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Monolayers and multilayers of semiconducting transition metal dichalcogenides (TMDCs) offer
an ideal platform to explore valley-selective physics with promising applications in valleytronics and
information processing. Here we manipulate the energetic degeneracy of the K+ and K− valleys
in few-layer TMDCs. We perform high-field magneto-reflectance spectroscopy on WSe2, MoSe2,
and MoTe2 crystals of thickness from monolayer to the bulk limit under magnetic fields up to 30 T
applied perpendicular to the sample plane. Because of a strong spin-layer locking, the ground
state A excitons exhibit a monolayer-like valley Zeeman splitting with a negative g-factor, whose
magnitude increases monotonically when thinning the crystal down from bulk to a monolayer. Using
the k · p calculation, we demonstrate that the observed evolution of g-factors for different materials
is well accounted for by hybridization of electronic states in the K+ and K− valleys. The mixing of
the valence and conduction band states induced by the interlayer interaction decreases the g-factor
magnitude with an increasing layer number. The effect is the largest for MoTe2, followed by MoSe2,
and smallest for WSe2.

Keywords: MoSe2, WSe2, MoTe2, valley Zeeman splitting, transition metal dichalcogenides, ex-
citons, magneto optics.

Hybridization of electronic states in van der Waals-
coupled layers of semiconducting transition metal
dichalcogenides (TMDCs), significantly affects their en-
ergy bands and optical properties. Most striking is a
dramatic change in the quasiparticle band gap character,
from a direct bandgap at the K-point of the Brillouin
zone in monolayers to an indirect Γ−Λ band gap in mul-
tilayers and bulk crystals [1, 2]. In contrast, the energy
of the optical band gap, which is due to K-point excitons
in any mono-, multi- and bulk-crystals rather weakly de-
pends on the number of layers in TMDC stacks [1]. This
effect is due to both the hybridization of electronic states
at the K-points [3] and the change in the dielectric en-
vironment with different number of layers [4]. While the
hybridization of the electronic states leads to (often unre-
solved) multiplets of intralayer (electron and hole within
the same layer) and spatially-separated interlayer exci-
tons (electron and hole confined to different layers), the
dielectric environment largely determines the excitonic
binding energy and the optical band gap. The hybridiza-
tion of electronic states in TMDC multilayers is also en-
coded in the magnitudes of the effective Landé g-factors
of the coupled states. However, in contrast to the ener-
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getic positions of electronic resonances, g-factors are less
sensitive to the effects of Coulomb interaction (dielectric
environment) [5].

In TMDC monolayers, the band structure at the K-
point consists of energetically degenerate states at the
K+ and K− valleys. However, the two valleys possess
opposite magnetic moments, and can be individually ad-
dressed using σ+ and σ−-polarized light [1]. An exter-
nally applied magnetic field in the Faraday geometry
lifts the valley degeneracy, resulting in a so-called val-
ley Zeeman splitting [1]. Therefore, the g-factors of the
excitons can be measured using helicity-resolved spec-
troscopy under magnetic fields [6–19]. In multilayer and
bulk TMDCs, it has been found that the spin orientation
of the carriers is strongly coupled to the valleys within
the individual layers (“spin-layer locking”) [17, 19–21].
Therefore, many salient features of monolayer physics are
preserved in multilayers. As a consequence, intralayer ex-
citons form with their characteristic negative g-factors
[17, 21]. Moreover, spin-layer locking effects have re-
cently enabled the unambiguous identification of inter-
layer excitons in bulk TMDCs with positive g-factors
[17, 19]. However, a systematic investigation of the effect
of layer number and the hybridization of electronic states
on the valley Zeeman effect has not been reported so far.

Here, we perform circular polarization-resolved micro-
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reflectance contrast (µRC) spectroscopy on 2H-WSe2,
2H-MoSe2 and 2H-MoTe2 crystals of variable thickness
(from monolayer to bulk) under high magnetic fields of up
to B = 30 T and at a temperature of T = 4 K. We mea-
sure the layer thickness-dependent valley Zeeman split-
tings of the ground state A excitons (X1s

A ) and compare
the observed trends with the k · p theory. The model
takes into account the interlayer admixture of valence
and conduction bands and corrections from the higher
and lower bands from adjacent layers at the K-point of
the Brillouin zone. We find that the hybridization of the
electronic states at the band extrema has profound effects
on the g-factors of the excitons. Overall, the exciton g-
factor decreases with an increasing layer thickness where
the extent of this reduction depends upon the magnitude
of interlayer interaction in the TMDCs.

I. EXPERIMENT

Monolayer and few-layer flakes of TMDCs are me-
chanically exfoliated [22] onto SiO2(80nm)/Si substrates.
The layer number in the MoSe2 and WSe2 crystals
is determined by the optical contrast, Raman spec-
troscopy and the low-temperature (liquid helium) micro-
photoluminescence [23–25]. For MoTe2, the thickness
characterization was performed using ultra-low frequency
Raman spectroscopy [26–28], in addition to the re-
flectance contrast and atomic force microscopy (AFM)
measurements (see Fig. 5 in Appendix A).

Magneto-reflectance measurements are performed us-
ing a fiber-based low-temperature probe inserted inside a
resistive magnet with 50 mm bore diameter, where mag-
netic fields up to 30 T are generated in the center of the
magnet. Light from a tungsten halogen lamp is routed
inside the cryostat using an optical fiber of 50 µm diam-
eter and focused on the sample to a spot of about 10 µm
diameter with an aspheric lens of focal length 3.1 mm
(numerical aperture NA=0.68). The sample is displaced
by x−y−z nano-positioners. The reflected light from the
sample is circularly polarized using the combination of a
quarter wave plate (QWP) and a polarizer. The emitted
polarized light is collected using an optical fiber of 200
µm diameter, dispersed with a monochromator and de-
tected using a liquid nitrogen cooled Si CCD (WSe2 and
MoSe2) or InGaAs array (MoTe2). During the measure-
ments, the configuration of QWP-polarizer assembly is
kept fixed, producing one state of circular polarization,
whereas the effect corresponding to the other polariza-
tion state can be measured by reversing the direction of
magnetic field, as a result of the time reversal symmetry
[11, 29].

We define the reflectance contrast C(λ) at a given
wavelength λ as C(λ) = [R(λ)− R0(λ)]/[R(λ) + R0(λ)],
where R0(λ) is the reflectance spectrum of the SiO2/Si
substrate and R(λ) is the one of the TMDC flake kept
on the substrate. C(λ) spectral line shapes are modeled
using a transfer matrix method-based approach to obtain

FIG. 1. (a)-(d) Helicity-resolved microreflectance contrast
spectra of the ground state A excitons (X1s

A ) in 1L, 2L, 3L
and bulklike WSe2 crystals, respectively, measured at a tem-
perature of T = 4.2 K under magnetic fields of 0 T, 15 T, and
30 T. Orange and blue spheres represent the experimental
data for the σ+ and σ− polarizations, respectively, whereas
solid lines are the modeled spectra. The curves for B > 0 T
are shifted vertically with respect to the B = 0 T measure-
ment for clarity. (e)-(h) Excitonic transition energies derived
for the two circular polarizations from the modeled spectra in
(a)-(d), respectively, as a function of magnetic field from 0 to
30 T. (i)-(l) Green circles represent the Zeeman splittings for
the corresponding cases in (e)-(h), respectively, whereas solid
lines are linear fits to the data.

the transition energies [30]. The excitonic contribution
to the dielectric response function is assumed to follow a
Lorentz oscillator-like mode [5, 31]

ε(E) = (nb + ikb)
2 +

∑
j

Aj
E2

0j − E2 − iγjE
, (1)

where nb + ikb is the background complex refractive in-
dex of the TMDC being investigated, which excludes ex-
citonic effects, and is kept equal to that of bulk material
(WSe2 [32], MoSe2 [33], or MoTe2 [33] in the respective
cases). E0, A and γ are the transition energy, the oscil-
lator strength parameter, and the full width at half max-
imum (FWHM) linewidth parameter, whereas the index
j represents the sum over excitons.

Figures 1(a)-(d) depict σ+ (orange) and σ− (blue)
components of the µRC spectra of the ground state A
exciton (X1s

A ) in 1L, 2L, 3L and bulklike WSe2 crystals
kept at liquid He temperature of 4.2 K under magnetic
fields of 0 T, 15 T and 30 T. With increasing magnetic
field, one clearly observes an energetic splitting between
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the two circular components of excitonic features, in-
dicating the Zeeman effect. The spectra are modeled
(solid black lines) using the transfer matrix method as
described before. The derived X0

A transition energies for
the two circular polarizations for the four cases are dis-
played in Figs. 1(e)-(h). The excitonic Zeeman splittings
are defined as ∆EX = Eσ+ −Eσ− = gXµBB, where Eσ+

and Eσ− are the transition energies for the two circular
polarizations, gX is the excitons effective g-factor and
µB is the Bohr’s magneton (0.05788 meV/T). The Zee-
man splittings calculated from Figs. 1(e)-(h) are shown
in Figs. 1(i)-(l) respectively (green circles), as a function
of magnetic field. Fig. 2 displays the corresponding data
for the 1L to 3L thick MoSe2 while Fig. 3 shows the plots
for 2L, 3L and 4L MoTe2. The magnitude of the splitting
increases linearly with rising magnetic field in all cases.

The excitonic g-factors obtained from the above analy-
sis are summarized in Table 1 and plotted in Fig. 4. The
1L and 40 nm thick bulklike MoTe2 crystals, whose g-
factors (−4.8± 0.2 [11] and −2.4± 0.1 [17] respectively)
are also marked in Fig. 4, are obtained from the same
single crystalline source material on SiO2/Si substrates,
as the 2L, 3L, and 4L samples. For bulk MoSe2, the g-
factor was measured for a 30 nm thick flake exfoliated on
sapphire substrate [19]. Interestingly, the absolute value
of the g-factor for X0

A clearly decreases monotonically
with increasing layer thickness and approaches the limit-
ing bulk value of −3.4± 0.1, −2.7± 0.1, and −2.4± 0.1
for WSe2, MoSe2 [19], and MoTe2 [17], respectively.

Layer
thickness

WSe2 MoSe2 MoTe2

1L −3.8± 0.1 −4.2± 0.1 −4.8± 0.2

2L −3.7± 0.1 −3.6± 0.1 −4.12± 0.05

3L −3.5± 0.1 −3.6± 0.1 −3.5± 0.1

4L - - −3.0± 0.1

Bulk −3.4± 0.1 −2.7± 0.1 −2.4± 0.1

TABLE I. Effective g-factors of the ground state A exciton
X1s

A measured in WSe2, MoSe2 and MoTe2 crystals of variable
thickness at a temperature of T=4.2 K.

II. THEORY

The experimental results presented above demonstrate
a significant deviation of A-exciton g-factor in the multi-
layer TMDC from the one found in monolayer. Moreover,
absolute value of the g-factor decreases monotonically
with the number of layers N . Although weak, the hy-
bridization of K-electronic states is likely at the origin of
this effect. In order to confirm this hypothesis we develop
a k · p theory [13, 34–36] both for mono- and multilayers

FIG. 2. (a)-(c) Helicity-resolved microreflectance contrast
spectra of the ground state A excitons (X1s

A ) in 1L, 2L and 3L
MoSe2 crystals, respectively, at a temperature of T = 4.2 K
under magnetic fields of 0 T, 15 T, and 30 T. Orange and
blue spheres represent the experimental data for the σ+ and
σ− polarizations respectively, whereas solid lines are the mod-
eled spectra. The curves for B > 0 T are shifted vertically
with respect to the B = 0 T measurement for clarity. (d)-(f)
Excitonic transition energies derived for the two circular po-
larizations from the modeled spectra in (a)-(c), respectively,
as a function of magnetic field from 0 to 30 T. (g)-(i) Green
circles represent the Zeeman splittings for the corresponding
cases in (d)-(f), respectively, whereas solid lines are linear fits
to the data.

and derive exciton g-factors in this framework. Namely
we consider the properties of the quasiparticles in the
corners of the 1-st Brillouin zone (where the studied op-
tical transitions take place). Next, we focus on K+ point
for brevity.

Let us first consider the TMDC monolayer, situated in
xy plane. Electronic excitations in K+ point of such a
system are described by a set of Bloch states {|Ψn, s〉}
with energies {Ens}. The subscript n enumerates the
bands, and index s =↑, ↓ determines their spin degrees
of freedom. According to k · p method, the quasiparti-
cles with the momentum k = (kx, ky) near K+ point are

described by the matrix elements 〈Ψn, s|Ĥ(1)|Ψn′ , s
′〉 of

one-particle Hamiltonian

Ĥ(1)(ρ, z) =
p̂2

2m0
+ U(ρ, z)+

+
~

4m2
0c

2

[
∇U(ρ, z), p̂

]
σ +

~
m0

kp̂. (2)

Here m0 is electron’s mass, c — speed of light, ~ —
Planck’s constant and σ = (σx, σy, σz) are Pauli matri-
ces. We also introduced in-plane coordinate ρ = (x, y),
the momentum operator p̂ = −i~∇ and the crystal field
of a monolayer U(ρ, z). The first two terms of the Hamil-
tonian define the energies En of the bands, doubly degen-
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FIG. 3. (a)-(c) Helicity-resolved microreflectance contrast
spectra of the ground state A excitons (X1s

A ) in 2L, 3L and 4L
MoTe2 crystals, respectively, at a temperature of T = 4.2 K
under different magnetic fields. Orange and blue spheres rep-
resent the experimental data for the σ+ and σ− polarizations
respectively, whereas solid lines are the modeled spectra. The
curves for B > 0 T are shifted vertically with respect to the
B = 0 T measurement for clarity. (d)-(f) The excitonic transi-
tion energies obtained from modeling the reflectance contrast
spectra in (a)-(c), respectively. (g)-(i) Green circles represent
the Zeeman splittings for the corresponding cases in (d)-(f),
respectively, whereas solid lines are linear fits to the data.

erated by spin. The next part describes the spin-orbital
interaction. It lifts the spin-degeneracy of n-th band by
the value ∆n (i.e. in total, one has En±∆n/2 for s =↑, ↓
states respectively). The last kp̂ term couples different
Bloch states of monolayer. The coupling gives rise to ad-
ditional energy of the n-th band δEn = gnµBB in the
presence of magnetic field B = Bez. Here µB is the
Bohr magneton. According to the Roth formula [37] the
spin-independent g-factor of the n-th band is

gn=
1

2m0

∑
n′ 6=n

|〈Ψn, s|p̂+|Ψn′ , s〉|2 − |〈Ψn, s|p̂−|Ψn′ , s〉|2

En − En′
,

(3)
where p̂± = p̂x ± ip̂y. The interaction of electron’s mag-
netic moment with magnetic field gives the spin correc-
tion δEs = σsµBB, where σs = +1(−1) for s =↑ (↓).
Finally the energy of the n-th band in K+ point is
Ens(B) = En + σs∆n/2 + gnµBB + σsµBB. In this
picture, the experimentally measured A-exciton g-factor
is doubled difference gexc = 2(gc − gv) between the g-
factors of conduction gc and valence gv bands. We take
this result as a reference point for our next calculations.

The N -layer TMDC crystal with 2H stacking order
can be represented as a pile of monolayers separated by
a distance l. Each successive layer of such a crystal is
180◦ rotated with respect to the previous one. The one-

particle Hamiltonian for this system has a form

Ĥ(N)(ρ, z) =
p̂2

2m0
+

N∑
m=1

U
(
(−1)m+1ρ, z − zm

)
+

+

N∑
m=1

~
4m2

0c
2

[
∇U

(
(−1)m+1ρ, z − zm

)
, p̂
]
σ +

~
m0

kp̂

(4)

It contains a sum of potentials from all the layers, with
coordinates zm = (m − 1)l. The potential of each even
stratum has a form U(−ρ, z − z2m). The sign “-” before
two-dimensional coordinate ρ represents the fact of 180◦

rotation. Note that the orientation of the first layer of
the system does not depend on N . Hence, it is conve-
nient to match the K+ point of any multilayer with K+

point of its lowest part. This uniquely determines the
form of the unperturbed Bloch states in each m-th stra-
tum of the system. We consider the set of such states

in K+ point as a new basis {|Ψ(m)
n , s〉} of the multilayer.

The states |Ψ(1)
n , s〉 belong to the lowest (first) stratum

and are equal to |Ψn, s〉 by definition. The other part

of the basis can be derived from |Ψ(1)
n , s〉 with the help

of crystal symmetry operations (see Appendix B). We
suppose the orthogonality of states from different layers

〈Ψ(m)
n , s|Ψ(m′)

n′ , s′〉 = δnn′δmm′δss′ .
According to our choice of the basis, the bands of mul-

tilayer are N -times degenerated (in leading approxima-
tion). The Roth formula is not applicable in this case.
To solve this problem, we apply the Löwdin partitioning

technique [37] to multimatrix 〈Ψ(m)
n , s|Ĥ(N)|Ψ(m′)

n′ , s′〉
and derive the effective conduction H

(N)
cs and valence

H
(N)
vs band Hamiltonians. They act in the spaces,

spanned over {|Ψ(m)
c , s〉} and {|Ψ(m)

v , s〉} basis states re-
spectively and can be presented as N×N matrices. Their
eigenvalues determine the multilayer g-factors.

The effective Hamiltonians have a form of pentadi-
agonal matrix. Their main diagonal contains En ±
∆n/2 terms, spin term δEs and B-dependent correction

δE
(m)
n = g

(m)
n µBB to the energies of quasiparticles from

m-th layer. Here and further in the text n takes c or v
values. The corresponding g-factor of m-th layer origi-
nates from kp̂ term and reads

g(m)
n =

1

2m0

∑
n′ 6=n

∑
η=±

η|〈Ψ(m)
n , s|p̂η|Ψ(m)

n′ , s〉|2

En − En′
+

+
1

2m0

∑
〈〈m′,m〉〉

∑
n′ 6=n

∑
η=±

η|〈Ψ(m)
n , s|p̂η|Ψ(m′)

n′ , s〉|2

En − En′
.

(5)

The result is a sum of intralayer and interlayer contri-
butions. The intralayer part is nothing but the mono-
layer’s g-factor considered above. The interlayer part de-
termines the deviation ∝ δgn from this g-factor. The
symbol 〈〈m′,m〉〉 describes the nearest neighbours of the
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m-th stratum. Namely 〈〈m′, 1〉〉 → m′ = 2; 〈〈m′, N〉〉 →
m′ = N − 1 and 〈〈m′,m〉〉 → m′ = m − 1,m + 1 for
m = 2, 3, . . . N − 1. We restrict our summation in such
a way, since the next nearest neighbour terms are sup-
pressed by the distance between the layers. We omit
these terms from our study.

The sub- and superdiagonal matrix elements of con-
sidered Hamiltonians describe the admixing of the Bloch
states between neighbour layers. For conduction bands
they origin from kp̂ terms and have a linear in ∝ kx±iky
dependence. For valence bands they appear from the
crystal field of neighbour layers and are proportional to
material dependent constant t ∼ 40 . . . 70 meV [38]. The
next nearest sub- and superdiagonal matrix elements are
linear in magnetic field ∝ ḡnµBB and also originate from
kp̂ terms.

In our model, we did several simplifications: i) Only
the intralayer matrix elements of spin-orbit interaction

are taken into account in Ĥ(N)(ρ, z). The interlayer
terms are beyond of accuracy of our approximation; ii)
The interlayer crystal field corrections to the bands en-
ergy positions are supposed to be small and omitted from
our study; iii) The k dependent part of spin-orbital in-
teraction ∝

[
∇U(ρ, z),k

]
σ is neglected. This term pro-

duces a small correction to the spin g-factor, which is be-
yond the scope of this paper; iv) The effective Hamiltoni-
ans are considered up to the linear in k terms. The higher
order corrections give zero contribution to the band en-
ergy in K+ point, and therefore are not important in this
study.

The diagonalization of H
(N)
cs and H

(N)
vs matrices pro-

vides a new set of energy bands with corresponding eigen-
states. Hence, we expect a series of exciton lines instead
of single A-exciton one. It is well known that the exciton
lines in the optical spectra of TMDCs as-exfoliated on
substrates such as SiO2 or sapphire have a significantly
large inhomogeneous line width broadening compared to
the homogeneous line widths [39–41]. In principle, it
is possible to achieve the homogeneous linewidth with
hBN, which might able to resolve the close-lying individ-
ual lines of excitons in multilayers [39–41]. However, in
the present case, we calculate the average g-factor from
all lines and compare it with the experiment. The cor-
responding observable (see the detailed k · p analysis for
each multilayer in Appendix B) as a function of number
of layers N has the following form

g(N)
exc = gexc + 4

(
1− 1

N

)[
δgv − δgc− gu

]
+O

( t2
∆2
v

)
. (6)

The parameters δgc and δgv are the interlayer corrections
to the conduction and valence band energies, gu and t ap-
pear from the interlayer admixture of the conduction and
valence band states respectively. This formula indicates
the measured dependence of the exciton g-factor, if we
suppose δgv − δgc − gu > 0.

Using Eq. 6, we fit the experimental data in Fig. 4 to
the first order (solid lines). Here, we fix gexc to the ex-
perimentally measured g-factor of the monolayer. The

FIG. 4. Effective g-factors of the ground state A excitons
(X1s

A ) in WSe2, MoSe2, and MoTe2 as a function of layer
thickness from monolayer to the bulk limit. The g-factors
for 1L and bulk MoTe2 are taken from Refs. [11] and [19],
respectively, and were measured on a flake obtained from the
same crystal as used in the present work, and under the same
experimental conditions. Solid lines represent the theoretical
model as described in the main text.

deviation of the fits from the experimental data could be
explained by the neglected second-order term O(t2/∆2

v).
Apart from this, our model predicts the correct qualita-
tive trends of the g-factors observed in the experiment
as a function of layer thickness. The fitting parameter
[δgv − δgc− gu] is found to be equal to 0.1, 0.35 and 0.55
for WSe2, MoSe2 and MoTe2, respectively. A larger value
of this parameter in MoSe2 and MoTe2 points towards a
stronger interlayer interaction in these materials, when
compared to that of WSe2. This is in agreement with
the ab-initio calculations where the spin-valley coupling
of holes to a particular layer was found to be significantly
larger than (comparable to) the interlayer hopping in W-
based (Mo-based) compounds [38]. Furthermore, an in-
creased interlayer coupling has been reported when the
chalcogen atom changes from Se to Te [42]. The recent
observation of spatially indirect (“interlayer”) excitons in
bulklike MoTe2 [17] and MoSe2 [19], where a large inter-
layer interaction results in a significant oscillator strength
of interlayer excitons [3, 43] support our conclusions as
well. Indeed, we find that the strength of interlayer ex-
citons is much smaller in W-based TMDCs, which leads
to an absence of their signature in the optical spectra of
WS2 and WSe2 [19].

In summary, we have measured the Zeeman effect of
intralayer A excitons in semiconducting WSe2, MoSe2,
and MoTe2 crystals of variable thickness from mono-
layer to the bulk limit, using helicity-resolved magneto-
reflectance contrast spectroscopy under high magnetic
fields up to 30 T. The magnitude of the negative g-factors
of the A excitons displays a monotonic decrease as the
layer thickness is increased from monolayer to a bulklike
crystal. The effect is qualitatively explained with a model
considering thickness-dependent interlayer interactions,
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and band mixing effects. Our results represent the first
report devoted to the effect of the band hybridization
on magneto-optics of multilayer TMDCs, and will con-
tribute towards a better understanding of TMDCs along
with future device-based applications.
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Appendix A: Characterization of MoTe2 crystals of different thickness

Supplementary Fig. 5(a) shows Raman spectra of MoTe2 crystals with thicknesses ranging from 1L to 6L and
40 nm think bulklike material. The Raman-active modes A1g, E1

2g, B1
2g as well as low-frequency shear modes are

clearly visible [27, 28]. For initial characterization, µRC measurements on the flakes with layer thickness 1L to 4L
and the bulklike crystal are performed at low temperatures in the absence of magnetic field (B=0). Fig. 5(b) displays
the µRC spectra as a function of layer thickness. Features corresponding to the neutral (ground state 1s) A exciton
resonance X1s

A and a broad B exciton resonance X1s
B are identified in the spectra. A weak shoulder at the high-energy

side of X1s
A is associated with the excited state X2s

A exciton resonance. An additional feature at 1.183 eV for the
bulklike flake arises due to the optically active interlayer XIL exciton [17]. The derived excitonic transition energies
for the various observed features are shown in Fig. 5(c). The X1s

A resonance undergoes a red shift from 1.196± 0.001
eV to 1.1307 ± 0.001 eV as the layer thickness is increased from 1L to bulk as has been observed previously also in
WSe2 [25], MoSe2 [23], WS2 [3] and MoTe2 [26, 44]. At the same time, the energy difference between the X1s

A and
X2s

A resonances decreases from 127 meV to 25 meV as the layer thickness is increased from 2L to bulk (X2s
A is not

observed for the 1L flake). This behavior points towards a reduction of the excitonic binding energy with increasing
crystal thickness. It has been largely associated with an increasing dielectric constant when the layer thickness is
increased [45], and has also been observed previously in WSe2 [25] and MoSe2 [23]. It is worth mentioning that the
binding energies of the A excitons in 1L and bulklike MoTe2 have been calculated to be 710 meV [46] and 150 meV
[17], respectively.

Appendix B: Theory

Our purpose is to calculate the g-factors of A-excitons in K± valleys of multilayer TMDC. In order to do it, we
extend the 7-band k · p model [13, 34, 35] to N -layer case, derive the effective Hamiltonians and then calculate the
positions of energy bands as a function of magnetic field. Namely, we use the monolayer Bloch functions to construct
the basis states of a multilayer. Then, we compute first-order k · p and spin-orbital corrections to the Hamiltonian
of the system. Finally, we derive the effective valence and conduction bands Hamiltonians as a function of external
magnetic field, diagonalize them and find the bands g-factors. In further, we consider K+ point for brevity.

1. Monolayer

The 7-band model contains 3 additional bands below the valence band and 2 bands
above the conduction one [13, 34, 35]. The Bloch states in K+ point of monolayer are
|Ψv−3, s〉, |Ψv−2, s〉, |Ψv−1, s〉, |Ψv, s〉, |Ψc, s〉, |Ψc+1, s〉, |Ψc+2, s〉. The lower index n = v − 3, v − 2, . . . c + 1
indicates the band, s =↑, ↓ is the spin degree of freedom. The basis vectors are defined as a decomposition
|Ψn, s〉 = |Ψn〉|s〉. They can be classified according to irreducible representations of the symmetry group of the
crystal [34, 35]. All the group transformations are based on the in-plane 2π/3 rotation C3 and in-plane mirror
reflection σh. The states |Ψv−3, s〉, |Ψv, s〉, |Ψc, s〉, |Ψc+2, s〉 are even under mirror transformation, while the
|Ψv−2, s〉, |Ψv−1, s〉, |Ψc+1, s〉 are odd. The k · p perturbation terms couple only the states with the same parity.
Therefore the odd states do not affect g-factors of monolayer and can be excluded from this particular case. Taking
into account the transformation properties of the remaining states [13] C3|Ψv, s〉 = |Ψv, s〉, C3|Ψc, s〉 = ω∗|Ψc, s〉,
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FIG. 5. (a) Raman spectra for MoTe2 crystals with thickness ranging from monolayer (1L) to bulklike (40 nm). The typical
Raman-active modes A1g, E1

2g, B1
2g, as well as low-frequency shear modes are observed. The inset shows the optical microscope

image of a flake consisting of 2L and 3L thick areas, along with a line profile measured by atomic force microscopy used for the
height determination of the monolayer. (b) Micro-reflectance contrast (µRC) spectra obtained for MoTe2 as a function of layer
thickness with the ground state (X1s

A and X1s
B ) and first excited state X2s

A exciton transition. For bulk MoTe2, the interlayer
exciton resonance XIL is observed as well. (c) Transition energies of the measured exciton resonances as a function of layer
thickness, derived by modeling the spectra as explained in the text.

C3|Ψv−3, s〉 = ω|Ψv−3, s〉, C3|Ψc+2, s〉 = ω|Ψc+2, s〉 with ω = e2iπ/3, one obtains k · p matrix elements, presented in
Table II [13, 34, 35, 47]. Here we introduced notation k± = kx ± iky and a set of energies {En} in K+ point for

Hkp |Ψv, s〉 |Ψc, s〉 |Ψv−3, s〉 |Ψc+2, s〉

|Ψv, s〉 Ev γ3k+ γ2k− γ4k−

|Ψc, s〉 γ∗
3k− Ec γ5k+ γ6k+

|Ψv−3, s〉 γ∗
2k+ γ∗

5k− Ev−3 0

|Ψc+2, s〉 γ∗
4k+ γ∗

6k− 0 Ec+2

TABLE II. Non-zero k · p matrix elements of monolayer.

clarity. The spin-orbit interaction, considered as a perturbation, gives the correction σs∆n/2 to diagonal elements of
the table, with σs = +1(−1) for ↑ (↓) states. Applying the Löwdin procedure we calculate the energies of c and v
bands in K+ point

Ecs(B) = Ec + σs∆c/2 + gcµBB + σsµBB, Evs(B) = Ev + σs∆v/2 + gvµBB + σsµBB. (B1)

Here µB is the Bohr magneton, B is the strength of magnetic field B = Bez and

gv =
2m0

~2

[
|γ3|2

Ec − Ev
+

|γ2|2

Ev − Ev−3
+

|γ4|2

Ev − Ec+2

]
, (B2)

gc =
2m0

~2

[
|γ3|2

Ec − Ev
− |γ5|2

Ec − Ev−3
− |γ6|2

Ec − Ec+2

]
. (B3)

The last term in Ecs(B) and Evs(B) is a free electron Zeeman energy. In our study, we suppose the spin-orbital
corrections to electron’s magnetic moment are small [1].
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Note that the A-exciton transitions in K+ points are possible only in σ+ circularly polarized light. In magnetic
field their energy shifts by the value δE+ = (gc− gv)µBB. In K− point, transitions are active only in σ− polarization
and are characterised by the shift δE− = −δE+, which is a consequence of time reversal symmetry in the system.
Therefore the measurable exciton g-factor is

gexc = 2(gc − gv) = −4m0

~2

[
|γ5|2

Ec − Ev−3
+

|γ6|2

Ec − Ec+2
+

|γ2|2

Ev − Ev−3
+

|γ4|2

Ev − Ec+2

]
. (B4)

We use this result as a reference point for our next calculations.

2. Bilayer

A bilayer TMDC crystal with 2H stacking order can be presented as two monolayers separated by distance l, with
the second (upper) layer 180◦ rotated relative to the first (lower) one. It is convenient to arrange them in z = −l/2
and z = l/2 planes respectively. In this presentation the crystal has the inverse symmetry I with the inversion center
placed in the middle between the monolayers.

There are two subsets of basis Bloch states in K+ point of bilayer – from the lower and upper strata. The first

part {|Ψ(1)
n , s〉} coincides with the Bloch states of monolayer {|Ψn, s〉}, located in z = −l/2 plane. The second part

{|Ψ(2)
n , s〉} can be derived as |Ψ(2)

n , s〉 = pnK0I|Ψ(1)
n , s〉. Here K0 is the conjugation operator and pn = ±1 is the

parity of |Ψ(1)
n 〉. As a result the upper states are transformed as a complex conjugated to the lower ones. It leads to

opposite optical selection rules for such states. Namely, in K+ point of bilayer the first (second) layer absorbs only
σ+(σ−) polarized light respectively. Hence, the bilayer does not possess any optical dichroism, which is nothing but
a manifestation of the inversion symmetry of the crystal.

In contrast to the monolayer case, the odd states of bilayer give non-zero k · p contributions. Therefore, taking into
account their rotational C3|Ψv−2, s〉 = ω∗|Ψv−2, s〉, C3|Ψv−1, s〉 = ω|Ψv−1, s〉, C3|Ψc+1, s〉 = ω|Ψc+1, s〉 and inversion
properties we derive the Table III and Table IV.

Hkp |Ψ(1)
v , s〉 |Ψ(2)

v , s〉 |Ψ(1)
c , s〉 |Ψ(2)

c , s〉 |Ψ(1)
v−3, s〉 |Ψ(1)

c+2, s〉 |Ψ(2)
v−3, s〉 |Ψ(2)

c+2, s〉

|Ψ(1)
v , s〉 Ev t γ3k+ rk− γ2k− γ4k− ak+ bk+

|Ψ(2)
v , s〉 t Ev rk+ γ3k− ak− bk− γ2k+ γ4k+

|Ψ(1)
c , s〉 γ∗

3k− r∗k− Ec uk+ γ5k+ γ6k+ 0 0

|Ψ(2)
c , s〉 r∗k+ γ∗

3k+ uk− Ec 0 0 γ5k− γ6k−

TABLE III. The k · p matrix elements of bilayer between even states.

Note that the diagonal matrix elements in the case of bi- and other multilayers should contain small corrections
δEn, which appear from the crystal field of adjacent layers. However, according to our rough estimation such diagonal
terms produce less than 5% deviation to the g-factors of multilayers, considered here. Therefore, for the clarity
reasons we put δEn = 0 for this particular study, remembering, however, that these terms can give non-negligible
corrections in other cases. We also introduced the admixing parameter t between valence bands of the first and second
layers. Then we add the spin orbit-interaction, apply the Löwding partitioning to corresponding matrix elements and
derive the effective valence and conduction band Hamiltonians. The valence band Hamiltonian, written in the basis

{|Ψ(1)
v , s〉, |Ψ(2)

v , s〉}, reads

H(2)
vs =

[
Ev + σs

∆v

2 t
t Ev − σs∆v

2

]
+

[
gv − δgv + σs 0

0 −gv + δgv + σs

]
µBB. (B5)

The conduction band Hamiltonian, written in the basis {|Ψ(1)
c , s〉, |Ψ(2)

c , s〉} is

H(2)
cs =

[
Ec + σs

∆c

2 uk+

uk− Ec − σs∆c

2

]
+

[
gc − δgc + σs 0

0 −gc + δgc + σs

]
µBB. (B6)
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Hkp |Ψ(1)
v−2, s〉 |Ψ(1)

v−1, s〉 |Ψ(1)
c+1, s〉 |Ψ(2)

v−2, s〉 |Ψ(2)
v−1, s〉 |Ψ(2)

c+1, s〉

|Ψ(1)
v , s〉 0 0 0 ck− dk+ 0

|Ψ(2)
v , s〉 −ck+ −dk− 0 0 0 0

|Ψ(1)
c , s〉 0 0 0 fk+ 0 jk−

|Ψ(2)
c , s〉 −fk− 0 −jk+ 0 0 0

TABLE IV. The k · p matrix elements of bilayer between even and odd states.

Note that spin-up and spin-down states can be considered separately. The parameters δgv and δgc are the corrections
to monolayer’s g-factors of valence and conduction bands

δgv =
2m0

~2

[
|a|2

Ev − Ev−3
− |b|2

Ec+2 − Ev
− |c|2

Ev − Ev−2
+

|d|2

Ev − Ev−1
+

|r|2

Ec − Ev

]
, (B7)

δgc =
2m0

~2

[
|f |2

Ec − Ev−2
+

|j|2

Ec+1 − Ec
− |r|2

Ec − Ev

]
. (B8)

Technically, these corrections originate from additional non-zero k · p matrix elements between the states of bilayer,
allowed by the symmetry. The expressions for valence band energies up to O(B) terms are

EI
vs = Ev + σs

√
∆2
v

4
+ t2 +

(gv − δgv)∆v√
∆2
v + 4t2

µBB + σsµBB, (B9)

EII
vs = Ev − σs

√
∆2
v

4
+ t2 − (gv − δgv)∆v√

∆2
v + 4t2

µBB + σsµBB. (B10)

The following eigenstates are

|ΦI
vs〉 = cos(θ/2)|Ψ(1)

v , s〉+ σs sin(θ/2)|Ψ(2)
v , s〉, (B11)

|ΦII
vs〉 = −σs sin(θ/2)|Ψ(1)

v , s〉+ cos(θ/2)|Ψ(2)
v , s〉, (B12)

where we introduced {cos θ, sin θ} = {∆v/
√

∆2
v + 4t2, 2t/

√
∆2
v + 4t2}. The first state corresponds mostly to the

optical transitions in σ+ polarized light, while the second one is active predominantly in σ− polarization. The
intensity of emitted light in K+ point is the same in both polarizations, which reflects the presence of inversion
symmetry of the bilayer crystal. The new conduction band energies are

EI
cs = Ec + σs

∆c

2
− σsguµBB + (gc − δgc)µBB + σsµBB, (B13)

EII
cs = Ec − σs

∆c

2
− σsguµBB − (gc − δgc)µBB + σsµBB, (B14)

where gu = 2m0u
2/~2∆c. The conduction band eigenstates with the same energies coincide with |Ψ(1)

c , s〉 and |Ψ(2)
c , s〉,

up to O(k2) order. An analysis of new possible interband transitions demonstrates two A-exciton lines in K+ point
of the bilayer. They are active in σ+ and σ− polarisations respectively, and have opposite energy shifts in magnetic

field δE+ = −δE− = g
(2)
excµBB/2. Here

g(2)
exc = −2gu + 2(gc − δgc)− 2(gv − δgv)

∆v√
∆2
v + 4t2

(B15)

is the A-exciton g-factor of the bilayer. We rewrite this result up to O(t2/∆2
v) order

g(2)
exc = gexc + 2

[
δgv − δgc − gu

]
+

4t2

∆2
v

(
gv − δgv

)
, (B16)

where gexc is the A-exciton g-factor of the monolayer. The quantitative estimate of δgc and δgv deviations can be done
in numerical simulations and is beyond the scope of this study. However, we will use the experimental fact that for a
bilayer δgv − δgc − gu > 0 and demonstrate the self-consistency the other multilayer g-factors with this assumption.
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3. Trilayer

We calculate the g-factors of a trilayer in the same way as in the bilayer. We introduce the three sets of basis states

{|Ψ(1)
n 〉}, {|Ψ(2)

n 〉}, {|Ψ(3)
n 〉}, which belong to the layers z = −l, z = 0 and z = l respectively. In this case the crystal

has the mirror symmetry, with the mirror plane z = 0. This helps us to determine the following symmetry relations
between the states

|Ψ(3)
n 〉 = pnσh|Ψ(1)

n 〉, |Ψ(2)
n 〉 = pnσh|Ψ(2)

n 〉. (B17)

The states from 1-st and 3-d layer have the same rotational properties as in monolayer. The rotational properties
of the states from 2-nd layer are complex conjugated to previous ones. Therefore the k · p matrix elements can be
restored from the known result

〈Ψ(2)
n |Hkp|Ψ(3)

m 〉 = pnpm〈Ψ(2)
n |Hkp|Ψ(1)

m 〉, (B18)

〈Ψ(3)
n |Hfkp|Ψ(3)

m 〉 = pnpm〈Ψ(1)
n |Hkp|Ψ(1)

m 〉. (B19)

We also assume 〈Ψ(1)
n |Hkp|Ψ(3)

m 〉 = 0 because of the large distance 2l between 1-st and 3-d layers. Note that the 1-st
and 3-d layers in K+ point absorb predominantly σ+ polarized light, while the 2-nd layer absorbs σ− polarized light.
The Hamiltonian of trilayer TMDC can be written separately for spin-up and spin-down states. The Hamiltonian for

valence bands, written in the basis {|Ψ(1)
v , s〉, |Ψ(2)

v , s〉, |Ψ(3)
v , s〉}, is

H(3)
vs =

 Ev + σs
∆v

2 t 0
t Ev − σs∆v

2 t
0 t Ev + σs

∆v

2

+

 gv − δgv + σs 0 ḡv
0 −gv + 2δgv + σs 0
ḡv 0 gv − δgv + σs

µBB. (B20)

The Hamiltonian for conduction bands, written in the basis {|Ψ(1)
c , s〉, |Ψ(2)

c , s〉, |Ψ(3)
c , s〉}, reads

H(3)
cs =

 Ec + σs
∆c

2 uk+ 0
uk− Ec − σs∆c

2 uk−
0 uk+ Ec + σs

∆c

2

+

 gc − δgc + σs 0 ḡc
0 −gc + 2δgc + σs 0
ḡc 0 gc − δgc + σs

µBB. (B21)

Here we introduced

ḡc =
2m0

~2

[
|f |2

Ec − Ev−2
+

|j|2

Ec+1 − Ec
+

|r|2

Ec − Ev

]
, (B22)

ḡv =
2m0

~2

[
|r|2

Ev − Ec
− |a|2

Ev − Ev−3
− |b|2

Ev − Ec+2
− |c|2

Ev − Ev−2
+

|d|2

Ev − Ev−1

]
. (B23)

The new energy of conduction bands and corresponding eigenstates of such systems are

EI
cs = Ec − σs

∆c

2
+ (−gc + 2δgc + σs − 2guσs)µBB, |ΦI

cs〉 = |Ψ(2)
c , s〉;

EII
cs = Ec + σs

∆c

2
+ (gc − δgc + σs − ḡc)µBB, |ΦII

cs〉 =
1√
2

(
|Ψ(1)
c , s〉 − |Ψ(3)

c , s〉
)

;

EIII
cs = Ec + σs

∆c

2
+ (gc − δgc + σs − 2guσs + ḡc)µBB, |ΦIII

cs 〉 =
1√
2

(
|Ψ(1)
c , s〉+ |Ψ(3)

c , s〉
)
.

The energies and normalised eigenstates of valence bands up to O(t2/∆2
v) are

EI
vs = Ev − σs

∆v

2
− 2

σst
2

∆v
+ (−gv + 2δgv + σs)µBB, |ΦI

vs〉 =
(σst

∆v
|Ψ(1)
v , s〉 − |Ψ(2)

v , s〉+
σst

∆v
|Ψ(1)
v , s〉

) ∆v√
∆2
v + 2t2

;

EII
vs = Ev + σs

∆v

2
+ (gv − δgv + σs − ḡv)µBB, |ΦII

vs〉 =
1√
2

(
|Ψ(1)
v , s〉 − |Ψ(3)

v , s〉
)

;

EIII
vs = Ev + σs

∆v

2
+ 2

σst
2

∆v
+ (gv − δgv + σs + ḡv)µBB, |ΦIII

vs 〉 =
(
|Ψ(1)
v , s〉+ 2

σst

∆v
|Ψ(2)
v , s〉+ |Ψ(1)

v , s〉
) ∆v√

2∆2
v + 4t2

.
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The lowest energy transitions in K+ point occur between new states with the same upper index. The first transition
is in σ− polarization, while the two others are in σ+. The g-factors and normalised intensities of these transitions are

gI =
1

µB

d

dB
(EI

c↓ − EI
v↓) = −(gc − gv + 2δgv − 2δgc − 2gu), J I =

∆2
v

∆2
v + 2t2

;

gII =
1

µB

d

dB
(EII

c↑ − EII
v↑) = gc − gv + δgv − δgc + ḡv − ḡc, J II = 1;

gIII =
1

µB

d

dB
(EIII

c↑ − EIII
v↑ ) = gc − gv + δgv − δgc − 2gu − ḡv + ḡc, J III =

∆2
v

∆2
v + 2t2

.

Therefore, since these three lines can not be resolved we introduce the average A-exciton g-factor

g(3)
exc = gexc +

8

3

[
δgv − δgc − gu

]
+

4t2

9∆2
v

(
δgc − δgv + 4gu + 3ḡv − 3ḡc

)
. (B24)

4. Quadrolayer

We introduce four sets of Bloch states {|Ψ(1)
n , s〉},{|Ψ(2)

n , s〉},{|Ψ(3)
n , s〉},{|Ψ(4)

n , s〉} in K+ point of a quadrolayer.
They correspond to z = −3l/2, z = −l/2, z = l/2 and z = 3l/2 planes respectively. The quadrolayer possesses the
inversion symmetry, which results into the following relations between the Bloch states

|Ψ(4)
n 〉 = pnK0I|Ψ(1)

n 〉, |Ψ(3)
n 〉 = pnK0I|Ψ(2)

n 〉. (B25)

Such relations allow to calculate k · p matrix elements

〈Ψ(4)
n |Hkp|Ψ(3)

m 〉 = pnpm〈Ψ(1)
n |Hkp|Ψ(2)

m 〉, (B26)

〈Ψ(4)
n |Hkp|Ψ(4)

m 〉 = pnpm〈Ψ(1)
n |Hkp|Ψ(1)

m 〉. (B27)

We also suppose that 〈Ψ(4)
n |Hkp|Ψ(2)

m 〉 = 〈Ψ(4)
n |Hkp|Ψ(1)

m 〉 = 〈Ψ(3)
n |Hkp|Ψ(1)

m 〉 = 0 because the large distance between

the layers. The Hamiltonian for valence bands, written in the basis {|Ψ(1)
v , s〉, |Ψ(2)

v , s〉, |Ψ(3)
v , s〉, |Ψ(4)

v , s〉}, can be

presented as a sum of non-magnetic and magnetic parts H
(4)
vs = H(4)

vs +M(4)
vs µBB, with

H(4)
vs =


Ev + σs

∆v

2 t 0 0
t Ev − σs∆v

2 t 0
0 t Ev + σs

∆v

2 t
0 0 t Ev − σs∆v

2

 (B28)

and

M(4)
vs =

 gv − δgv + σs 0 ḡv 0
0 −gv + 2δgv + σs 0 −ḡv
ḡv 0 gv − 2δgv + σs 0
0 −ḡv 0 −gv + δgv + σs

 . (B29)

The Hamiltonian for conduction bands, written in the basis {|Ψ(1)
c , s〉, |Ψ(2)

c , s〉, |Ψ(3)
c , s〉, |Ψ(4)

c , s〉}, has also the struc-

ture H
(4)
cs = H(4)

cs +M(4)
cs µBB. The corresponding matrices are

H(4)
cs =


Ec + σs

∆c

2 uk+ 0 0
uk− Ec − σs∆c

2 uk− 0
0 uk+ Ec + σs

∆c

2 uk+

0 0 uk− Ec − σs∆c

2

 , (B30)

M(4)
cs =

 gc − δgc + σs 0 ḡc 0
0 −gc + 2δgc + σs 0 −ḡc
ḡc 0 gc − 2δgc + σs 0
0 −ḡc 0 gc − δgc + σs

 . (B31)
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Note that, the valence and conduction band Hamiltonians for N > 4 multilayers have the same pentadiagonal strucure
of their matrices. No one additional parameters appears for larger TMDC crystals. The A-exciton g-factor is derived
in analogues way as it is done for bi- and trilayer. Since the expressions for eigenvalues and eigenstates are quite
lengthy we present only the final result

g(4)
exc = gexc + 3

[
δgv − δgc − gu

]
+O

( t2
∆2
v

)
. (B32)

5. Bulk

The effective Hamiltonian of the bulk can be constructed in the same way as in bi-, tri- and quadrolayer. Like in
previous case, the spin-up and spin-down states can be considered separately. The effective Hamiltonian for valence

band written in infinite basis {. . . |Ψ(j−1)
v , s〉, |Ψ(j)

v , s〉, |Ψ(j+1)
v , s〉 . . . } has the matrix elements[

H(∞)
vs

]
j,j

= Ev + (−1)j+1
[
σs

∆v

2
+ (gv − 2δgv)µBB

]
+ σsµBB, (B33)[

H(∞)
vs

]
j,j+1

=
[
H(∞)
vs

]
j+1,j

= t, (B34)[
H(∞)
vs

]
j,j+2

=
[
H(∞)
vs

]
j+2,j

= (−1)j+1ḡvµBB. (B35)

The Hamiltonian for conduction band written in the basis {. . . |Ψ(j−1)
c , s〉, |Ψ(j+1)

c , s〉, |Ψ(j+1)
c , s〉, . . . } has the matrix

elements [
H(∞)
cs

]
j,j

= Ec + (−1)j+1
[
σs

∆c

2
+ (gc − 2δgc)µBB

]
+ σsµBB, (B36)[

H(∞)
cs

]
2j±1,2j

= uk+,
[
H(∞)
cs

]
2j,2j±1

= uk−, (B37)[
H(∞)
cs

]
j,j+2

=
[
H(∞)
cs

]
j+2,j

= (−1)j+1ḡcµBB. (B38)

We solve the eigenvalues problem for a bulk in the following way. Let us consider a finite size N = 2M multilayer with
periodic boundary conditions. In this case, all the eigenstates of the crystal can be parameterised by a wave-vector
kn = πn/Ml. Hereafter, we omit subscript n for brevity and write k instead of kn.

We are looking for the valence band solutions in the form

|Φkvs〉 =
1√
M

M∑
m=1

e2ikml
[
Avs(k)|Ψ(2m−1)

v , s〉+Bvs(k)|Ψ(2m)
v , s〉

]
. (B39)

This ansatz reduces the eigenvalues problem to

E(k)Avs(k) =
{
Ev + σs

∆v

2
+
[
gv − 2δgv + σs + 2ḡv cos(2kl)

]
µBB

}
Avs(k) + 2te−ikl cos(kl)Bvs(k), (B40)

E(k)Bvs(k) =
{
Ev − σs

∆v

2
−
[
gv − 2δgv − σs + 2ḡv cos(2kl)

]
µBB

}
Bvs(k) + 2teikl cos(kl)Avs(k). (B41)

The spectrum of the system up to O(B) order is

E±vs(k) = Ev + σsµBB ±
1

2

√
∆2
v + 16t2 cos2(kl)± σs

∆v[gv − 2δgv + 2ḡv cos(2kl)]√
∆2
v + 16t2 cos2(kl)

µBB. (B42)

Since we are interested in A-exciton transitions, we consider only the high energy bands. The corresponding eigenstates
up to zeroth order in magnetic field have the form[

A+
v↑(k)

B+
v↑(k)

]
=

[
cos θk

ei
kc
2 sin θk

]
,

[
A+
v↓(k)

B+
v↓(k)

]
=

[
e−i

kc
2 sin θk

cos θk

]
, (B43)
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where {cos(2θk), sin(2θk)} = {∆v/
√

∆2
v + 16t2 cos2(kl), 4t/

√
∆2
v + 16t2 cos2(kl)}. The solutions for conduction band

states can be written as

|Φkcs,+〉 =
1√
M

M∑
m=1

e2ikml|Ψ(2m−1)
v , s〉, |Φkcs,−〉 =

1√
M

M∑
m=1

e2ikml|Ψ(2m)
c , s〉. (B44)

Their spectrum of energies is

E±cs(k) = Ec ± σs
∆c

2
± (gc − 2δgc + σs)µBB − 4σsguµBB cos2(kl)± 2ḡcµBB cos(2kl). (B45)

A direct calculation demonstrates that A-exciton optical transitions are possible only between {|Φkv↑〉, |Φkc↑,+〉} and

{|Φkv↓〉, |Φkc↓,−〉} pairs of states, with the same wave-vector k. The corresponding transitions active in σ+ and σ−

polarisations respectively and have the same intensities

J(k) = |A+
v↑(k)|2 = |B+

v↓(k)|2 =
1

2

(
1 +

∆v√
∆2
v + 16t2 cos2(kl)

)
. (B46)

The g-factors of these transitions have opposite signs

g+(k) = −g−(k) = gc − 2δgc − 4gu cos2(kl) + 2ḡc cos(2kl)− ∆v[gv − 2δgv + 2ḡv cos(2kl)]√
∆2
v + 16t2 cos2(kl)

. (B47)

Next, the averaging of the g-factor with corresponding weights gives

g(∞)
exc = gexc + 4[δgv − δgc − gu] +

4t2

∆2
v

[2gv + gu − 4δgv − ḡc + 3ḡv]. (B48)
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P.C.M. Christianen, G. Deligeorgis, S. Anghel, L. Ku-
lyuk, and D.K. Maude, Nano Lett. 15, 4387 (2015).

[13] G. Wang, L. Bouet, M.M. Glazov, T. Amand,
E.L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek,
2D Mater. 2, 034002 (2015).

[14] G. Plechinger, P. Nagler, A. Arora, A. Granados del
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89, 205311 (2014).
[43] T. Deilmann and K.S. Thygesen, Nano Lett. 18, 2984

(2018).
[44] C. Ruppert, O. B. Aslan, and T. F. Heinz, Nano Lett.

14, 6231 (2014).
[45] T. Cheiwchanchamnangij and W. R .L. Lambrecht,

Phys. Rev. B 85, 205302 (2012).
[46] A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012).
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