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Abstract 

The growth of WSe(2-x)Tex alloys by molecular beam epitaxy has been demonstrated for the first time to 

investigate the phase transition from the semiconducting 2H phase to the semi-metallic 1T’ phase as a 

function of Te concentration. Up to 14% Te incorporation, stable alloys in the semiconducting 2H phase 

are achieved while above 79% Te incorporation, stable alloys in the semi-metallic 1T’ phase are 

obtained. Our results indicate the MBE-grown WSe(2-x)Tex alloys exhibit a miscibility gap from 14% to 

79% Te concentrations at a growth temperature of 250 °C, a temperature compatible with direct vertical 

back-end-of-line integration. This miscibility gap results in phase separation of two different alloys, both 

with different composition and crystal structure. While the alloying of small Te concentrations does 

indeed result in a desired reduction of the semiconducting bandgap, the phase separation above 14% Te 

incorporation prohibits bandgap tuning for a wider range of applications. These results highlight the 

competing energies and kinetics associated with producing uniform WSe(2-x)Tex alloys. 

 

Introduction 

With the end of conventional silicon-based device innovation on the horizon and the explosion of 

research focusing on novel materials for next-generation memory and logic circuitry, two-dimensional 

transition metal dichalcogenides (TMDs) have emerged as viable candidates for the next-generation of 

low-power devices due to their wide range of electronic properties and monolayer scalability.1-4 Until 

recently, the majority of research has focused on the fundamental investigation of the electronic 

properties and device applications using large-area bulk crystals grown at high temperature over a long 

growth period.5-8 These studies have provided valuable insight into the unique physical, electronic, and 

quantum properties of TMDs, which can be exploited for innovative sensors, transistors, and energy 

storage.9-13 As these materials are developed further, the semiconductor industry continues to search for 

new ways to tune the electronic properties for optimized performance. One method currently being 

investigated is the phase-engineering of TMDs, which permits control over the band structure and is 

therefore a critical engineering challenge to overcome before commercially viable novel device 

applications based on TMDs can be realized.14 

TMDs with a bandgap below 1 eV are of interest for prospective applications, in particular, for 

tunnel-field-effect-transistors (TFETs), where a sub-60 mV/dec subthreshold swing can be achieved 

without the fundamental switching constraints of thermionic emission.15-16 However, low on-currents 
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remain a significant issue for TFET devices and bandgap engineering must be optimized to enhance the 

on-state current. Of course, the probability of tunneling between source and drain regions can be 

amplified by reducing the bandgap of the semiconducting TMD in the device,17-19 which can possibly be 

achieved by strategically forming ternary alloys. Alloying for band gap tuning has been successfully 

demonstrated in III-V materials such as InxGa1-xAs and GaAsxP1-x alloys, but interfacial defects and 

alloy scattering have resulted in significant challenges.20-22 In recent years, mixed-chalcogen or mixed-

metal TMDs have been synthesized using a number of deposition methods, usually at high growth 

temperatures (> 800 °C) where the Gibbs free energy of mixing (ΔGmix = ΔHmix – TΔSmix) is dominated 

by the entropy (ΔS) rather than the enthalpy (ΔH) of mixing. Specifically, wide bandgap semiconductors 

based on group VIB transitional metals (Mo and W) have been the focus of many previous reports. Both 

mixed-metal TMD alloys (i.e. MoxW1-xS2 or MoxW1-xSe2)
23-25 and mixed-chalcogen TMD alloys (i.e. 

MoSxSe1-x) have been investigated,26-28 where the bandgap varies by a few hundred meV over the stable 

composition range of each alloy.  

A recent study performed by Yu et al. demonstrated bandgap control of 2H-WSe(2-x)Tex monolayers 

between 1.67 eV and 1.44 eV over the stable composition range up to 50% Te incorporation. However, 

alloys with a Te concentration greater than 50% exhibited phase separation into a semi-metallic 1T’ 

phase and a semiconducting 2H phase.31 These results are somewhat promising for bandgap engineering, 

but a bandgap below 1 eV has not yet been achieved, limiting their applicability in TFET applications. 

Furthermore, the chemical vapor transport (CVT) growth technique required extremely long growth 

periods and high growth temperatures (~900 °C), which limits the range of potential applications due to 

typical thermal restrictions of the substrate or back-end-of-line circuitry. Conversely, very few studies 

investigating the crystal formation of thin-film TMD alloys have employed molecular beam epitaxy, 

where the much lower growth temperatures potentially enable direct integration of these TMD alloys 

into the back-end-of-line. MBE provides a number of advantages to closely investigate the growth of 

WSe(2-x)Tex alloys, including the ultra-high vacuum deposition environment, low growth temperatures, 

high purity sources, and precise control of the elemental beam flux. These advantages allow for 

controlled deposition that can enable layer-by-layer thickness control directly on the substrate, even 

down to the monolayer.  

2H-WSe2 is a semiconductor that possesses trigonal prismatic coordination and a direct band gap of 

2.4 eV in the monolayer form and an indirect bandgap of 1.4 eV in bulk. Although it has been well 

established that WTe2 stabilizes in the distorted octahedral (1T’) phase and possesses semi-metallic 

properties,29 a recent theoretical study has predicted a 0.63 eV bandgap in the monolayer form of WTe2 

in the metastable 2H phase.30 These results suggest a potential route for obtaining a semiconducting 

TMD with a sub-1 eV bandgap when alloying WTe2 with Se. Figure 1(a,c) shows the chalcogen-metal 

coordination and (010) side view of 2H-WSe2, respectively, where the uniform bond lengths result in a 

middle layer with uniform W spacing. Figure 1(b,d) shows the 1T’ phase of WTe2, where the distorted 

structure results in W-W distances of 2.86 Å and 4.4 Å. This atomic coordination of WTe2 produces an 

electronic structure where the valence and conduction bands exhibit a 0.3 eV overlap, forming the semi-

metal. 
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Figure 1: Ball and stick models showing (a) the trigonal prismatic coordination of 2H-WSe2 and (b) the 

distorted octahedral coordination of 1T’-WTe2. Cross-section view of bilayer (c) 2H-WSe2 and (d) 1T’-WTe2. 

 

Experimental details 

The growth of WSe(2-x)Tex presented in this research was performed in a VG-Semicon V80H MBE 

system equipped with an in-situ reflection high-energy electron diffraction (RHEED) tool for real-time 

surface analysis.32 A single-filament Knudsen effusion cell (k-cell) was used for selenium evaporation, a 

dual-filament, thermal cracker was utilized for tellurium evaporation, and a vertical e-beam evaporator 

was used for tungsten deposition. The WSe(2-x)Tex films were grown directly on highly-oriented 

pyrolytic graphite (HOPG), CVT-grown MoS2, and Bi2Se3 grown by MBE on sapphire (0001) at a 

growth temperature of 250 C. A nude ion gauge positioned at the focal point of deposition measured 

the chalcogen fluxes, while the W beam flux was calculated using blanket depositions and thickness 

measurements. A systematic increase in Te concentration of the alloys was achieved by keeping the flux 

pressures of Te and W constant at 8 × 10-7 mbar and 4 × 10-9 mbar, respectively, while incrementally 

reducing the Se flux pressure from 1 × 10-8 mbar to 1 × 10-9 mbar. The pure WSe2 and WTe2 reference 

samples were also grown at 250 C using only the primary chalcogen flux, which was maintained at flux 

pressures of 6 × 10-8 mbar and 8 × 10-7 mbar, respectively.  Prior to deposition, the HOPG and MoS2 

substrates were exfoliated immediately before loading into the UHV system and annealed to 400 °C for 

one hour, providing a clean surface free of environmental contaminants and oxidation.33-34 The Bi2Se3 

substrates were grown on sapphire (0001) using a two-step growth method at 320 °C (the growth details 

can be found in previous publications).35-36 All heaters (k-cell, e-beam, and substrate) were maintained 

at the growth temperature for two hours to allow ample time for outgassing and temperature 

stabilization. To initiate growth, the elemental source shutters were opened simultaneously, and 

throughout the duration of the deposition, a beam-interruption growth technique was utilized for the W 

flux, where the shutter was cycled between open and closed for 30 s and 90 s, respectively. Due to the 

slow growth rate of the beam interrupted films, a six hour growth period was needed to form a film ~3 

Page 3 of 12 AUTHOR SUBMITTED MANUSCRIPT - 2DM-104260.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 4 

nm thick (four monolayers). More information on the preparation of the substrates and the effectiveness 

of beam-interrupted growth for WSe2 and WTe2 can be found in previous publications.37-38 

X-ray photoelectron spectroscopy (XPS) measurements, including valence band spectra, were 

carried out using a monochromated Al K source and an Omicron EA125 hemispherical analyzer with a 

spectral resolution of ±0.05 eV. An analyzer acceptance angle of 8°, takeoff angle of 45°, and pass 

energy of 15 eV were used in this study. Additional information about the XPS system can be found in 

previously published literature.39 The integrated intensities of relevant chemical states in the XPS core 

level spectra were used to calculate the stoichiometry of the films using the appropriate relative 

sensitivity factors for the W 4f, Te 4d, and Se 3d core levels (2.959, 1.388, 0.722, respectively). The 

core levels were deconvoluted using version 1.36 of the curve-fitting software AAnalyzer.40 An active 

Shirley-Sherwood background was subtracted when fitting all spectra. Metallic chemical states were fit 

using an asymmetric double-Lorentzian line shape, while non-metallic chemical states were fit with 

Voigt (symmetric) line shapes.41 Low-energy electron diffraction (LEED) patterns and scanning 

tunneling microscopy/spectroscopy (STM/S) were acquired in a separate Omicron tool from where the 

XPS was measured. LEED and RHEED used bare MoS2 and Bi2Se3 patterns for reference. Raman 

spectra were acquired using an average of 20 sweeps where a Renishaw confocal Raman system was 

employed with an excitation wavelength of 532 nm, laser power of 0.22 mW, and spot size of 500 nm. 

Results and Discussion 

Due to the relatively low growth temperature employed in MBE, both the kinetics of the atoms on 

the substrate and thermodynamics of the crystal formation must be considered when optimizing a 

deposition process. The sticking coefficient of elemental beam fluxes decreases and the desorption 

coefficient increases with increasing substrate temperature.42 Generally speaking, this results in a 

decreased nucleation rate at higher substrate temperatures. Furthermore, by raising the temperature of 

the substrate, the probability of bond scission and forming more thermodynamically favorable crystals is 

improved. 

A previous report37 showed the MBE growth of WTe2 involves a dominant density of Te2 dimers in 

the deposition beam flux (~95%), which required the use of an extremely high Te:W flux pressure ratio 

(200:1) along with a periodically interrupted W flux to produce stoichiometric WTe2 films due to the 

low flux density of atomic Te. Although the density of Te2 dimers can be reduced with the use of a high-

temperature cracking region, they still present a significant kinetic challenge when growing Te-based 

crystals at substrate temperatures below the thermal energy threshold needed to dissociate Te-Te dimers 

on the surface (259.8 ± 5 kJ/mol).43 Se6 clusters are the dominant species in the Se vapor phase (~47%), 

but they do not detrimentally dominate the atomic flux pressure like the Te2 dimers.44 This creates a 

growth condition that only requires a Se:W flux pressure ratio of 20:1 to produce stoichiometric WSe2 in 

contrast with the extremely high Te:W flux pressure ratio required for stoichiometric WTe2. This 

introduces an imbalance when growing WSe(2-x)Tex alloys by saturating the substrate surface with Te2 

dimers that do not participate in the growth. Furthermore, the enthalpy of formation of W-Se is more 

energetically favorable than W-Te (185.3 ± 5.5 kJ/mol compared to 38 ± 5 kJ/mol, respectively),45-46 

which further exacerbates the challenge of incorporating Te into mixed chalcogen alloys. 
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To investigate the evolution of the physical and electronic properties of WSe(2-x)Tex alloys, a series 

of samples were grown with the Te concentration varying from 0% to 100%. Shown in Figure 2, the 

valence band offset (VBO) for the WSe2 reference film was determined to be ~0.66 eV and is consistent 

with a near-midgap Fermi level in multilayer WSe2 (bandgap ≅ 1.4 eV).38 Due the aforementioned vast 

differences in dissociation and formation energies, small amounts of Te were incorporated into the 

WSe(2-x)Tex films only after significantly reducing the Se flux while maintaining a high Te flux. The 

VBO is concomitantly reduced to 0.61 eV and 0.58 eV in alloys containing 5% and 10% Te 

concentrations, respectively. However, the inset in Figure 2 shows an appreciable density of states are 

generated at the Fermi level when the Te concentration is 16% in addition to the density of states 

detected away from the Fermi level associated with the valence band edge of semiconducting WSe2. All 

Te concentrations higher than 16% (green region) exhibit DOS up to the Fermi energy consistent with a 

semi-metallic electronic structure. This indicates that WSe(2-x)Tex alloys grown at 250 °C begin to phase 

separate at a Te concentration somewhere between 10% and 16%.  

 Figure 3(a) shows an STM image of sub-monolayer WSe1.68Te0.32, where the initial nucleation 

along the HOPG step edges results in small grains tens of nanometers across. STS data obtained from 

the same sample (Figure 3(b)) shows a DOS near the Fermi level, which is consistent with the XPS 

results (inset in Figure 2).  

  Figure 2: Plot of the valence band offset vs Te concentration over a wide range of WSe(2-x)Tex alloys.  The 

blue region represents alloys in the semiconducting 2H phase, and the green region represents alloys that 

exhibit metallic characteristics. The inset shows the valence band spectra of the two stoichiometric references 

along with the 16% Te alloy, where two stages of linear increase in intensity reflect both the semiconducting 

2H alloy and the semi-metallic 1T’ alloy.  The valence band offset and the 95th percentile confidence intervals 

to the linear regression that provided the valence band offset for the WSe2, 16% Te film, and WTe2 film, 

respectively, are (WSe2: 0.66 eV, 0.72 eV, 0.59 eV, 16%Te: 0.56 eV, 0.62 eV, 0.50 eV, WTe2: -0.03 eV, 0.00 

eV, -0.05 eV). These were obtained from a linear regression to the data, as shown. 
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 6 

 Figure 3:(a) Large-area STM image of sub-monolayer WSe1.68Te0.32/HOPG showing the initial nucleation 

occurring at the step edges of the HOPG substrate. Select grains are outlined as a guide to the reader. (b) STS 

data obtained from the same sample showing a measureable density of states near the Fermi level indicating 

the presence of the semi-metallic1T’ phase. (c) Zoomed-in image where the star indicates the point the STS 

data was acquired.  

Detailed XPS analysis of the Se 3d, Te 3d, and W 4f core level spectra was performed to investigate 

the evolution of the chemical states in the ternary alloys as a function of composition. In Figure 4(a), a 

broad peak was detected in the Te 3d core level spectra at ~573.2 eV from each of the ternary alloys. 

This chemical state exhibits a higher BE than the chemical state detected in the Te 3d core level in the 

WTe2 reference (labelled 100%) and indicates the presence of an alloy in the semiconducting 2H phase. 

Furthermore, as the Te concentration is increased to 16%, a second, asymmetric feature at lower binding 

energy was deconvolved from the corresponding Te 3d spectra. The asymmetric double Lorentzian line 

shape and lower BE indicates the presence of a Te-rich, metallic-like state, which is consistent with the 

semi-metallic 1T’ phase as also detected in the corresponding valence band spectra. Thus, we attribute 

this peak to the formation of a 1T’ phase alloy. 

The Te 3d core level can be used to calculate the miscibility gap of these films. Using the intensities 

of the 1T’ and 2H chemical states from the 16%, 32%, and 67% Te concentration samples using a self-

consistent fitting procedure, the binding energy of the 1T’ and 2H phases are stable at 572.75 eV and 

573.40 eV, respectively. The concentration of the two phases in the Te 3d core level were employed to 

determined that the 1T’ phase is composed of 79% Te (WSe0.42Te1.58) and the 2H phase is composed of 

14% Te (WSe1.72Te0.28). These stoichiometries represent the endpoints of the miscibility gap of these 

alloys at this growth temperature and indicates an energetically unfavorable enthalpy of mixing for 

WSe(2-x)Tex alloys. Figure 4(b) shows the Se 3d core level spectra obtained from the range of alloys, 

where the emergence of an asymmetric feature at 16% Te indicates a small amount of Se is incorporated 

into the 1T’ crystal structure. The chemical state associated with the 2H crystal structure exhibits an 

increasing shift to lower binding energy as the total Te concentration increases, which is consistent with 

an increase in Te concentration in the 2H crystal structure.  
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The evolution of the tungsten chemical states (W-Se and W-Te bonding) as a function of Te 

concentration was evaluated using the W 4f core level, which is shown in Figure 4(c). Two chemical 

states (W-Se and W-Te) were deconvolved from the ‘5%’ and ‘10%’ W 4f spectra, which were fit using 

symmetric Voigt line shapes indicating the chemical states correspond to semiconducting phases.40 

However, once the Te concentration reaches 16%, a chemical state with asymmetric line shape was 

detected indicating the presence of the semi-metallic, Te-rich 1T’-WSe(2-x)Tex phase. The intensity of 

the chemical state associated with the 1T’ phase increases as the Te concentration is increased to 67%. 

The shift to higher binding energy from the WTe2 reference exhibited by the W-Te chemical state in 

each of the W 4f core level spectra is likely due to final state electron density effects in metallic alloys.41 

Furthermore, the increase in the high binding energy WOx chemical state in samples containing more 

than 16% Te concentration is consistent with an increased oxidation rate of Te rich films and is likely 

enhanced by the increased number of defects and grain boundaries with increasing Te concentration in 

the alloy (see supplementary information for more discussion of oxidation and surface contaminants in 

Te-rich films). These results obtained through careful analysis of the XPS core levels further support the 

early onset of phase separation in these low-temperature MBE-grown alloys and highlights a major 

engineering challenge that must be solved before WSe(2-x)Tex alloys can be applied in novel device 

structures. 

 

Figure 4: Deconvoluted XPS spectra of the WTexSe2-x alloys for the (a) Te 3d, (b) Se 3d, and (c) W 4f core 

levels. At 16% Te concentration, phase separation is observed by the appearance of both metallic and non-

metallic features in the Te 3d, Se 3d, and W 4f core levels. The phase separation persists at all compositions 

up to and including the 67% total composition. 

Due to the rapid oxidation of WTe2 thin films, ex situ structural characterization of the as-grown 

alloys must be performed immediately after removing from UHV, while still considering the non-

uniform oxidation rates between the Te-rich 1T’ phase and the Se-rich 2H phase. However, to avoid this 

issue, analysis of the surface using in situ RHEED can provide valuable insight into the phase separation 
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 8 

of the WSe(2-x)Tex alloys. Figure 5(c) shows an out-of-plane view of the atomic arrangement of the top 

layer of Se and W atoms in the 2H phase. The trigonal prismatic coordination results in a 60° rotational 

symmetry along the surface where the two sets of evenly spaced Se atoms produce distinct RHEED 

patterns. Figure 5(d) shows the out-of-plane view of the upper layer of Se atoms along with the 

underlying W atoms of WTe2 in the distorted 1T’ phase. The octahedral coordination of the unevenly 

spaced W atoms breaks the 60° surface symmetry of the 2H and 1T’ phases and results in alternating 

rows of Te atoms with out-of-plane displacements differing by 0.6 Å (indicated by the different color 

arrows in Figure 5(d)). Although this change in crystal structure is significant enough to produce a 

distinctly different RHEED pattern (the additional streaks as highlighted with the red arrows in Figure 

5(a)), the symmetry still yields thin films in the 1T’ phase that are rotationally aligned to hexagonal 

substrates. The sharp spots observed in LEED patterns and the sharp streaks in the RHEED from pure 

WSe2 fade to somewhat blurry spots and streaks in the 16% alloy and become even more blurry in those 

obtained from the WTe2 reference (Figure 5(b)). This is primarily due to the decrease in the average 

grain size as the Te content is increased as judged from the STM (see supplemental information).  In 

fact, the grain size in the Te-rich films and pure WTe2 is on the order of, or slightly larger than, the 

LEED transfer length of 20 nm. Additionally, in the phase separated films, there are two sets of RHEED 

patterns simultaneously with different, but close, reciprocal lattice spacing (the phase separated alloys 

have relatively close lattice constants). This leads to an additional spread/blurriness in the RHEED 

streaks (convolution of two patterns). 

By applying the principles of RHEED analysis, a direct comparison of the lattice spacing of the 

can be achieved though the relation 
s
1

s
2

=
a

2

a
1

 when all other variables are kept constant.  In this case, s1 

and s2 represent the RHEED streak spacing and a1 and a2 represent the atomic spacing of WSe2 and 

WTe2 respectively. Figure 5(a,b) shows a comparison of the RHEED and LEED patterns produced by 

the Bi2Se3/sapphire(0001) substrate, 2H-WSe2, 1T’-WTe2, and the phase-separated WSe(2-x)Tex alloy 

with 16% Te concentration. Using the method just described for directly comparing the diffraction 

patterns, both the RHEED and LEED pattern ratios fall within 2% of the expected ratio for WSe2 and 

WTe2 with lattice constants of 3.28 ± 0.02 Å and 3.49 ± 0.02 Å, respectively. The additional set of 

streaks (indicated by the red arrows) is again indicative of the 1T’ phase.  The faint appearance of this 

additional set of streaks is further evidence of the emergence of the 1T’ phase in the alloy with 16% Te 

concentration.  
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Figure 5: (a) RHEED patterns for the [1120]  and [1010]  directions with red arrows indicating the 

secondary set of streaks indicative of the 1T’ phase. (b) LEED pattern at 107.3 eV excitation energy. Ball and 

stick models for (c) 2H-WSe2 and (d) 1T’-WTe2 where the green and red arrows indicate alternating rows of 

top-surface Te atoms with varying out-of-plane displacements. 

Finally, to confirm the phase separation of the WSe(2-x)Tex alloys, Raman spectra were acquired 

from WSe(2-x)Tex samples with each of the Te concentrations (Figure 6). One broad feature was detected 

from stoichiometric WSe2 at ~250 cm-1 (overlapping in-plane E1
2g and out-of-plane A1g modes) and a 

second peak was detected at ~260 cm-1 (second order resonant Raman mode), which are consistent with 

previous reports of WSe2 in the 2H phase.47-48 Incorporation of Te in the alloys resulted in a redshift of 

the E
2g

1
 peak, which can be attributed to the high-frequency vibration caused by heavy Te atoms in the 

alloys. A significant reduction in peak signal to noise ratio was detected as the Te concentration was 

increased up to 32%, indicating a film with suppressed long-range order. Although the behavior of the 

WSe2 Raman modes are consistent with the conclusions drawn from the XPS results, the rapid oxidation 

of W atoms bonded to Te along with the ex-situ exposure time needed to attain the Raman spectra (> 15 

min) makes it difficult to draw absolute conclusions regarding the magnitude of the phase separation. 

Despite the uncertainty in the absolute magnitude of the phase separation, the broad features detected in 

the spectra obtained from the films with 16% and 32% Te concentration around 230 cm-1 suggest the 

presence of a the A
1

9
 Raman mode exhibited by WTe2. Two distinct peaks are detected at 170 cm-1 and 

220 cm-1 in the Raman spectrum obtained from stoichiometric WTe2 (corresponding to the A1
7 and A1

9 
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modes, respectively), which are consistent with a previous report and indicates the low density of 

defects in the stoichiometric film facilitates a greater oxidation resistance.49 

 

Figure 6: Raman spectra of the WSe(2-x)Tex alloys showing a redshift of the 2H phase E
2g

1
peak as a function 

of increasing Te concentration, and the onset of the 1T’ phase peaks. 

 

Conclusion 

 In conclusion, we have demonstrated the growth of WSe(2-x)Tex alloys on van der Waals 

substrates by MBE and observed crystalline phase separation at Te concentrations much lower than 

previously reported in bulk alloys grown at much higher temperatures by CVT. In situ RHEED analysis 

in conjunction with ex situ XPS and Raman measurements indicate WSe(2-x)Tex alloys remain stable in 

the semiconducting 2H phase until a concentration of ~14% Te is reached, at which composition phase 

separation results in the coexistence of a semiconducting 2H alloy and a semi-metallic 1T’ alloy. Alloys 

containing 79% Te are more stable in the 1T’ phase only. The edge of the miscibility gap at 14% is 

supported by patches of semi-metallic behavior detected by STS in regions of a sub-monolayer film with 

16% Te concentration. The results presented in this research highlight the challenges facing the direct 

synthesis of WSe(2-x)Tex thin film alloys in growth conditions compatible with the strict requirements 

associated with back-end-of-line semiconductor device processing where these alloys would be most 

useful. 
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