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ABSTRACT

A variety of new procedures have been devised to handle the two-sample comparison (e.g.,
tumor versus normal tissue) of gene expression values as measured with microarrays. Such
new methods are required in part because of some de� ning characteristics of microarray-
based studies: (i) the very large number of genes contributing expression measures which
far exceeds the number of samples (observations) available and (ii) the fact that by virtue of
pathway/network relationships, the gene expression measures tend to be highly correlated.
These concerns are exacerbated in the regression setting, where the objective is to relate
gene expression, simultaneously for multiple genes, to some external outcome or phenotype.
Correspondingly, several methods have been recently proposed for addressing these issues.
We brie� y critique some of these methods prior to a detailed evaluation of gene harvesting.
This reveals that gene harvesting, without additional constraints, can yield artifactual solu-
tions. Results obtained employing such constraints motivate the use of regularized regression
procedures such as the lasso, least angle regression, and support vector machines. Model
selection and solution multiplicity issues are also discussed. The methods are evaluated using
a microarray-based study of cardiomyopathy in transgenic mice.

Key words: cardiomyopathy, gene harvesting, least angle regression, microarray, support vector
machine.

1. INTRODUCTION

Much has been written on the potential use of DNA microarrays in studying the relationship
between phenotype and gene expression pro� les on a whole-genome scale. Early attention was

focused on categoric phenotypes, for example, differing cancer classes (Golub et al., 1999) for which
classi� cation/discrimination methods were employed (Dudoit et al., 2002). More recently, however, there
has been investigation of continuous (Li and Hong, 2001) or survival (Hastie et al., 2001a) phenotypes for
which a regression framework is appropriate. The need to develop regression approaches for the microarray
setting derives principally from the “large p, small n” problem (West et al., 2001) whereby the number (p)
of available and potentially interesting predictors (which we will loosely refer to as genes but are actually
individual probe sets on the array that target full-length cDNAs or ESTs) vastly exceeds the number (n) of
samples. An additional consideration is that, by virtue of pathway and gene network relationships, there
will likely be strong and complex correlations between expression levels of various genes across samples.
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We start by giving a very brief overview of some recent proposals for tackling these issues, highlighting
shortcomings. Subsequently, we describe the dataset that will be used throughout to illustrate methods. This
features microarray-based measures of gene expression and an attendant outcome used in a study of dilated
cardiomyopathy in transgenic mice (Redfern et al., 2000). We then proceed, in Section 2, to a detailed
evaluation of a promising new technique, gene harvesting (Hastie et al., 2001a). Again, some de� ciencies
are identi� ed and improvements examined. These serve to motivate the use of the lasso (Tibshirani, 1996),
least angle regression (Efron et al., 2002), and support vector machines (Vapnik, 1998; Brown et al., 2000),
described in Section 3, as alternate regression tools for microarray studies. All these methods have “tuning
parameters,” the determination of which is crucial for model � t and interpretation. Such model selection
issues are addressed in Section 4. Section 5 provides concluding discussion.

1.1. Some microarray regression approaches

As mentioned, the challenges of pursuing regression analyses with microarray data have spawned several
new methodologic approaches. Here we provide a brief overview of a selection of these.

We note that separate consideration of continuous phenotypes and associated regression procedures
is warranted even though some of the classi� cation methods already employed for categoric (especially
binary) phenotypes are generalizations of these procedures. There are important differences in how the
bias-variance tradeoff operates for classi� cation problems using 0-1 loss as compared with regression
problems using squared error loss; see Hastie et al. (2001b). Nonetheless, some concerns (e.g., the cost of
selection/adaptive procedures) will be common irrespective of loss as noted below.

West et al. (2001) develop a Bayesian regression framework customized to phenotype-gene expression
association studies in the microarray context. They argue for allowing all genes to contribute to regression
models, as opposed to applying pre� ltering methods that yield small gene subsets and thereby mitigate the
“large p, small n” problem. The cited dif� culty with such strategies, as based on univariate (individual
gene) association summaries, is that genes whose expression patterns jointly relate to phenotype may be
eliminated. Accordingly, West et al. (2001) effect analyses by employing a singular value decomposition
(SVD) of the full matrix of expression measurements and pursuing regression on the resultant latent factor
variables. These latent variables (supergenes) provide for dimension reduction and summarize patterns of
covariation among the original genes. Via the SVD, it is possible to map the standard linear regression
formulation on the original genes to an equivalent regression on the latent factors. While the approach
emphasizes careful, informative prior speci� cation with attendant development of new classes of structured
priors, there are some drawbacks to SVD-based regression that cannot be overcome by the Bayesian
framework. These result from the fact that the latent factors are derived independently of the outcome or
phenotype. So, in settings such as the study described below, where there are several different phenotypes
associated with the disease, the same latent factors would be employed for each. Further, as with principal
component regression, variation explained by the leading latent factors may not correlate with phenotypic
variation (Hastie et al., 2001b).

Li and Hong (2001) take a different approach to dimension reduction. In pursuing microarray regression
they employ a Rasch model but with preliminary gene clustering. Since the clustering is performed inde-
pendent of phenotype, the same concerns as above pertain: the same clusters will be used irrespective of
phenotype, and within cluster variation may not correlate with phenotypic variation. Furthermore, results
will be sensitive to the clustering algorithm and distance measure used, as we subsequently illustrate for
the related gene harvesting procedure.

Zhang et al. (2001) use tree-structured (or recursive partitioning) techniques with gene expression data
from a colon cancer study. While the application is classi� cation (tumor versus normal tissue) rather than
regression, important issues regarding degrees of freedom or effective numbers of parameters emerge that
deserve further attention. Tree methods are highly adaptive and greedy: for each node of the tree, the best
cut-point (expression level) of the best covariate (gene) is determined so as to optimize homogeneity of
the resultant daughter nodes. In order to allay attendant concerns with over� tting, Breiman et al. (1984)
employ cross-validation (CV) to pick appropriate tree size. Indeed, CV is used for this purpose in a
multitude of settings. However, on account of the large p (6,500 reduced by � ltering out low expression
genes to 2,000), small n (62) setting, Zhang et al. (2001) use a very limited form of cross validation.
Here, the tree topology is � xed—the number and identity of genes and the sequence in which they are
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used is locked—and all that is subject to cross-validation is the expression level cut-point for a given gene.
A point of reference is provided by the “generalized degrees of freedom” (gdf) construct of Ye (1998)
which accounts for adaptivity. For regression tree procedures, Ye � nds that the cost of a single split in
p D 10 dimensional noise is ¼ 15 degrees of freedom. With the covariate dimensions encountered in
microarray studies, it becomes evident that very few, if any, splits will withstand cross-validation. Indeed,
this is the case for the colon data where, even for the reduced gene set (p D 2000), CV supports only one
split. We expand on these concerns below, utilizing a straightforward way to compute effective numbers
of parameters analogous to gdf (Section 2), as well as commenting on properties of cross-validation in the
microarray setting (Section 4).

In view of these limitations with the above methods, we chose to further explore the new and promising
gene harvesting technique, described in Section 2.

1.2. Cardiomyopathy data

The microarray data are from a transgenic mouse model of dilated cardiomyopathy (Redfern et al.,
2000). The mice overexpress a G protein-coupled receptor, designated Ro1, that is a mutated form of the
human kappa opioid receptor, and that signals through the Gi pathway. Expression of Ro1 is controlled
temporally and spatially through the use of an inducible expression system (Redfern et al., 1999). When
the receptor is overexpressed in the hearts of adult mice, the mice develop a lethal dilated cardiomyopathy
that has many hallmarks of the human disease such as chamber dilation, left ventricular conduction delay,
systolic dysfunction, and � brosis. When expression of the receptor is turned off, the mice recover. The
cardiomyopathy is due to hyperactive signaling of the receptor because treatment of the mice with a receptor
antagonist or with pertussis toxin (which blocks Gi signaling) reverses certain phenotypes associated with
the disease. To determine which changes in gene expression were due to the hyperactive signaling of
Ro1 and led to cardiomyopathy in these mice, Affymetrix Mu6500 arrays were used. Labeled cRNA was
isolated from the ventricles of thirty mice and hybridized one heart per set of arrays as described in
Redfern et al. (2000). The thirty mice were divided into four groups. The control group was comprised
of eight mice that were treated exactly the same as the eight-weeks experimental group except that they
did not have the Ro1 transgene. A group of six transgenic mice expressed Ro1 for two weeks, which is
approximately the amount of time required to reach maximal expression of Ro1 (Redfern et al., 1999).
These mice did not show symptoms of disease. A group of nine transgenic mice expressed Ro1 for eight
weeks and exhibited cardiomyopathy symptoms. The recovery group of seven transgenic mice expressed
Ro1 for eight weeks before expression was turned off for four weeks. In subsequent graphics, we label
these groups as “C,” “2,” “8,” and “R,” respectively.

The Ro1 transgene is based on the human kappa opioid receptor. A probe set that targets the mouse kappa
opioid receptor occurs on the Mu6500 array. This probe set cross-hybridizes to the Ro1 transgene and can be
used as a measure of Ro1 expression, although the contribution of endogenous mouse kappa opioid receptor
to the measured expression level cannot be ruled out. To determine which gene expression changes were
due to the expression of the Ro1 transgene, we want to � nd genes that correlate (positively or negatively)
with the Ro1 expression pro� le as displayed in Fig. 1. Genes that “explain” this expression pro� le are po-
tential candidates to provide additional markers, therapeutic targets, and clues to the mechanism of disease.

Average difference values for gene expression were obtained using the Affymetrix GeneChip 3.1 soft-
ware. As discussed in Section 4, there are numerous preprocessing steps and approaches to the extraction of
expression summaries. The results that follow utilize standardized average differences (mean 0, variance 1)
since such standardization is imposed for some of the methods considered subsequently (lasso, least angle
regression).

2. GENE HARVESTING

Gene harvesting was developed by Hastie et al. (2001a) to explicitly tackle the challenges posed by
regression in the microrarray context. The central strategy is to initially cluster genes via hierarchical
clustering and then to consider the average expression pro� les from all of the clusters in the resulting
dendrogram as potential (an additional p ¡ 1) covariates for the regression modeling. This modeling is
effected by use of a forward stepwise algorithm with a prescribed number of terms. The number of terms
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FIG. 1. Ro1 expression for the 30 mice. Symbols designate control (“C”), two week (“2”), eight week (“8”), and
recovery (“R”) groups. Horizontal lines are group expression averages.

actually retained is determined by cross-validation; this number constitutes the most important “tuning
parameter” of the procedure. Provision is also made for between-gene interactions and nonlinear effects.

The authors claim two advantages for this approach. First, because of the familiarity of hierarchical
clustering (e.g., Eisen et al. 1998) in unsupervised analyses of microarray expression data, the usage
of clusters as covariates will be convenient for interpretation. Second, by using clusters as covariates,
selection of correlated sets of genes is favored, which in turn potentially reduces over� tting. Implicit in
this motivation is that regression procedures that yield lists of individual genes are de� cient as there will
“always be a story” linking an isolated gene to outcome. Ostensibly, credence is gained by � nding groups
of functionally related genes that are linked to outcome. However, as we demonstrate by way of application
to the cardiomyopathy data, not only are these advantages not always realized, but harvesting can also give
rise to artifactual results. We note that the abovementioned concerns regarding the use of derived (here
cluster average) summaries not capturing outcome variation, and/or being � xed across differing outcomes,
are mitigated by retention of the original genes as covariates in addition to the derived cluster average
covariates.

Before presenting results, we give a brief overview of the gene harvesting algorithm. For the cardiomy-
opathy study, available data consists of the n £ p matrix of gene expression values X D [xij ] where xij is
the expression level of the j th gene (j D 1; : : : ; p D 6,319) for the ith mouse (i D 1; : : : ; n D 30). Each
mouse also provides an outcome (Ro1) measure yi . A hierarchical clustering algorithm is applied to the
expression matrix and, for each of the resulting clusters ck; k D 1; : : : ; 2p ¡ 1, the average expression pro-
� le Nxck

D . Nx1;ck
; Nx2;ck

; : : : ; Nxn;ck
/ where Nxi;ck

D 1=jck j
P

j2ck
xij is obtained. Note that we have included

the individual genes (the tips/leaves of the dendrogram) as clusters (of size 1) in this formulation—their
average expression pro� le coinciding with the individual gene pro� le.

This set of 2p ¡ 1 average expression pro� les constitutes the covariate set ( C ). A forward stepwise
regression is performed as follows. Initially, the only term in the model (M) is the constant function 1;
i.e., an intercept term. At each subsequent stage, candidates for inclusion consist of all products between a
term in M and a term in C . The term chosen for inclusion is that which most improves the � t as measured

http://www.liebertonline.com/action/showImage?doi=10.1089%2F106652703322756177&iName=master.img-000.png&w=420&h=289
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here by the residual sum of squares (RSS, see below). The process continues until some prespeci� ed
maximum number of terms, m, have been added to the model. The number of terms retained is subsequently
determined by cross-validation. Hastie et al. (2001a) restrict terms to second-order interaction terms; i.e.,
product terms are limited to pairwise products. This is partly motivated by interpretational considerations
and borrows from the multivariate additive regression spline (MARS) methodology of Friedman (1991).

The gene harvesting model for continuous response is then

Oyi D ¯0 ¢ 1 C
X

k2S1

¯k Nxi;ck
C

X

k;k02S2

¯k;k0 Nxi;ck
Nxi;ck0 : (1)

Here, S1 constitutes the set of clusters that enter singly while S2 is the set of clusters that enter as product
terms. So, m D jS1j C jS2j. The coef� cients ¯k; ¯k;k0 are obtained by minimizing the residual sum of
squares,

RSS.¯k; ¯k;k0/ D
nX

iD1

.yi ¡ Oyi/
2: (2)

Alternative loss functions to RSS are used for more general outcome types; for example, partial log-
likelihood is used in conjunction with censored survival time outcomes. Further details on general outcome
types and other aspects and applications of the gene harvesting algorithm are provided by Hastie et al.
(2001a). Connections with the forward selection scheme of Keleş et al. (2002) are indicated in Section 4.

Table 1 provides results of applying gene harvesting to the cardiomyopathy data with m D 6. In
Table 1(a), the hierarchical clustering was performed using average linkage (as used by Eisen et al. [1998]
and often termed UPGMA), while in Table 1(b) single linkage was used. In both instances, the distance
metric was Euclidean distance. We note that for single linkage, hierarchical clustering is invariant under
monotone changes of the distance metric so that, for example, identical results would be obtained using
correlation distance. While this property does not hold for average linkage, results using correlation distance
were similar.

Immediately striking is the dramatic differences in gene harvesting results according to type of hier-
archical clustering employed. This is compounded by further examination of the � rst, large (687 gene)

Table 1. Ro1 Gene Harvesting Resultsa

Step Node Parent Score Size

1 6295 0 22.40 687
2 1380 6295 19.67 6
3 663 0 15.62 2
4 3374 663 10.69 3
5 1702 0 12.92 2
6 6268 663 11.27 83

(A)

Step Node Parent Score Size

1 g3655 0 21.97 1
2 2050 g3655 20.62 3
3 900 g3655 16.91 1
4 g1324 g3655 16.01 1
5 g1105 g3655 24.34 1
6 g230 g3655 12.44 1

(B)

a(A) Average linkage. (B) Single linkage.
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cluster selected under average linkage. None of the genes contained in this cluster are chosen under single
linkage. Single linkage tends to select much smaller clusters, primarily singletons. Indeed, average link-
age has arguably been too successful in selecting large clusters—it is problematic to characterize or infer
relationships amongst a group of 687 genes! We note that these results were obtained without biasing the
procedure to select large clusters as is advocated.

However, more consequential problems emerge when we pursue model selection. Figure 2 displays cross-
validated and training residual variances for the average linkage results. Not only do the cross-validation
results indicate that the best harvesting model (solid curve) only includes an intercept term (i.e., m D 0),
but that this is far superior to all other models. Now, while it is the case that cross-validation is highly
variable in this setting (as re� ected by standard errors which are not shown for clarity; see Section 4), this
is nonetheless a disturbing result. The face value interpretation is that none of the original 6,319 genes or
the 6,318 gene clusters is predictive of Ro1. This conclusion is at odds with previous experiments, and
analysis that shows that the cardiomyopathy phenotype is due to expression of the Ro1 transgene and that
the expression of known markers of cardiomyopathy are up-regulated in the sick mice (Redfern et al.,
2000). We note that, in general, analogous null results may well be indicative of lack of signal in the data.

Figure 2 also displays cross-validated residual variances when the gene harvesting procedure is restricted
to employing only the original genes (dotted curve for which corresponding standard errors are given). Now
the results do withstand cross-validation to the extent that one term is retained under a “one standard error
rule”; i.e., the model with one term has minimum residual variance and no smaller, competing model has
residual variance within one standard error (as computed under the one term model) of this minimum value;
see Breiman et al. (1984) for the basis of such rules. More importantly, cross-validated residual variances
under the restricted approach are appreciably smaller than under the full gene harvesting procedure. We
next examine the reasons for this poor performance of gene harvesting.

FIG. 2. Cross-validated residual variances for gene harvesting as a function of number of retained terms (m D 0
designates solely an intercept term): — full gene harvesting with clusters; ¢ ¢ ¢ reduced gene harvesting with singletons;
--- resubstition or training. The vertical bars are standard errors for the reduced harvesting approach.

http://www.liebertonline.com/action/showImage?doi=10.1089%2F106652703322756177&iName=master.img-001.png&w=420&h=310
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A putative reason for the poorer performance of full gene harvesting is the expanded search space used
in the forward stepwise selection that results from the addition of the 6,318 gene cluster average pro� les
as covariates. One way of assessing this is through assessments of model complexity. In Section 1.1, we
referred to generalized degrees of freedom (Ye, 1998) that provide one such assessment. Here, we employ
a related measure, effective number of parameters (enp, which we will also refer to as degrees of freedom)
as derived from the covariance in� ation criterion (CIC) (Tibshirani and Knight, 1999). Both measures
are designed to capture the cost of adaptive (here the forward stepwise selection) methods. They differ
primarily in whether simulation (Ye, 1998) or permutation (Tibshirani and Knight, 1999) is employed.

These costs are considerable. For the full gene harvesting procedure, the effective number of parameters
for the inclusion of 1 through 5 terms are approximately 14, 18, 22, 25, and 27, respectively. It is imme-
diately apparent that, for a sample size of n D 30, at most one or two terms is reasonable. Interestingly,
similar enp values are obtained when we restrict ourselves to using only single rather than product terms,
or using only individual genes rather than genes and clusters. These � ndings can be understood in light of
Fig. 3, which concentrates on enp for selecting just one term. What is varied is the number of genes used
in the harvesting approach. Filtering of genes was done in two ways, both blind to association with Ro1
outcome: genes were retained at random or genes were retained in order of their variation—the smaller
gene sets contain the most variable genes. Here, results were invariant to retention scheme since we are
applying harvesting with standardized expression values. What is notable from Fig. 3 is the slow rate of
change in enp for large changes in proportion of genes retained above 30%. In reducing the complete
data set (p D 6,319) to a 50% sample (p D 3,160), we gain only about 0.5 degrees of freedom, while
reduction to a 30% sample (p D 1,896) buys about 2 degrees of freedom. It is this slow rate of change that
accounts for the comparability of enp values using full harvesting or only individual genes for the entire
dataset. The rate of change is rapid for small (< 10%) proportions of genes retained, but the costs are still
considerable relative to sample size. For example, selection of one term using a 1% sample (p D 63) costs
6.4 degrees of freedom.

FIG. 3. Effective number of parameters for the � rst term of gene harvesting as a function of the proportion of genes
retained.

http://www.liebertonline.com/action/showImage?doi=10.1089%2F106652703322756177&iName=master.img-002.png&w=420&h=310
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While such determination of enp helps calibrate costs of adaptive procedures, and so can inform model
size in the n À p setting, the fact that enp values were similar for harvesting using clusters and singleton
genes, whereas cross-validation displays substantial differences (Fig. 2) prompts further investigation.
Additional scrutiny of the � rst term selected in the full harvesting procedure—the 687 gene cluster—
is revealing. The heat map for this cluster is presented in Fig. 4. A seemingly coherent collection of
expression pro� les, characterized by reduced values for the mice in the eight-week group, constitutes the
cluster. However, if we examine the actual correlations between the 687 genes in the cluster and the average
expression pro� le for the cluster, the coherence is not so impressive. Figure 5a is a histogram of these
687 correlations. We note that 28 (4%) of the correlations are negative, and more than 50% are less than
0.5. An alternate view of cluster coherence can be obtained by examining the scores (essentially squared
t-statistics) of the 687 genes when they are individually regressed against Ro1. The results are presented
in Fig. 5b. The number of genes displaying no association with Ro1 is striking: 33% have t-statistics < 1
and approximately 75% have t-statistics < 2. Even the maximal individual squared t-statistic (13.94) is far
removed from the score for the average expression pro� le (22.4).

What has occurred is the following. The hierarchical clustering procedure has yielded a sizable cluster
whose average expression pro� le happens to be strongly associated with Ro1. This occurs despite the bulk of
the cluster members (genes) exhibiting little or no association with Ro1. In view of this artifact, it is not sur-
prising that no terms are selectedon cross-validatingand that the cross-validatedresidualvariancesare so large.

It is possible to constrain the harvesting procedure to mitigate against this behavior. In particular, by
allowing only clusters meeting coherence criteria to be selected, these artifacts are avoided. As illustrated
above, coherence can be captured by individual member genes being suf� ciently correlated with the
cluster average pro� le and/or the individual gene squared t-statistics being suf� ciently close to the squared
t-statistic for the cluster average pro� le.

Applying such a constrained harvesting algorithm with a correlation threshold of 0.3 (i.e., only clusters
for which each individual member gene had a correlation of ¸ 0:3 with the cluster average pro� le were
eligible for selection) produced the following interesting results. The term chosen � rst is an eight-gene
cluster, itemized in Table 2 and depicted via a heat map in Fig. 6. This was the only term to be retained
under cross-validation. The striking feature of the heat map is the appreciable down-regulation (red) of
all genes for the nine mice in the eight week (induced cardiomyopathy) group when Ro1 expression is
elevated. The constituent genes admit the following interpretation.

Lipoprotein lipase, ATP synthase gamma chain, and ATP synthase coupling factor 6 encode proteins
involved in energy production for the cell. Lipoprotein lipase is the enzyme that cleaves fatty acids from
triacylglycerol so that they can be further utilized in the fatty acid degradation pathway, a major source of
energy in the cardiomyocyte. ATP synthase gamma chain and ATP synthase coupling factor 6 are subunits
of the ATP synthase complex of the electron transport chain in the mitochondria. Myoglobin stores and
delivers oxygen in muscle which is needed to generate ATP in the mitochondria. The down-regulation of
delta-aminolevulinatedehydratase is potentially related to the down-regulation of the ATP synthase complex
genes above because it catalyzes the second step in the biosynthesis of heme, a cofactor required by several
proteins in the electron transport chain. Elongation factor 1 alpha 2 (Eef1a2) is a translation factor required
for protein synthesis. The down-regulation of Eef1a2 is also consistent with the down-regulation of genes
involved in energy production since protein synthesis is one of the most energy intensive processes in the
cell. That is, if energy production is decreased, down-regulating protein synthesis is a typical and effective
cell response to conserve energy. The functions of Skd3 and translationally controlled tumor protein are
unknown. In summary, several of the genes in this cluster are consistent with the down-regulation of energy
production during the induced cardiomyopathy.

By construction, constrained harvesting will alleviate the problem of artifacts associated with the original
gene harvesting approach. But the question of how to specify correlation and/or score-based constraints
remains open. We prefer to rely or prior prescription since devising appropriate estimation criteria for these
parameters appears problematic. This concern is made moot by the following observation: the tendency
under constrained harvesting is to select singleton genes. This was evident for a wide range of constraint
thresholds, providing the correlation between the cluster average expression pro� le and individual genes in
the cluster was 0.5. If, under such (appropriate) restriction, harvesting is going to be reduced to selecting
singleton genes, then it becomes pertinent to consider alternate gene selection schemes in view of the
recognized limitations of forward selection strategies. Accordingly, we next examine the utility of lasso,
least angle regression, and support vector machines for regression in microarray gene expression settings.
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FIG. 5. Correlations (a) and scores (b) for the 687 genes constituting the � rst term (node 6295) selected by gene
harvesting.

Table 2. Constrained Harvesting Selected Cluster

Mu6500 probe set GenBank Symbol Description

Msa.909.0 M60847 Lpl Lipoprotein lipase
Msa.33808.0 AA114811 — EST homologous to ATP synthase gamma chain
Msa.2424.0 X13752 Alad Delta-aminolevulinate dehydratase
Msa.2412.0 X06407 Tpt1 Translationally-controlled tumor protein 1
Msa.22491.0 AA036584 — EST homologous to ATP synthase coupling factor 6
Msa.2037.0 X04405 Mb Myoglobin
Msa.1923.0 L26479 Eef1a2 Eukaryotic translation elongation factor 1 alpha 2
Msa.1435.0 U09874 Skd3 Suppressor of K+ transport defect 3
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3. REGULARIZED REGRESSION APPROACHES

As illustrated in the context of gene harvesting, the combination of p À n and adaptive regression
procedures does not mix well. While the � exibility of adaptive procedures is necessary to enable gene
selection, additional constraints are needed to overcome costs/variability inherent in such approaches. Here
we consider some regression methods that impose constraints by way of penalties/regularization. Indeed,
even for classi� cation approaches to microarray data, such regularization is often applied, albeit implicitly
(e.g., Dudoit et al., 2002).

3.1. Lasso

The lasso (least absolute shrinkage and selector operator) was proposed by Tibshirani (1996). The
lasso combines the good features of ridge regression and subset regression procedures, which in turn
were developed to overcome de� ciencies with ordinary (OLS) least squares regression estimates. There
are two primary shortcomings ascribed to OLS. Firstly, prediction accuracy is affected by the fact that
OLS estimates, while enjoying low bias, frequently have large variance. Prediction accuracy can often be
improved by shrinking or zeroing select coef� cients. Secondly, interpretation is complicated by retention
of large numbers of covariates. It is generally preferable to isolate a smaller subset of covariates that have
the strongest effects. However, it is important in the microarray context to remain mindful of the fact that
there will likely be many alternative such subsets having comparable prediction accuracies in view of the
anticipated between-gene correlations.

Ridge regression (Hoerl and Kennard, 1970) achieves improved prediction accuracy via shrinkage. For
simplicity, consider centered data (so we can ignore the intercept term) and the usual linear predictor
¹ D X¯ D .

Pp
jD1 ¯j xij /. Instead of minimizing just the usual residual sum of squares as per OLS,

RSS.¯/ D jjy ¡ ¹jj2 D
Pn

iD1.yi ¡
Pp

jD1 ¯j xij /2, ridge regression achieves coef� cient shrinkage by
constraining their size:

min
¯

nX

iD1

.yi ¡
pX

jD1

¯j xij /2 subject to
pX

jD1

¯2
j · t : (3)

An equivalent formulation is afforded by L2 penalized regression:

min
¯

nX

iD1

.yi ¡
pX

jD1

¯j xij /2 C ¸

pX

jD1

¯2
j ; (4)

there being a one-to-one correspondence between t in (3) and ¸ in (4). We note here that ridge regression
coincides with one version of support vector machine regression, considered in section 3.3.

The dif� culty, acute in the array setting, with ridge regression is that all coef� cients are retained.
Tibshirani (1996) demonstrates how replacing the L2 penalty in (4) with an L1 penalty

min
¯

nX

iD1

.yi ¡
pX

jD1

¯j xij /2 subject to
pX

jD1

j¯j j · t (5)

results in some of the coef� cients being exactly zero. The resultant estimates de� ne the lasso estimates.
Again, there is an equivalent penalized version:

min
¯

nX

iD1

.yi ¡
pX

jD1

¯j xij /2 C ¸

pX

jD1

j¯j j: (6)

By varying t in (5), we obtain a continuous form of subset regression. This overcomes the inherent
variability in subset regression due to its discreteness. Such discreteness arises since covariates are either
retained or discarded. It is recommended that t be determined by cross-validation. Thus, the lasso seeks to
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simultaneously capture the good properties of ridge and subset regression. Hastie et al. (2001b) contains
extensive discussion.

For the microarray setting, implementation issues are forefront. The original algorithm proposed by
Tibshirani (1996) does not handle the p > n case and is consequently inapplicable. This limitation, along
with ef� ciency concerns, motivated Osborne et al. (2000) to regard the lasso as a convex programming
problem and to devise an algorithm based on homotopy methods. While the objectives of handling p > n

and improving ef� ciency were realized, the algorithm, at least as implemented in Splus (available from
lib.stat.cmu.edu/S/lasso2), remains problematic for microarray studies. When applied to the Ro1, car-
diomyopathy dataset run times on a Sun Microsystems E420R server with four 450MHz UltraSPARC-II
processors and 4GB memory, user time (as provided by unix.time()) for a sequence of 30 bounds (t values)
was 47 minutes. However, getting to this run required considerable trial and error to determine an appropri-
ate range of bounds since speci� cation of bounds that are too large produces errors. Furthermore, attempts
to pursue model selection (picking a speci� c t or ¸) based on cross-validation failed due to insuf� cient
memory.

3.2. Least angle regression

The development of least angle regression (LARS) (Efron et al., 2002), which can readily be specialized
to provide all lasso solutions in a highly ef� cient fashion, represents a major breakthrough. LARS is a
less greedy version of standard forward selection schemes. The simple yet elegant manner in which LARS
can be adapted to yield lasso estimates as well as detailed description of properties of procedures, degrees
of freedom, and attendant algorithms are provided by Efron et al. (2002). Code can be obtained from
www-stat.stanford.edu/̃ hastie/Papers.

Results from applying LARS and the LARS version of the lasso to the Ro1 study are described below.
Since these coincide through 18 steps, presentation is for LARS only. A plot of regression coef� cient
pro� les is given in Fig. 7. Using the built-in cross-validation function and applying a “1-SE” rule suggests
that � ve terms be retained. The corresponding genes are given in Table 3.

Each of these genes must be interpreted individually because they do not constitute a “cluster” as per
clusters extracted by gene harvesting. Each of these genes is up-regulated in response to Ro1 induced
cardiomyopathy. Ribophorin II is a subunit of the oligosaccharyltransferase complex in the endoplasmic
reticulum that glycosylates proteins in the secretory pathway. Heat shock 70 kD protein 8 is a chaperone
involved in protein folding in the cytoplasm. CD98 heavy chain is part of a heterodimer that makes up
the L-type amino acid transporter in the plasma membrane. The Lon protease homolog is a mitochondrial
enzyme that may be important for the folding and degradation of proteins in the mitochondrion. None of
these four genes has been previously implicated in cardiomyopathy. However, the � nal gene in this list,
� bronectin 1, is a structural component of the extracellular matrix that is part of the � brotic response to
cardiomyopathy in humans and the Ro1-expressing mice (Redfern et al., 2000).

According to the prescription given in Efron et al. (2002), this costs roughly � ve degrees of freedom:
degrees of freedom ¼ number of terms (steps). However, care is needed in making comparisons with
harvesting degrees of freedom for two reasons. First, both the empiric and theoretic setting for the LARS
prescription had n > p. Second, the CIC determination requires an (external) estimate of O¾ 2. So we applied
CIC to LARS with the same O¾ 2—and the prescription continued to hold.

Finally, we note the dramatic computational gains over the Osborne et al. (2000) implementation of
the lasso. The user time for the same number of bounds (30) was 0.5 minutes for LARS and 0.7 minutes
for the LARS implementation of the lasso. These represent appreciable improvements on the above-
mentioned 47 minutes. Additionally, there were no memory issues in performing cross-validation based
model selection.

3.3. Support vector machines

Support vector machines (SVMs) have been used for classi� cation purposes in the microarray setting
(Brown et al., 2000). Regression modalities for SVMs are described in Cristianini and Shawe-Taylor (2000)
and brie� y overviewed here.

Given a set of basis functions fÁmgM
1 (obtained via a kernel as described below) and a corresponding

regression function (linear predictor) f .xi/ D
PM

mD1 ¯mÁm.xi/ C ¯0 where xi 2 Rp is the expression
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FIG. 7. Coef� cient pro� les for the 30 bounds (29 steps) of the LARS algorithm. Pro� les of known genes for the
5-term model as chosen by cross-validation (see Table 3) are identi� ed.

Table 3. LARS/Lasso Selected Genes

Mu6500 probe set GenBank Symbol Description

Msa.2877.0 D31717 Rpn2 Ribophorin II
Msa.778.0_i U73744 Hspa8 Heat shock 70kD protein 8
Msa.2134.0 U25708 — CD98 heavy chain
Msa.26025.0 AA061310 — EST homologous to lon protease homolog, mitochondrial
Msa.657.0 M18194 Fn1 Fibronectin 1

vector for the ith mouse, SVM obtains coef� cient (¯) estimates via

min
¯

nX

iD1

L" .yi ¡ f .xi// C
¸

2
k ¯ k2 : (7)

Here, L" designates " insensitive loss whereby we ignore errors of absolute size less than ". Thus, for
example, L"

1.yi ¡ f .xi// D max.0; jyi ¡ f .xi/j ¡ "/. Since, as detailed below, we will take " D 0, and
use of L0

2 loss coincides with ridge regression, we restrict attention to L1 loss. For such a loss function,
the equivalent primal optimization problem, following the introduction of slack variables »i ; » ¤

i , is

min
¯;»;»¤

nX

iD1

¡
»i C »¤

i

¢
C

¸

2
k ¯ k2 subject to yi ¡ f .xi/ · " C »iI f .xi/ ¡ yi · " C »¤

i I »i ; »¤
i ¸ 0:

http://www.liebertonline.com/action/showImage?doi=10.1089%2F106652703322756177&iName=master.img-042.png&w=420&h=336
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The corresponding dual problem is readily solved:

min
®;®¤

1

2
.® ¡ ®¤/T Q.® ¡ ®¤/ C "

nX

iD1

.®i C ®¤
i / ¡

nX

iD1

yi.®i ¡ ®¤
i / (8)

subject to
nX

iD1

.®i ¡ ®¤
i / D 0I 0 · ®i ; ®¤

i · 1=¸:

Here, Qij D
PM

mD1 Ám.xi/Ám.xj / D hÁm.xi/; Ám.xj /i ´ K.xi; xj /. The solution is

Of .x/ D
nX

iD1

. O®¤
i ¡ O®i/K.xi; x/ C ¯0: (9)

The fact that (8) and (9) involve Á.x/ only through inner products as given by the kernel, K , confers huge
computational bene� t. This is because all that needs to be stipulated is the kernel; the individual basis
functions Á./ are not required. Accordingly, it is possible to simply yet greatly enrich the underlying basis
as illustrated by popular kernels including d th degree polynomial: K.x; y/ D .1 C hx; yi/d ; radial basis:
K.x; y/ D exp.¡jjx ¡ yjj2=c/.

However, the added � exibility afforded by such basis expansion is typically going to be of limited utility
in the microarray setting since already we have p À n. That is, while it may be conceptually appealing to
include select d th order between-gene interactions via a polynomial kernel, the gains from � tting all such
terms with small n and interpretational objectives are unclear. For classi� cation problems in the microarray
setting, there have been corresponding calls for feature (basis) selection in using SVMs (Furey et al., 2000;
Guyon et al., 2002; Lee and Lee, 2002). Of course, feature selection is central to gene harvesting and
lars/lasso.

Use of " > 0 results in only a subset of O®¤
i ¡ O®i being nonzero. The associated i th data point is termed

a support vector. Again, for classi� cation problems, numerous examples demonstrate the advantages of
obtaining sparse solutions wherein only data points close to the decision boundary (the support vectors)
are used to de� ne the boundary. However, when p À n and for regression problems, such sparsity in n is
not desirable.

Accordingly, our application of SVMs to the cardiomyopathy data focuses on " D 0 and emphasizes
linear kernels. We did investigate using quadratic kernels, but even with an extensive grid search for ¸, no
models withstood cross-validation. Similarly, Guyon et al. (2002) restrict themselves to linear kernels for
microarray classi� cation. For a linear kernel (Á.x/ D x), we recover gene speci� c coef� cients via

Ō D
nX

iD1

. O®¤
i ¡ O®i/xi : (10)

Again, ¸ was determined using grid search combined with CV. Examination of the Ō distribution from
(10) reveals outlying/extreme genes as presented in Table 4.

Table 4. SVM Selected Genes

Mu6500 probe set GenBank Symbol Description

Msa.799.0 V00756 Ifrd1 Interferon-related developmental regulator 1
Msa.778.0_i U73744 Hspa8 Heat shock 70kD protein 8
Msa.2972.0 U49350 Ctps Cytidine 50-triphosphate synthase
Msa.2134.0 U25708 — CD98 heavy chain
Msa.2138.0 X15830 Sgne1 Secretory granule neuroendocrine protein 1, 7B 2 protein
Msa.3227.0 U36788 Hccs Holocytochrome c synthetase
Msa.433.0 X69063 Ank1 Ankyrin 1, erythroid
Msa.2877.0 D31717 Rpn2 Rbophorin II
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Given a total of p D 6,319, there is clearly considerable overlap with lars/lasso selections; three genes
are common to both lists. The functions of the � ve new genes found with the SVM approach are described
below, again keeping in mind that the genes are not a “cluster” and must be interpreted individually.
Interferon-related developmental regulator 1 (Ifrd1) may be involved in myoblast differentiation (Guar-
davaccaro et al., 1995) and up-regulated in an in� ammatory response due to ischemia-reperfusion injury
from cardiopulmonary bypass in a neonatal lamb model (Nelson et al., 2002). Its up-regulation in the
Ro1 expressing mice could indicate a common response pathway for ischemia-reperfusion injury and car-
diomyopathy. Cytidine 50-triphosphate synthase catalyzes the � nal step in the production of the nucleotide
cytidine triphosphate (CTP) and is also involved in phosphadidyl-choline metabolism (Kent and Carman,
1999). Secretory granule neuroendocrine protein 1, 7B2 is involved in regulating pituitary hormone secre-
tion and has been previously shown to be expressed only in neuroendocrine cells (Westphal et al., 1999).
Holocytochrome c synthetase links heme to cytochrome c, a protein involved in the electron transport chain.
Its down-regulation is consistent with the down-regulation of delta-aminolevulinate dehydratase found in
the gene harvesting cluster. Ankyrin 1 is a structural protein involved in anchoring the cytoskeleton to
the plasma membrane. Its down-regulation is potentially related to gene expression changes in other cy-
toskeletal components seen in the Ro1-expressing mice (Redfern et al., 2000). None of these genes has
been previously implicated in cardiomyopathy, although Ifrd1, holocytochrome c synthetase, and ankyrin
1 are the most likely of the group to be related to the phenotype of the Ro1 mice based on their previously
described functions.

4. MODEL SELECTION ISSUES

The problem of variable selection in the context of microrarray regression is of crucial importance—
identi� cation of gene expression changes associated with phenotypes of interest being a primary objective
of microarray studies. However, the distinguishing characteristics of such studies (p À n, correlated gene
expression) makes such selection inherently dif� cult. Here we discuss the two principal means for effect-
ing gene (variable) selection, criterion based and prediction error based, from the microrarray regression
perspective. Throughout we continue to assume squared error (L2) loss. The question of multiple solutions
(variable sets) is also addressed.

A variety of model selection criteria exists, including Akaike Information Criterion (AIC) (Akaike, 1973)
which is equivalent to Mallows (1973) Cp under the usual Gaussian model, Bayesian Information Criterion
(BIC) (Schwartz, 1979), and the Covariance Information (CIC) (Tibshirani and Knight, 1999). Common to
all approaches is (i) penalization of resubstitution or training error estimates, and (ii) the need to estimate
¾ 2, the residual (error) variance. The penalization in (i) seeks to compensate for training error optimism, so
as to recover unbiased estimates of prediction error. Despite differing derivations, the approaches primarily
differ in the degree of penalization. To the extent that the criteria involve/allow estimation of “degrees-of-
freedom” analogs, especially for greedy/adaptive procedures, this provides useful additional information.
In particular, as illustrated in the context of gene harvesting, degree-of-freedom estimates were helpful
in judging appropriate model size in the face of small n, and similarly for tree-structured methods (see
Section 1.1).

However, estimating ¾ 2 is problematic. The frequent recommendation to base estimates on a full model
(e.g., Tibshirani and Knight, 1999) will yield O¾ 2 D 0 when p > n. This eliminates the penalty term in the
above criteria, reducing them to (useless) resubstitution error measures. General strategies for specifying
“nearly full” models in order to alleviate this dif� culty are elusive. One possibility, speci� c to LARS/lasso,
is to employ the largest model such that all coef� cient pro� les are monotone. The logic here is that depar-
tures from monotonicity result from between-variable correlation, which we seek to avoid in parsimonious
model descriptions. The retained genes can be viewed as representing distinct pathways that are jointly
predictive of outcome. Here, for example, this results (Fig. 7) in a full model with � ve genes. Using the
corresponding estimate of ¾ 2 in conjunction with the AIC or CIC criteria results in choosing this full
� ve-gene model and so coincides with the CV selection of Section 3.2. This strategy is clearly an ad hoc
and nongeneralizable prescription. Furthermore, such prescriptions are consequential in that it is absolute
(rather than relative) values of the respective criteria that are used to determine model size. Therefore,
direct measures of prediction error, such as provided by cross-validation, are preferred.



REGRESSION APPROACHES FOR MICROARRAY DATA ANALYSIS 977

The merits of basing model selection on prediction error determinations have been recently and convinc-
ingly advanced (e.g., Breiman, 2001a). But, CV can also be problematic in the p À n setting, especially
when n is small. The dif� culties largely pertain to the variability of CV estimates of prediction error. These
were showcased for leave-one-out (LOO) CV by Kim et al. (2002). In order to circumvent this variability
concern (and secondarily to reduce computation), K-fold CV is advocated (Hastie et al., 2001b). Here the
data is partitioned into K roughly equal-sized samples, model building utilizes K ¡ 1 of these, validation
(i.e., computation of prediction error) the remaining (withheld) sample with cycling and aggregation over
all (K) such possibilities. However, with n D 30 as in the Ro1 dataset, the popular choice of 10-fold CV
amounts to leave-three-out, and prediction error estimates remain highly variable. Use of smaller K and
or test/split sample approaches is limiting with respect to model building given large p, and all the more
so for adaptive methods.

One promising re� nement pertinent to gene harvesting, but more widely applicable, is the forward
selection with Monte Carlo CV (FSCV) approach proposed by Keleş et al. (2002). Their regression model
resembles the gene harvesting regression scheme (1) applied to individual genes (rather than clusters) with
one other important distinction. Rather than basing model selection (number of terms) on CV applied to an a
priori determined series of nested models, by minimizing average prediction error on the validation samples
as is done for gene harvesting (as per typical cross-validation praxis), FSCV embeds cross-validation into
the selection procedure. This is accomplished as follows. Data is partitioned into test and training sets.
Using the training data, coef� cients ( Ō

j ) are obtained for all genes (j D 1; : : : ; p) by minimizing RSS
(2). However, unlike standard forward selection or gene harvesting, the gene selected for entry is not
that achieving minimal RSS on the training data. Instead, RSS is evaluated using the test data and the
corresponding best gene (that achieves minimal RSS) is included. To accommodate variation introduced by
sample splitting, the entire procedure is repeated K times and results synthesized. While FSCV provides
test sample validation on a per-step basis, it clearly does not overcome the variability of CV error estimates.

The distinguishing attributes of microarray data (p À n, correlated expression) make the existence of
so-called “Rashomon effects” (Breiman, 2001a)—many competing distinct models with comparably good
performance—a foregone conclusion. Indeed, gene harvesting was partially motivated from this viewpoint:
rather than eliciting multiple models, each containing an instance from a set of correlated genes, perform
a priori clustering of genes so that such a set emerges from a single run.

There are several approaches to extracting multiple solutions. These include perturbing data, modifying
criteria/algorithms, and extending obtained solutions. Data perturbation can be pursued in two distinct ways:
the raw input values themselves can be modi� ed and/or some operator (e.g., � ltering, resampling) can be
applied to a given set of inputs. With microarray expression data, there are a multitude of speci� cations and
approaches that determine actual input data values, even after completion of the experiment. For spotted
two-color arrays, background correction (e.g., Kooperberg et al., 2002), normalization, and “unfolding”
(Goryachev et al., 2001) can be applied. For Affymetrix arrays, several algorithms exist for deriving
expression values including Affymetrix GeneChip 3.1–4.0 software (used here), Affymetrix MAS 5.0,
and dChip (Li and Wong, 2001), which involves model-� tting across probes in the gene set to derive
expression values. Further, often related, processing concerns thresholding/truncating extreme expression
measurements, scaling (logs, standardized as here), and � ltering (e.g., elimination of genes not meeting
variation criteria). Imputation or other handling of missing data provides another means whereby alternate
data versions are realized. Illustration of some of these aspects for a selection of public microarray datasets
is provided by Dudoit et al. (2002).

It should be noted that there are no singly best options/speci� cations for any of the perturbation schemes.
So, by selective choice from amongst these processing possibilities, a variety of alternate data realizations
can be obtained. Then, application of a given regression method with � xed speci� cations to each dataset will
yield a range of models. Conversely, focusing on just a single data version, but changing tuning parameters,
optimization criteria, starting values, estimation methods, and/or other components of the technique, will
also yield a range of models.

To illustrate the breadth of possibilities, we make concrete some of the possibilities for gene harvesting.
As already demonstrated, even within the hierarchical clustering world, the choice of algorithm (linkage
type) is consequential. There are several possibilities for distance metric. A tuning parameter biasing
toward selection of larger clusters is provided. We note that for unconstrained harvesting, the large 687-
gene cluster was chosen � rst even when this parameter was set to zero. The regression scheme can
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accommodate differing interaction orders and include nonlinear terms. Selection of an appropriate number
of terms by cross-validation requires speci� cation of fold number and standard error multiplier.

While for harvesting the same order model is chosen with either a 1-SE or 0-SE (i.e., pick the model
with smallest cross-validated prediction error), for LARS/lasso, the use of the 0-SE criteria yields a 14-
gene model. This contrasts with the � ve-gene model (Table 3) obtained under the 1-SE rule. Furthermore,
when data preprocessing is effected using dChip (see above), the respective model sizes are 5 (0-SE) and
1 (1-SE). Comparisons of selected genes and their associated pathways are beyond the scope of this paper.

Finally, having obtained a particular solution (gene set), it is possible to generate multiple solutions in
post hoc fashion by selecting/enumerating from genes that are similar to those in the chosen set. Here,
similarity could be based on correlation, functional class, pathway, or annotation.

A rare example of proffering multiple solution sets in the microarray (classi� cation) context was provided
by Kim et al. (2002). Indeed, exhaustive evaluation of all two-gene classi� ers (using a variant of penalized
discriminant analysis) was undertaken in contrast with the greedy forward selection approach of gene
harvesting. A simple genetic algorithm was employed to search for larger gene sets. However, this two-gene
limit pertained even with substantial computing power, more re� ned genetic algorithms were seemingly
prohibitive, and optimization of the tuning (penalty/spread) parameter was not attempted.

It is evident that with the current state of microarray technology and study dimensions, differing data
processing and/or modeling approaches can give very different results. This is not necessarily bad—rather,
such results can be viewed from a “sensitivity analysis” perspective. The real dif� culty lies in making judi-
cious choices among the myriad processing/analysis possibilities. Ultimately, it is the biology that matters.
For the Ro1 study, we are most interested in extending selected genes to biological pathways. For example,
the observed coordinated down-regulation of genes in fatty acid degradation, electron transport chain, and
heme biosynthesis will lead us to further examine these pathways. But, of course, choice among differing
preprocessing possibilities and/or analytic methods should not be based on convenience or interpretability
of results. Finally, as is widely recognized, microarray results need to be validated experimentally by
another complimentary method. At least with the present state of microarray technology, claims about
individual genes and pathways require veri� cation in order to meet accepted scienti� c standards.

5. DISCUSSION

In this paper, we have considered regression methods for relating gene expression pro� les to continuous
phenotypes. Evaluation of a recently proposed method, gene harvesting (Hastie et al., 2001a), revealed
that results were sensitive to the clustering algorithm employed and, more importantly, subject to artifact
wherein heterogeneousgene clusters whose average expression pro� le happened to correlate with phenotype
would be inappropriately deemed important. Correcting this behavior, by limiting the harvesting approach
to homogenous gene clusters, produces an algorithm that tends to select singleton genes. However, the
eight-gene cluster, chosen under particular correlation constraints, was highly interpretable.

Another recent development, the LARS algorithm (Efron et al., 2002), offers improvements on the
forward selection strategy, as used in gene harvesting, that are especially pertinent to the microarray
setting. While it would be straightforward to augment the candidate covariate (gene) pool submitted to
LARS with cluster average pro� les, the above experience with harvesting suggests this will add little.
Similarly, basis expansion akin to that of support vector machines could also be pursued. Again, however,
as transpired with SVMs, this is unlikely to yield better prediction and/or interpretation. The microarray
setting, where already we have p À n, mandates stringent regularization as opposed to basis expansion;
see Hastie et al. (2001b).

By shrinking the size of regression coef� cients, LARS (and lasso) provide less greedy versions of for-
ward selection. This is important in the microarray setting where the typically small sample sizes curtail the
usefulness of greedy procedures. While SVM also shrinks coef� cients, it retains the entire coef� cient vector
(length p) whereas LARS zeroes out all but at most n, which is interpretationally advantageous. That we
observed overlap between genes selected by LARS and SVM is likely due to a combination of these genes
being most correlated with Ro1 and criteria similarity (apparent from dual problems) between the meth-
ods. The fact that LARS is also computationally highly ef� cient and has built-in cross-validation schemes
for model size determination makes it a frontline technique for regression analysis of microarray studies.
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Interpretation and selection concerns warrant further attention. Analogous to issues surrounding fold
change and signi� cance inadequacy for selecting differentially expressed genes (e.g., Newton et al., 2001),
so to in the regression setting is it necessary to consider expression levels and variation. Given that
preprocessing to standardize expression is frequently employed (Dudoit et al., 2002; Lee and Lee, 2002),
there is the possibility of purely correlation-based procedures, such as LARS, to select genes whose
expression level is below the noise level but whose variation correlates with phenotype.

Conversely, investigators are typically not interested in the usual regression interpretation of coef� cients.
Rather, it is selection and perhaps ranking of genes associated with phenotype that matter. In this regard,
application of methods such as random forests (Breiman, 2001b) might prove valuable. In view of this,
retreating from multivariate regression approaches to assessment of univariate (individual gene) regressions
is purposeful. Tusher et al. (2001) devise methods and software that facilitate this and which provide
protection against multiple testing concerns via control of false discovery rates. Nonetheless, as we have
demonstrated, application of the regression methods presented elicits genes of biologic relevance. Further,
there are additional potentially important genes amongst the novel (with respect to cardiomyopathy) genes
extracted.
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