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Abstract
Pulsed Laser Ablation in liquid (PLAL) is considered as a robust and simple technique for producing
nanoparticles (NPs) using lasers. The carbon-based nanoparticles were fabricated via the PLAL
approach by irradiating a graphite target with a pulsedNd:YAG laser of wavelength 532 nm. The
graphite target was immersed in distilledwater and irradiated for 10min. The pulse length, reputation
rate, andfluencewere 6 ns, 10Hz, and 0.4 J cm−2, respectively. The structural and physical properties
of the synthesizedNPswere investigated and analyzed using different characterizationmethods. For
example, Transmission ElectronMicroscopy (TEM) images revealed diverse carbon nanostructures
such as graphene nanosheets, nanospheres, nanospheres in the shape of a necklace, and nanotubes.
The spectrumof EnergyDispersive X-Ray spectroscopy (EDX) confirmed successful synthesis of high
purity carbon nanostructures.Moreover, the result of X-RayDiffraction (XRD) Spectroscopy
indicated the presence of reducedGrapheneOxide (rGO)with a (002) plane and the absence of
GrapheneOxide (GO). The transmission spectrum fromUltraviolet-Visible (UV–vis) analysis showed
a strong trough at 266 nmwhich is attributed to the presence of carbon nanostructures. Furthermore,
Fourier-Transform Infrared Spectroscopy (FTIR) analysis demonstrated the vibration bonds related
to carbon. The nanostructures producedwere semi-stable with little agglomeration aswas inferred
from the results of the Zeta Potential. Finally, theDynamic Light Scattering (DLS) analysis supported
the TEM results. PLAL technique is proved to be a simplemethod for producing carbon-based
nanomaterials.Moreover, the laser fluencewas found to be an important factor which affects greatly
the type of nanostructures that could be synthesized during laser ablation.

1. Introduction

After fullerene’s discovery, various forms of carbon nanostructure including carbon nanoparticles (CNPs),
nanotube, onions, and nanocages were recognized [1]. Carbon-based nanomaterials have attracted great interest
in the recent decades due to their unique physical properties (electrical, thermals, optical andmechanical). This
opened up theway formany applications inmany fields such as physics, chemistry and engineering. Now,
carbon nanomaterials are being investigated as activematerials in electronic devices, energy storage, energy
conversion devices (lithium-ion batteries), solar cells, field emission electron sources, nanometer-sized
semiconductor devices, supercapacitors, sensors and lubricant additives [2–8].

The carbon nanostructures were synthesized by severalmethods such as chemical vapor deposition (CVD),
discharge in protection gases andmicrowave plasma [9]. In the current years, there has been an increasing
interest in the pulsed laser ablation in liquid (PLAL)method to fabricate different nanomaterials. PLAL has been
used to synthesize different elements nanoparticles (NPs), for example gold [10–12], sliver [13, 14], and copper
[15, 16]. In this technique, a laser interacts with the sample under study, which is submerged in a liquid, and a
laser induced breakdown occurs. Shockwaves are then generated, and the created plasma expands and cools.
After that, a cavitation bubble is produced, expands and finally collapse by the liquid. Consequently, NPs are
released in the liquid [17]. Themain advantage of using PLAL is that it does not require vacuum equipment for
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theNPs fabrication, hence, it is a low cost and a simple technique.Moreover, after the particles’ fabrication by
thismethod they are easily collected [9]. The properties of nanomaterials synthesized by the laser ablation of
solids in liquids depend on two factors: firstly, the laser parameters such as thewavelength, pulse energy,
exposure duration and the laser repetition rate. Secondly, thematerial parameters namely bulk target, solvent,
solutes, and the system temperature and pressure [18].

In 1992,Ogale et al [19] synthesized diamond particulates with sizes ranging from5 to 20 μmby using the
pulsed ruby laser ablation of pyrolytic graphite surface submerged in benzene. Also, in 1993, Fojtik and
coworkers [20] used the ruby laser irradiation of graphitemicroparticles suspended in a toluene liquid in
fabricating carbon clusters. Following these pioneering studies, a considerable amount of literature has been
published on PLAL.Moreover, CNPswere fabricated using PLALusing infrared (IR) laserNd:YAGwith a
1064 nmwavelength on graphite and polycrystalline diamond targets, whichwere immersed in both liquids:
deionizedwater and isopropanol. Dudek et al studied the effect of changing average power in a range
0.18–7.52Won the size of resulted particles [21]. In addition, the influence of liquid temperature on the
characteristics of carbon nanostructures produced via PLALwas investigated byAsl [22]. Their results showed
an increase of the CNPs and a decrease of the rate of graphene nanosheets with increasing distilledwater
temperature. Another study investigated the effect of using different liquidmedia (distilledwater, acetone,
alcohol, and cetyltrimethylammoniumbromide (CTAB)) on themorphology, structure and optical properties
of carbon nanostructures prepared via PLAL [23]. Zamiranvari and collaborator [24] found that the
concentration level of CTAB as the ablationmedium affected the properties of the produced graphene
nanosheets fabricated by laser ablation of graphite target.Moreover, the relationship between the laser fluence
and the characterization of carbon nanostructures synthesized by laser ablation in liquid nitrogenwas
considered experimentally by Tabatabaie andDorranian [25]. They found that a thresholdfluence exists for the
production of CNPs andwhen laser fluencewas increasedmoreCNPswere produced.On the other hand, with
increasingfluence, the amount of graphene nanosheets were reduced.

To the other end of the spectrum, someworkers usedUVwavelength to produce carbon nanostructures. For
example, Luo and collaborator [26] used krypton fluoride (KrF)pulsed laser irradiation (wavelength of 248 nm
and a laserfluency of 0.8 J pulse−1 cm−1) in ethanol at ambient conditions to produce silicon carbide (SiC)
@graphene nanocomposites in a one-step laser irradiation process.

Moreover, some studies reported the fabrication of carbon nanostructures via PLALmethod using the
second harmonic wavelength ofNd:YAG laser (532 nm) to demonstrate the vital role of laser wavelength on the
produced carbon nanostructures. For instance, Tarasenka and colleagues [27] investigated the influence of
different liquidmedium (water, ethanol and 0.008 maqueous diethylenetriaminepentaacetic acid (DTPA)
solution) on themorphology, structure and optical properties of CNPs fabricated using an unfocusedNd:YAG
laser (532 nm) on graphite.Many carbon nanostructures were fabricated by the laser ablation using the 532 nm
wavelength such as nanocrystalline diamond [28], graphene sheets [29, 30], CNPs [31] and nanotubes [32].

The purpose of this research is to investigate the effect of laser fluence on the type of carbon-based
nanomaterials produced using PLAL techniquewith the implementation of the second harmonic ofNd:YAG
laser (532 nm). Different analytical techniques will be used to describe the synthesized carbon nanomaterials
synthesized in this work.

2. Experimental

Prior to running the experiment, all glassware werewashedwith distilledwater followed by acetone and finally
cleaned ultrasonically with the distilledwater to ensure the absence of any contamination. AQ-switched pulsed
Nd:YAGLaser (Quanta Ray, Spectra Physics) operated in its second harmonic wavelength (532 nm)was used to
irradiate for 10 min a high purity graphite rod (99.997%purity, Goodfellow), whichwas polishedwith a sand
paper thenwashedwith distilledwater. The graphite target was placed at the bottomof a glass cylindrical
containerfilledwith distilledwaterwhere its level was about 0.8 mmabove the target. A converging lens
(Thorlabs LB5284CaF2Bi-Convex Lens, f=50.0 mm,Uncoated)was used for focusing the laser beamon the
target surface. A prism (Thorlabs PS704CaF2Right-Angle Prism,Uncoated, 25 mm)was used to direct the laser
beam to irradiate the sample. Pulses of 6 ns durationwith a reputation rate of 10 Hz and energy density of
0.4 J cm−2 were applied. AThorlabs thermal power sensor (S350C, range 0.19–1.1 μmand 10.6 μm, 40W)
attached to a powermeter console (Thorlabs PM100D)was used tomeasure the average power of the pulsed
laser beam and assures the stability of the laser power during the experiment. It should be pointed that in order
to avoid crater formation on the target, the target was placed on anXY stage andmoved constantly and
cautiously during the laser ablation allowing the laser beam to hit the target surface at different positions.
Furthermore, the experiment was carried out at room temperature. The experimental setup is shown infigure 1.
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After the completion of the experiment, the colloidal solution containing the nanomaterial was taken to
perform the different characterizations. For example, Transmission ElectronMicroscopy (TEM,Tecnai G20,
Super twin, double slit, FEI, Netherlands) imageswere obtained to investigate themorphology of the produced
nanomaterials. In addition, elemental composition of the resultedmaterial was examined using Energy
Dispersive x-ray spectroscopy (EDX, BrukerNanoBerlin, Germany). X-RayDiffraction (XRD) Spectroscopy
(RigakuUltima_iv, CuKα radiation,λ=1.54 Å, operating at 40 Kv and 40 mA, scanning angles in the range 5°–
90°, and scanning step of 0.1°)was used to study the structure of the fabricated nanomaterials,Moreover, to
analyze the optical properties of the nanomaterials, UV–vis spectrophotometry (Thermo,Genesys 10 Smodel)
was employed. Fourier transform infrared spectroscopy (FTIR, PerkinElmer, Spectrum 100)was used to
investigate the chemical bonds of the produced suspension. Finally, the charges on the surface of the produced
nanostructures and their size distributionweremeasured by zeta potential andDynamic Light Scattering
technique (Zeta sizer nano series,Malvern,UK).

3. Results and discussion

3.1. The synthesis of carbon-based nanomaterials
The produced carbon nanostructures suspension is shown infigure 2. In PLALmethod, it is suspected thatmany
forms of carbon-based structures will be produced. For example, structures such as fullerenemolecules,
diamond-like carbons, carbon spheres, and graphene nanosheets can be expected to be in the obtained colloidal
solution after laser irradiation. It can be seen from figure 2 that the suspension is colorless whichmight be an
indication of the dominance of graphene sheets in the solution, as they are transparent and colorless. Carbon
nanospheres are usually dark gray and tend tomake the suspension opaque.Hence, it is assumed that using
PLAL in liquidwith afluence of 0.4 J cm−2, that was set in this work,may enhance the production of graphene

Figure 1.A schematic diagramof the experimental set up for pulsed laser ablation in distilledwater.

Figure 2.Colloidal solution fromPLAL of graphite target in distilledwater.
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sheets in comparison to other carbon-based nanomaterials. This agrees with previouswork [25]where it was
concluded that increasing the laserfluence results in the production of carbon nanoparticles, while decreasing
thefluency increases the production of graphene nanosheets, however, to our knowledge noworkwas donewith
fluence as low as 0.4 J cm−2. In this work, several analyticalmethodswere used to investigate the obtained
suspension as discussed in the below section.

3.2. Characterization of carbonnanostructures
3.2.1. TEManalysis
The size andmorphology of the synthesized carbon nanostructures were studied using TEM.TheTEM images
showed different carbon-based structures (figures 3(a) and (b)). These included graphene nanosheets, carbon
nanotubes and carbon nanospheres. The dominancewas for the graphene nanosheets whether in single ormulti
layers. Looking into the images inmore depth, somemeasurements can bemade on the size of the
nanostructures found in the colloidal solution. Infigure 3(c) graphene nanosheets, carbon nanotubes and
carbon nanospheres can be seen. The size of some of the nanosheets were 200 nm, approximately. As for the
carbon nanospheres, the diameter was about 45 nm. Themeasurements of the carbon nanotubes had a length of
140 nmand a diameter of 21 nm. Figure 3(d) illustrates stacked graphene sheets with the inset showing its edges.
Themulti-layers can be distinguished from its dark color which indicates stacked number of sheets. Another
feature that was observed is the formation of a necklace of carbon nanosphere (figure 3(e). Carbon nanospheres
with diameters less than 100 nm tend to accrete or form a necklace structure [33]. They are attractedwith each
other byVan derWaals forces and this leads to agglomerated collections of the carbon nanospheres. There are
some factors that yield to the accretion of carbon nanospheres such as extended reaction times and cooling from
synthesis to room temperature [34]. These necklaces were not a dominant feature in the colloidal solution. The
average diameter of the carbon nanospheres in the necklace formationwas 60±11 nm. Figures 3(f), (g) and (h)
shows the necklace formation at differentmagnification alongwith the particle size distribution.

3.2.2. EDX analysis
Figure 4 shows the EDX spectrumof the synthesized carbon nanostructures. It indicates the presence of only
carbon as a primary element and oxygen. This result confirms the successful synthesis of high purity carbon
nanostructures. Furthermore, the percentage of oxygen is very lowwhichmight indicate the absence of
graphene oxide from the sample. This will be further investigated from theXRD analysis in the following
subsection.

3.2.3. XRDanalysis
Each crystallinematerial has a distinctive XRDpattern.Hence, XRDpatterns are likefingerprints that assist in
identifyingmaterials. For this technique, a thin filmwas prepared from a few drops of the colloidal solution that
was deposited on a glass slide and dried at100 °C for 30 min. Figure 5 shows theXRD spectrumof the thinfilm
thatwas prepared in this work. TheXRDpattern of graphite illustrates a strong diffraction peak at 2θ=26.6°
which corresponds to the (002) plane andweak peaks at 2θ=42.2° and 44.3°which correspond to the (100) and
(101) planes, respectively (JCPDS, CardNo. 75-1621). It can be seen from figure 5 that a broad peak is exhibited
at 2θ=25°. This peak is near the position of the graphite peak of the (002) plane. Since graphite is only stacked
layer of graphene, then theywould naturally have planes that are similar in their interplanar spacing and thus
similar diffraction angles. The broadened peak is attributed to the fact that the stacked graphene layers were not
well ordered [35]. Themore ordered the stacked graphene layers, themore these layers will resemble graphite
and the diffraction peak becomes narrower. Furthermore, since there is a peak at 25°with reasonable width, it
indicates that graphene is present in stacked layers form and that they are notmonolayers. If graphene
monolayers are present in the sample, no peakwill be observed [36]. Graphene oxide (GO) has a characteristic
peak at 2θ=11.4°, which corresponds to the (001)plane [37]. Since no peak at 11.4°was observed infigure 5,
this indicates that GO is not present in the sample and that it could have been reduced to form reduced graphene
oxide (rGO). The broad peak observed infigure 5 occurs at 2θ=25° and not at 2θ=26.6° as in pure graphite.
The shift in the peak can be concluded that oxygen still remains between the graphene layers causing the spacing
between the layer to be greater than that in graphite [37]. This agrees with the EDX analysis where therewas a low
percentage of oxygen in the sample, but it was not eliminated completely.

3.2.4. UV–vis analysis
TheUV–vis spectrometer was used tomeasure the transmission spectrumof the colloidal solution in the
200–1100 nm region (figure 6). Carbon generally exhibits an absorption peak in the range of 180–280 nm [38].
The absorption peak at 266 nmof carbon nanostructures is assigned to theπ–π* transition of C=Cbond [39]. It
can be seen from figure 6 that a trough at 266 nm is present in the transmission spectrum (corresponding to the
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Figure 3.TEM image of carbon nanostructures in the colloidal solution at (a) 500 nm and (b) 200 nmmagnifications, (c) carbon
nanosheets, nanotubes and nanospheres withmeasurements, (d) stacked nanosheets (inset: enlarged nanosheets showing the edges),
(e) carbon nano-necklace, (f) and (g)magnification of carbon nanospheres in the nano-necklace, and (h) particle size distribution of
nanosphere in the nano-necklace.
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absorption peak). Hence, this confirms the presence of carbon nanostructures in the obtained suspension. Since
no other troughs are seen in the spectrum, it can be concluded that only carbon particles were found.

Figure 4. Spectrum fromEDX analysis.

Figure 5.XRD spectrumof (a) the prepared sample, (b) stick pattern of graphite (JCPDS, CardNo. 75-1621).

Figure 6.UV–vis transmission spectrumof carbon nanostructures suspension.
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3.2.5. FTIR analysis
The FTIR spectra are usually used to investigate the different chemical bonds ofmaterials. In this work, FTIR
spectroscopywas used to analyze the carbon nanostructures solution in the range of 550–4000 cm−1. Four
distinct troughswere observed in the FTIR spectrumof the sample. These are 3342, 2108, 1638, and 558 cm−1 as
seen infigure 7. The trough at 3342 cm−1 is related towaterO–Hstretching vibrationmode [40]. Similarly, the
trough at 2108 cm−1 is attributed to carbon–carbon triple bond (C≡C) [5, 41]. The aromatic C=Cvibrations
cause the appearance of a trough at around 1638 cm−1 [30]. Finally, the trough at 558.92 cm−1 is related toC–H
bond [42].

3.2.6. Zeta potential analysis
Zeta potential is a physical characterization, which describes the total charge on the surface of nanoparticles [43].
Zeta potential result shows that the carbon nanostructures in our sample have a negative charge of the value
−22 mV. This amount of charge results in the existence of repulsion forces between the particles and
consequently reduces their agglomeration [44]. Figure 8 shows the zeta potential distribution of our sample.

3.2.7. DLS analysis
Tomeasure the size distribution of the nanoparticles, present in a suspension, theDLS analysis technique is
usually used. The results illustrated infigure 9 give information of the size of the nanostructures present in the
colloidal solution of the prepared sample.When taking the sample as is without filtering, a single peak in theDLS
spectrum appears. This peak indicates a size of 520 nmof the nanostructures in the solution. Since no other peak
was present in the spectrum, the solution can be regarded as dominated by these structures that has the size of
520 nm. From theTEMandXRDanalysis, it was apparent that the solution ismainly composed of graphene
nanosheets that have large lengths. Although carbon nanospheres were observed in the TEM images, there is no
indication of their presence infigure 9(a). By using a 100 nmnanometric filter, particles larger than 100 nmcan
be removed. Figure 9(b) displays theDLS spectrumof the filtered sample. It can be seen that now two peaks
appear in this figure. Themore intense peak indicates average structure size of 574 nmand compromising 73%

Figure 7. FTIR spectrumof carbon nanostructures suspension.

Figure 8.Zeta potential of the prepared sample.
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of the sample constituents, while the second peak reports particles of an average size of 59 nmwith abundance of
27%. This agrees with the observed TEM images where the nanospheres in the necklace had an average size of
60 nm (figure 3(h)) although theywere not dominant in the sample. The presence of structures larger than
100 nmeven after using the 100 nmnanometric filtermight indicate that the graphene sheets were folded.

4. Conclusion

This study has shown that PLAL technique is a successfulmethod for synthesizing carbon-based nanostructures.
It was found that the laser fluence is an important factor for determining the carbon nanostructures obtained
through PLAL. Reducing thefluence of a 532 nmNd:YAG laser beam to 0.4 J cm−2, and using it to irradiate a
graphite target submerged in distilledwater, resulted in the synthesis of rGOnanosheets which constituted,
approximately, 73%of the nanostructures in the sample.
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