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Abstract
The present work is an attempt to formulate the quantum theory of plasmons in metallic
structures starting from basic laws of electrodynamics and quantum theory as first principles. In
particular, the dynamical integral equation of plasmon in any metallic structure was established.
As a test, this general dynamical equation was used to determine the dispersion of plasmon in
bulk metal and the obtained result completely agreed with the formula derived in conventional
theories. Then the general method for determining the energy spectrum of plasmons in any
metallic nanostructure was presented.
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1. Introduction

On the basis of the achievements of the fundamental research
of physical phenomena related to the interaction of the light
with the collective excitations in the electron gas called
plasmons, the resonances in the fluctuations of the electron
density in metallic structures, including metallic nanos-
tructures, a newly emerging and very promising area of
quantum physics called plasmonics has been created and was
rapidly developing [1–8]. However, due to the complicated
quantum structure of the devices and systems exhibiting the
plasmonic effect, formulating and solving theoretical pro-
blems related to the wide variety of plasmonic phenomena
and processes is very difficult work. Therefore, although there
has been significant attention towards the theoretical inter-
pretation or explanation of the experimental data [9–29], there
still exists a visible gap between the contents of the theoretical
works [30–47] and the subjects of the experimental investi-
gations [48–63]. Moreover, the theoretical works are either
based on simplified models of electron gas or on the phe-
nomenological interaction Hamiltonians. Therefore, it is very
desirable to find a theory capable of application to the study
of the same subjects as those of the experimental works,
starting from the basic laws of electrodynamics and quantum

theory as the first principles. The present work is an attempt to
realize this intention.

In order to overcome the difficulties related to the com-
plicated geometrical forms of the plasmonic structures, it was
proposed to apply the functional integral technique using the
integration and the integral equations instead of the differ-
entiation and the differential equations in traditional quantum
mechanics [64]. The formulation of the physical problems
mainly in terms of the integration and the integral equations
facilitates the elaboration of computational methods.

The present work is the first attempt to demonstrate the
application of the general principles and formulae of the
functional integral technique in many-body problems [65, 66]
to the study of plasmonic processes and phenomena, starting
from the study of the dispersion of plasmon in bulk metal and
the energy spectra of plasmons in metallic nanostructures.

The general theory of scalar field of collective excitations
in electron gas is presented in section 2. The application of the
general theory to the electron gas in bulk metal, as the sim-
plest example, is realized in section 3. Section 4 is devoted to
the study of the plasmon spectrum in electron gas of any
metallic nanostructure; section 5 contains the conclusion and
the discussions.
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2. Scalar field of collective excitations in
electron gas

Consider the electron gas consisting of itinerant electrons
moving in a domain Ω of some metal and denote U(r) the
potential energy of electron in the electrostatic field of posi-
tive ions in the crystalline lattice of the metal. The single-
electron Hamiltonian has the form

− ∂
∂

= − +∂
∂

⎜ ⎟⎛
⎝

⎞
⎠ ( )H i

m
i U

r
r r,

1

2
( ), (1)

2

r

where m is the effective mass of the electron (we use the unit
system with ℏ = =c 1). This Hamiltonian has eigenstates
with wave functions αu r( ) and eigenvalues αE ,
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⎠H i u E u
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the symbol α labeling the eigenstates and eigenvalues is a
group of indices to be identified in each concrete case.

When the mutual electron–electron Coulomb interaction
in the electron gas is neglected, it is called the free electron
gas. The Green function ′′ −( )S t tr r, ; of the electron in the
free electron gas is the solution of the inhomogeneous dif-
ferential equation
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is the electron density in the electron gas, αn being the
occupation number of the quantum state with the wave
function αu r( ). It has the following explicit expression
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Denote − ′V r r( ) the electrostatic potential energy of the
Coulomb interaction between two electrons with the coordi-
nates r1 and r2

ε
−

−
′ =

′( )V r r
e

r r
, (7)
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where ε is the background dielectric constant of the metal
and e is the absolute value of the electron charge. In the

previous work [64] it was shown that the collective excita-
tions in the electron gas can be described by a scalar field
ϕ tr( , ) with the effective action being a functional A[φ] of
this scalar field. In the harmonic approximation, the second-
order approximation with respect to the scalar field ϕ tr( , ),
the effective action functional of this field has following
expression
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where the kernel ′′ −( )K t tr r, ; has the form
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In the diagrammatic representation the function
′Π ′ −( )t tr r, ; , which is similar to the self-energy part in

quantum field theory, and the Green function ′′ −( )S t tr r, ;
can be represented as in figure 1.

From th extreme action

δ ϕ
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we derive the following integral equation determining the
scalar field ϕ tr( , )

0
corresponding to the extreme action
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The solution of the integral equation (12) is a time
independent (static) field ϕ r( )

0
describing the ground state of

the electron gas.
The fluctuations of the scalar field ϕ tr( , ) around the

extreme static field ϕ r( )
0

corresponding to the ground state of
the electron gas are described by the difference

ζ ϕ ϕ= −t tr r r( , ) ( , ) ( ). (13)
0

Figure 1. Diagrammatic representation of (a) ′ − ′S t tr r( , ; ) and (b)
Π ′ − ′t tr r( , ; ).
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In terms of this new field, the difference
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has the quadratic form
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It can be interpreted as the effective action of the scalar
field ζ tr( , ) describing the fluctuations of the electron gas
around its static ground state in the harmonic approximation.
From the expression (15) of the effective action ζA [ ]eff

(2) of the
scalar field ζ tr( , ) it follows that this field must satisfy the
following integral equation
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Ω−∞

∞

( ) ( )dt d K r r t t tr , r; , 0. (16)

The quanta of the quantized scalar field ζ tr( , ) are called
the plasmons, and integral equation (16) can be interpreted as
the dynamical equation for free plasmon.

The kernel ′′ −K t tr r( , ; ) of integral equation (16) is
expressed in terms of the function ′Π ′ −t tr r( , ; ) defined by
formula (10). The explicit expression of this function depends
on the form of the metallic structure and the physical para-
meters of its electron gas. Using the expression (6) of the
electron Green function (6), we obtain following general
formula
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On the basis of this formula for ′Π ′ −t tr r( , ; ) it is
straightforward to establish the expressions of the kernel

′′ −K t tr r( , ; ) of the dynamical equation (16) of plasmons in
the metallic structures and derive their dispersion equations or
energy spectra.

3. Plasmons in bulk metal

As the first simple example we start from considering the
homogeneous and isotropic electron gas in the three-dimen-
sional space. In this case the integration domain Ω is the
whole three-dimensional space, the potential energy U(r) in
the single electron Hamiltonian (1) can be set to be zero U
(r) = 0 and the wave function αu r( ), βu r( ) in formulae (6) and
(17) are the normalized plane waves

π
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Due to the translational invariance, the free electron
Green function ′′ −S t tr r( , ; ) as well as the functions
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difference − ′r r of two coordinates. The electron Green
function has the following explicit expression
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n(k) being the electron distribution function ⩽ ⩽n k0 ( ) 1.
Denote Π ω˜ k( , ), ωK̃ k( , ) and Ṽ k( ) the Fourier trans-

forms of ′Π ′ −t tr r( , ; ), ′′ −K t tr r( , ; ) and of the Coulomb
interaction potential between two electrons:
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Using formula (9) for the function ′′− −K t tr r( ; ) we
can express its Fourier transform in terms of the Fourier
transform Π ω˜ k( , ) and ωṼ k( , ) as follows:

ω Π ω˜ = ˜ + ˜ ˜⎡⎣ ⎤⎦K V Vk k k k( , ) ( ) 1 ( , ) ( ) . (23)
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By means of the substitution → −p p k/2 we rewrite
formula (25) in the form
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By changing the integration variable → −p p we rewrite
expression (26) as follows
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Because both E p( ) and n p( ) are the functions of p2, we
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By means of the substitution → +p p k/2, we obtain
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Combining (27) and (30), finally we derive following
expression of Π ω˜ k( , ):
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Consider the case of the electron gas at vanishing abso-
lute temperature T= 0 and denote pF the magnitude of the
momentum of electrons at the Fermi surface. Because n(p) is
equal to unity inside and on the Fermi surface, i.e. at ⩽p p

F
,

and vanish outside this surface, i.e. at p> pF, the domain of
integration in the rhs of formula (31) must be the common
volume of the region inside the spherical surface

− = pp k/2
F
and the region outside the spherical surface

+ = pp k/2
F
. At small values of k (k/2 < pF) two spheres

− ⩽ pp k/2
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and + ⩽ pp k/2

F
are overlapping (figure 2)

and the domain of integration is the region bounded by two
above-mentioned spherical surfaces. Let us choose the
direction of vector k to be that of the vertical axis Oz in the
rectangular coordinate system. Then for small values of k the
domain of integration is the region bounded from above by
the spherical surface − = pp k/2

F
and bounded from below

by the spherical surface + = pp k/2
F
(figure 2). In this case

formula (31) becomes
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Expanding the rhs of formula (32) into the power series
of the small variable k2 and limiting at the second-order
approximation, we obtain [31, 67]
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is the electron density in the metal. Substituting expression

Figure 2. The integration domain Ω is confined inside the region
with the yellow colour.
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(34) into the rhs of formula (23), using expression
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Finally consider the dynamical equation (16) for the free
plasmons in the metal. In this case the kernel ′′ −K t tr r( , ; )
has the form (21) with the Fourier transform ωK̃ k( , ) of the
form (38). Introduce the Fourier transformation of the scalar
field ζ tr( , ):

∫ ∫ζ
π

ω ζ ω= ˜ω−t d d er k k( , )
1

2
( , ). (39)i t(kr )

From the dynamical equation (16) it follows that

ω ω
ω
ω

ζ ω− − ˜ =
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

p

m
k k

3

5
( , ) 0. (40)p

F p2 2
2

2

2

2
2

Therefore, the energy ω and the momentum k of free
plasmons must satisfy following dispersion equation
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Previously, formula (42) was derived in the framework of
the conventional theory of plasma oscillations in
metal [68, 69].

We have established formula (41) by using the expres-
sion (32) of Π ω˜ k( , ), expanding the integral over momentum
p into a power series of k2 and limiting at the approximation
of the second order. In principle we can derive the approx-
imate expression of ω in the form of a polynome of any order
of the variable k2, starting from the expression (32) of
Π ω˜ k( , ) and cutting each power series of the small variable k2

at the appropriate order. Moreover, expression (32) and other
complicated analytical formulae can be effectively used for
the numerical calculation of the k2-dependence of ω by means
of the simulation technique.

4. Plasmons in metallic nanostructures

For the application in subsequent works to study plasmons in
various plasmonic devices, now we consider the electron gas
in some metallic nanostructure occupying a domain Ω of the
three- dimensional space. In this case, instead of the

expressions (20) and (21), we must use following formulae of
the Fourier transformation of functions ′Π ′ −r t t, r( ; ) and

′′ −K r t t, r( ; )
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formed over the whole three-dimensional momentum space,
and

∫ ∫
∑∑

Π ω
π

ω

˜ ′ = ′

′ * ′ *

− − −

− −

Ω Ω

α β
α α β β

α β β α

α β

− − ′ ′

( )

( )

( )

k k d d e e

u u u u

n n n n

E E

, r r

r r r r

;
1

(2 )

( ) ( ) ( ) ( )

1 1
. (45)

i ikr k r
3

In term of the Fourier transforms ω′K̃ k, k( ; ),
Π ω′˜ k, k( ; ) and Ṽ k( ), formula (9) becomes

ω δ Π ω−˜ ′ = ′ ˜ + ˜ ˜ ′ ˜ ′( ) ( ) ( ) ( )K k k k k V V k k V, k k , k; ( ) ( ) ; . (46)

Substituting the Fourier transformation formulae (39) for
the wave function ζ tr( , ) and (44) for the kernel ′K tr r( , ; )
into the lhs of the relation (16), we derive following integral
equation

∫ ∫ω ζ ω−′ ˜ ′ ′ ˜ =Ω( ) ( )d K k k d D qk , q k q; ( , ) 0, (47)

where

∫π
−′ =Ω

Ω

− ′−( )D q d ek r
1

(2 )
. (48)( )i k q r

3

When the domain Ω is the whole three-dimensional
space, ′−ΩD qk( ) becomes the function δ ′−qk( ). Using
expression (46) of ω′K̃ k, k( ; ) and setting

ω Π ω′ = − ˜ ˜ ′ ˜ ′( ) ( ) ( )F k k V k k V, k , k; ( ) ; , (49)

∫ψ ω − ζ ω˜ = ˜ ′ ′ ˜ ′Ω ( ) ( )V d Dk k k k k k( , ) ( ) , . (50)

Finally, we obtain the dynamical integral equation of
plasmon in the following form

∫ ω ψ ω ψ ω′ ˜ ′ ˜ ′ = ˜( ) ( )d Fk k k k k, ; , ( , ). (51)

The plasmon energy (frequency) spectrum consists of the
values of the parameter ω satisfying the requirement of the
existence of the solution of the integral equation (51).
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5. Conclusion and discussion

In our previous work [64] we have elaborated the functional
integral technique for the theoretical study of the elementary
collective excitations of the electron gas. It was shown that
the fluctuations of the electron density in the electron gas can
be described by a scalar field whose quanta are the elementary
collective excitations called plasmons—the plasmon field.
The present work is the continuation of the previous one [64].
In the harmonic approximation we have established the
dynamical integral equation of the plasmon field in the most
general form capable of application to any electron gas. In the
case of the isotropic homogeneous electron gas in the bulk
metal, from the established dynamical integral equation of the
plasmon field it follows the well-known plasmon dispersion
formula. This agreement would be a good test of the validity
of the established plasmon dynamical integral equation.

The above-mentioned dynamical integral equation of the
plasmon field can be used in order to find the plasmon energy
spectrum of the electron gas in a metallic nanostructure by
means of corresponding approximate computational methods.
For this purpose we have performed Fourier transformation of
all functions of the coordinates and derived the dynamical
integral equation (51) containing a real parameter ω. The
plasmon energy (frequency) spectrum consists of the values
of this parameter satisfying the requirement of the existence
of the solution of the newly established dynamical integral
equation. For the study of the plasmon energy (frequency)
spectrum it is necessary to establish the explicit form of the
last integral equation, elaborate the appropriate simulation
method for solving this dynamical equation and find the
values of the parameter ω such that at these values the
solution of equation (51) does exist.
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