 0.06 0.0 0.0
0.075 0.0 0.02 0.0 0.0 0.0
0.1 0.0 0.0 0.0 0.0 0.0

aAll parameters identical to previous table.
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FIG. 1. An order-preserving submatrix identi� ed in the breast cancer data, consisting of 347 genes and 4 tissues.

supported by k D 347 genes. This pattern is statistically signi� cant since we would expect to see only
3,226=4! D 134 genes that support such a pattern at random, and the overabundance of supporting genes
suggests biological relevance. Interestingly, the � rst three tissues are all brca2 mutations, while the last
one (largest expression levels) is sporadic. Figure 1 depicts this result. The region marked by thick lines
indicates the 347-by-4 order-preserving submatrix. The upper bound on the signi� cance of this OPSM is
U.4; 347/ D 8:83 ¢ 10¡51 < 10¡50. We remark that it certainly is not the case that all the genes in one
of these four tissues have higher expression levels than their counterparts in one of the other tissues. This
can be veri� ed from the � gure, where the expression levels are coded using gray levels (darker shade
corresponds to lower expression level). Other highly signi� cant patterns are a 42-by-6 OPSM (� ve brca2
mutations, followed by one brca1 mutation). This OPSM has U.6; 42/ D 8:85 ¢ 10¡19 < 10¡18. Finally,
the algorithm discovered a 7-by-8 OPSM. The upper bound on its signi� cance level, U.8; 7/ D 0:0497, is
not that impressive. But the order imposed on the tissues seems interesting, as we have four brca2 mutants,
followed by three brca1 mutants, followed by one sporadic cancer sample. Note that the upper bound
U.s; k/ is not tight, and overcounting due to the simple union bound is worse as s increases.

7. CONCLUDING REMARKS AND FUTURE DIRECTIONS

Our goal in this work is to � nd submatrices G £ T in which the rows have a signi� cant tendency
to be similarly ordered. It is perhaps too optimistic to expect submatrices to be identically ordered as
the OPSM model requires, � rst because biological patterns are not always neat, and secondly because
of error in the microarray measurements. One way to relax the requirement is to introduce an additional
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corruption probability ® which will in� uence the generation of the probabilistic model. As before, the
model generates a hidden submatrix G £ T with a speci� ed ordering of its columns. But now each entry
of the hidden submatrix is exempted from respecting the ordering with probability ® and, in each row,
only the entries that have not been exempted are permuted according to the prescribed ordering. Another
interesting relaxation is to require that, in each row in the submatrix G £ T , the ordering of the ranks is
compatible with a given partial ordering of the columns. Of particular interest are layered partial orderings,
in which T is partitioned into subsets T1; T2; : : : ; Tr and, for i D 1; 2; : : : ; r ¡ 1, every element of Ti

precedes every element of TiC1. Each of the sets Ti can be interpreted as a set of tissues representing a
stage in a cellular process or in the progression of a disease.

One of the major design goals of our algorithm was speed, especially as we tested it by running numerous
simulations. For real biological data, which takes more time to generate than simulated data, we would
be willing to sacri� ce some speed for higher accuracy and reliability. One way to achieve this is to start
with partial models of order .2; 1/, instead of .1; 1/ as was done here. This increases (by a factor of m)
the number of models that are initially examined, but reduces the chances that the correct partial model
of order .1; 1/ will be mistakenly dismissed at the � rst stage of the algorithm.

Note that the reduction employed in our NP-completeness proof used tractability of OPSMs in close to
square matrices. Thus, it is possible that the problem of � nding hidden OPSMs in a different regime, in
terms of the matrix shape, is not NP-hard. Proving otherwise requires a proof directed at such instances.

We have demonstrated that our algorithm for the OPSM problem works well on data generated according
to the probabilistic model and have given an illustration of its ability to � nd a highly statistically signi� cant
order-preserving submatrix in a biological data set. Of course, the ultimate test of the OPSM approach will
be its usefulness in uncovering hidden local structure in microarray data and � nding functional, clinical or
biochemical interpretations of that structure.

APPENDICES

Appendix I: Uniqueness of solution

We show that the equation

Gµ;D.p/
4D

nX

iD1

Ai

Aip C B.1 ¡ p/
D n

has at most a single solution p. Each summand of Gµ;D.p/ has the form Ai
AipCB.1¡p/ . Since Ai is non-

negative and B is positive, Ai

Ai pCB.1¡p/ is a convex cup function of p in the range 0 · p · 1. Therefore,
Gµ;D.p/ is also a convex cup function of p. If Gµ;D.p/ is either monotonically increasing or decreasing,
then the uniqueness claim is obvious. Otherwise, there could be at most two solutions to the equation,
and Gµ;D.p/ attains a minimum at a point pmin satisfying 0 < pmin < 1. As a convex cup function in
the range 0 · p · 1, the function Gµ;D.p/ attains its maximum value(s) at either end of the interval,
namely either at p D 0 or at p D 1. At p D 1, the term Ai

AipCB.1¡p/ attains the value 1 for every summand
with Ai > 0; thus, Gµ;D.1/ equals the number of terms with Ai > 0. The total number of terms is n,
and therefore Gµ;D.1/ · n. Equality is attained only if no term Ai vanishes. Recalling the de� nition
(Ai D Prob[Xi D 1jDµ .i/]), it is extremely unlikely that all Ai will be nonzero. (Even for a D b D 1,
the probability that n ¡ k random rows will all have g ¸ 1 is 2¡.n¡k/ ¿ 1.) Therefore, Gµ;D.1/ < n

almost surely. This means that Gµ;D.p/ D n can have at most one solution pµ , satisfying 0 · pµ < pmin.
Furthermore, the equation has a solution if and only if Gµ;D.0/ D

Pn
iD1

Ai
B

¸ n:

Appendix II: Partially ordered random permutations

In this appendix, we investigate the stochastic properties of partially ordered permutations. Fix s · m.
Consider the probability measure ¹ induced on Sm by the following process:

1. Uniformly draw ¼ D .¼.1/; ¼.2/ : : : ; ¼.m// 2 Sm.
2. Sort the � rst s entries .¼.1/; ¼.2/ : : : ; ¼.s// of ¼ .
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For any permutation ¼ 2 Sm

¹.¼/ D

8
>>>><

>>>>:

1³
m

s

´
.m ¡ s/!

if ¼.1/ < ¼.2/ < ¢ ¢ ¢ < ¼.s/

0 otherwise.

Let a; b be positive integers such that a C b · s. Consider a vector Ev containing a C b distinct entries, all
integers in the range [1; m], Ev D .v.1/; : : : ; v.a/; v.a C 1/; : : : ; v.a C b//. We say that Ev is consistent if
v.1/ < ¢ ¢ ¢ < v.a/ < v.a C 1/ < ¢ ¢ ¢ < v.a C b/. De� ne

Ev D f¼ 2 Sm j ¼.1/ D v.1/; : : : ; ¼.a/ D v.a/; ¼.s ¡ b C 1/ D v.a C 1/; : : : ; ¼.s/ D v.a C b/g:

We are interested in computing ¹.Ev/ for any Ev. We start with a simple case : Assume that Ev has s

entries (a C b D s). If Ev is not consistent, then Ev contains no permutation ¼ with positive ¹.¼/, so
¹.Ev/ D 0. If Ev is consistent, then it speci� es the � rst s entries of ¼ , but nothing else. So Ev contains
exactly .m ¡ s/! permutations with positive ¹, and ¹.Ev/ D .m¡s/!

.m
s /.m¡s/!

D 1
.m

s /
.

In the general case (a C b · s), inconsistency also implies ¹.Ev/ D 0. For consistent Ev, denote
gap.Ev/ D v.a C 1/ ¡ v.a/ ¡ 1. Then Ev determines the � rst a entries of ¼ and the entries s ¡ b C 1; : : : ; s

of ¼ . In order for ¼ to have a positive measure under ¹, the s ¡ .a C b/ entries ¼.a C 1/; : : : ; ¼.s ¡ b/

may be any integers in the range .v.a/; v.a C 1//, provided these entries are in increasing order. The other
m ¡ s entries of ¼ are under no additional constraints. Thus, Ev contains .m ¡ s/!

¡
gap.v/

s¡.aCb/

¢
permutations

with positive measure ¹, and therefore

¹.Ev/ D

8
>>>>>><

>>>>>>:

³
gap.v/

s ¡ .a C b/

´

³
m

s

´ if Ev is consistent,

0 otherwise.
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