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Abstract. Positron Emission Tomography (PET) allows tumour microenvironment to be 

studied in vivo with high sensitivity and specificity.  Inter- and intra-tumour morphological and 

phenotypic heterogeneity or pattern provided by PET images are of critical importance. The 

traditional practice of visual interpretation of these images are not sufficient enough to extract 

all the information embedded in the images. On the other hand, simultaneous development of 

automated and reproducible analysis methodologies makes it possible to extract large amount 

of quantitative features from these images which is termed as radiomics. Analysis of these 

radiomics feature using artificial intelligence (AI) can significantly improve individualized 

treatment selection and monitoring. Grey level co-occurrence matrix (GLCM), a member of 

texture based radiomics feature family is widely used as a biomarker of heterogeneity and can 

provide information of the tumour microenvironment. The GLCM can subsequently be used 

for artificial intelligence (AI) assisted tumour diagnosis, monitoring of progression and 

treatment planning as well as for monitoring response to therapeutic intervention. This aim of 

the study was to investigate the accuracy and robustness of PET based GLCM in varying 

image acquisition and analysis conditions using phantom data. It has been observed that 

GLCM based textural features (e.g., correlation, entropy, homogeneity, energy contrast and 

dissimilarity) are not only dependent on the volume but also on the quantization level. They are 

also dependent on signal-to-noise ratio (SNR) and image contrast. The dependencies of these 

features to the varying imaging conditions are also not linear and cannot always be directly 

related. To use these GLCM derived textural features as biomarkers for AI assisted analysis, all 

the information regarding the textural features should always be included along with the 

changes in volumes and contrast of the PET images in the training dataset. 

1.  Introduction 

PET radiotracer uptake in tumour is often heterogeneous due to different biological characteristics of 

tumour cells (e.g., cell proliferation, cell death, differential metabolic activity, vascular structure etc.) 

and large amount of quantitative features from these images can be extracted which is termed as 

radiomics. Artificial intelligence (AI) assisted accurate quantification of tumour radiomic features [1] 

has the potential to be used as a tumour staging and prognostic biomarker [2-3]. Among a number of 

radiomic features describing tumour heterogeneity [4-6], textural features (homogeneity, correlation, 

energy, contrast, dissimilarity and entropy) – a second order heterogeneity metric extracted from 

quantifier based grey level co-occurrence matrices (GLCMs) [7] accounting for both spatial and 
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intensity information have shown to be capable of staging tumour [8] as well as to predict response [9, 

10] for FDG PET images at varying levels.  

GLCMs are generated using quantized or resampled intensities within a volume of interests (VOIs) 

[10] where intensities are resampled in an integer number of bins with the number of bins being power 

of 2. Textural features extracted from these GLCMs have been reported to be strongly dependent on 

the metabolically active volume (MATV) using simulated data [11] and confirmed on clinical data 

[12-17]. Intensity quantization substantially affects the texture indices and thus should be chosen 

carefully [12, 18]. Reducing quantization always decreases homogeneity [19] and prognostic impact of 

the textural features is influenced by quantization level [20]. Several groups have suggested using 

either quantization level 32 [12] or 64 [10,15]. Quantization level 150 or higher also has been 

proposed in other studies [11,13]. No statistically significant differences have been reported in an 

another study [10]. Three textural features - homogeneity, dissimilarity and entropy are found to be 

robust to delineation method and partial volume effects (PVE) [15]. A separate study suggested that 

smoothing and segmentation have only a small effect compared to quantization [18].  

Non uniform selections of parameters and methods across studies make the choice of best textural 

feature based on MATV, quantization and segmentation challenging and its relationship with the 

tumour biological characteristics indistinguishable [12,14]. Relationship between volume and 

quantization has not been explicitly investigated in these studies. No systematic report is available  in 

the literature regarding the effects of image contrast and noise on segmentation and textural features. 

This aim of the study was to investigate the accuracy and robustness of PET based GLCM in varying 

image acquisition and analysis conditions using phantom data. 

2.  Materials and Methods 

The torso NEMA phantom containing six spheres (Figure 1) with 10, 13, 17, 22, 28 and 37 mm 

diameters correspond to 0.52, 1.15, 2.57, 5.58, 11.49 and 26.52 ml volume respectively was filled with 
18

F solutions. Two different contrasts (2:1 and 4:1) between the spheres and the background were 

created by reducing the radioactivity in the background.  

 
Figure 1: Torso NEMA phantom with a cold insert and six fillable spheres (left) with 10, 13, 17, 22, 

28 and 37 mm diameters correspond to 0.52, 1.15, 2.57, 5.58, 11.49 and 26.52 ml volume respectively 

(right). 
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The phantom data were acquired in 3D mode on the TrueV PET-CT scanner (Siemens, USA) for 

120 minutes which provides 109 image planes or slices covering a 21.6 cm axial FOV (field of view). 

Images were reconstructed into a  256×256×109 matrix with voxel dimensions of  2.67×2.67×2.00 

mm using OSEM reconstruction algorithm with 4 iterations and 21 subsets for five different scan 

durations (900, 1200, 2000, 4000 and 7200 seconds  corresponding to 15, 20, 33.3, 66.6 and 120 

minutes respectively) to represent different levels of signal-to-noise ratio (SNR). The starting time of 

each static frame were shifted to reconstruct five different overlapping realizations for the first four 

durations. All the reconstructed images were then smoothed with a 4-mm FWHM (full width at half 

maximum) Gaussian filter after applying decay correction.  

All the spheres were delineated using three different segmentation methods. First volume of 

interest (VOItrue) was estimated using the calculated boundaries based on the known diameter and 

position of each sphere. The second delineation method was a fixed threshold set to 40% (I40T) of the 

maximum intensity (Imax) within the sphere giving a VOI noted as VOI40T [21]. The final volume of 

interest (VOIA) was estimated using an adaptive threshold based method as described by (Schaefer et 

al), where the threshold intensity (IA) is given by 

   (     )  (     )                                                        (1) 

I70 is the mean intensity in a contour containing all voxels with a value greater than 70% of the 

Imax in the sphere and Ibg is the mean background intensity within a sphere of size 26.52 ml located 

away from all the spheres to avoid partial volume effect (PVE). Both the threshold based methods 

were applied separately on each roughly delineated VOI containing a sphere to generate the 

corresponding VOIs. The α and β parameters for the adaptive threshold were calculated using the 

mean value of optimal cutoff intensities (Ioptimal). Ioptimal of each hot sphere is calculated using optimal 

threshold (Toptimal) and Imax. Toptimal is estimated as the percentage threshold value of Imax which provides 

the best matched thresholded volume with the VOItrue for the uniform sphere phantom.  

Quantization of intensities of each VOI was carried out by normalizing the intensities (between 0 

and 1) and multiplying the normalized intensities by different quantized values, {Q= 8, 16, 32, 64, 128 

and 256}. Grey level co-occurrence matrix (GLCM) was derived for each normalized and quantized 

VOI data. Several textural features (homogeneity, correlation, energy, contrast, dissimilarity and 

entropy), a second order heterogeneity measures, were then estimated from these GLCM data.  

3.  Results 

It has been observed that all the textural features are dependent on the quantization value at varying 

degree. Figure 2 shows the relationships between the mean textural features of five realizations and 

quantization values for VOItrue. Homogeneity exponentially decreases with the increase of quantization 

levels. Separations among homogeneity for different spheres remain unchanged for different 

quantization levels. Correlation remains constant with quantization for all spheres from quantization 

level 32 onwards. However, there are clear separations among correlations for different spheres. 

Contrast and dissimilarity increase approximately linearly with the increase of quantization levels. 

Separation among the spheres increases with the increase of quantization levels. Energy decreases and 

entropy increases with quantization levels. For volumes less than 5.58 cm
3
 both entropy and energy 

remain unchanged after quantization 32. However, it keeps on changing with quantization for bigger 

spheres and requires higher quantization level to remain unaffected. Higher quantization level would 

make volumes appear as heterogeneous. On the contrary, low quantization level would make them 

appear as homogeneous. A compromise is required while choosing appropriate quantization level. 

Considering all six textural features, quantization level 64 or 32 appears to provide the best 

compromise. Quantization level 64 has been chosen in this study to generate all the textural features 

unless mentioned otherwise.  
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Figure 2: Mean textural features of five realizations against quantization for VOItrue for all six spheres. 

The features shown here are for 4:1 contrast and 900 seconds acquisition duration.  

Dependency of textural feature on sphere volume for contrast 4:1 is shown in Figure 3. Features for 

the spheres located at the background also show dependency on the volumes. Homogeneity and 

entropy increase with volumes, whereas contrast, dissimilarity and energy decrease.  There are subtle 

differences between the spheres and backgrounds for homogeneity, contrast and dissimilarity showing 

their dependency on the volume edge. Entropy and energy are robust to edge as shown by very good 

agreement between the sphere and background. The separation between sphere and background for 

correlation indicates that it is more dependent on the intensity variations. All the features reaches 

plateau with the increase of volume at varying rates.  
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Figure 3: Textural features against volumes for both sphere and background. To analyze the texture in 

the background same volume as the sphere were used. 

Figure 4 compares the relationships between textural features and acquisition durations for VOItrue 

and VOI40T for contrast 2:1. Textural features derived using VOI40T are significantly different than 

those of VOI40T for smaller volumes. As the volume increases the differences between them reduces. 

The textural features also vary with the noise as the VOI40T vary with the noise. With an adaptive 

segmentation method, all textural features become independent of noise for volume greater than 2.57 

cm
3
 and match closely with the features generated using VOItrue (Figure 5).   

 
Figure 4: Comparison of textural features extracted using VOI40T and VOItrue for different acquisition 

durations with contrast 2:1 and quantization level 64.  
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Figure 5: Comparison of textural features extracted using VOIA and VOItrue for different acquisition 

durations with contrast 2:1 and quantization level 64. 

4.  Discussion 

To use textural features as a tumour staging and prognostic biomarker using AI, better understanding 

of relationships of textural features with MATV, quantization and segmentation are very important. 

Investigation of spheres filled with same homogeneous activity reveals that bigger the volume wider 

the range of intensities making quantization sensitive to the volume of lesions. In such cases, higher 

quantization makes bigger homogeneous spheres appear as heterogeneous compared to the smaller 

ones. Lower quantization level removes the dependency on volume by forcing the intensities to be 

homogeneous and eliminating the heterogeneity information. Considering the characteristics of all the 

textural features for the homogeneous spheres over a range of volumes, it appears that quantization 

level 32 or 64 should be preferred and the findings are similar to the finding of previous studies 

[10,12].   

All six textural features are dependent on volumes at varying degrees with entropy and energy 

being the most sensitive ones. Spheres of similar volumes placed in the background reveals that PVE 

effect on textural features is far smaller than the effect of volume. Dependency of entropy on MATV 

significantly reduces for volumes greater than 45 cm
3
 for quantization 256 [13]. However, a different 

study suggested to use volume greater than 10 cm
3
 [17] for quantization 64. Dependency of 

quantization on volume investigated in this study explains the reason for finding two different cut-off 

volumes. Investigation on heterogeneous spheres suggested that if response occurs as a result of 

combined changes in volume and heterogeneity, entropy and energy are only able to display changes 

in volumes (not heterogeneity), making them unsuitable for prognostic biomarkers of heterogeneity. 

High sensitivity of correlation to intensity also makes it less suitable to report changes in heterogeneity. 

Two threshold based delineation methods (40% fixed and adaptive) were employed to investigate 

the effects of segmentation on textural features. The volumes generated using these two methods are 

substantially different. Since VOIs delineated using 40% threshold are different from each other, 

textural features generated using these VOIs are also different with the actual lesion volumes being the 
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same. However, since VOIs generated using adaptive threshold matches with the VOItrue, textural 

features are closer to the true textural features compare to VOI40T. These results suggested that texture 

indices are highly sensitive to the segmentation method. The results are consistent with previously 

published ones [12,15,22]. 

Volume delineated by a robust segmentation method is capable of generating textural features such 

as homogeneity, contrast and dissimilarity that are capable of capturing tracer uptake heterogeneity if 

the volume changes between scans are minimal. Since homogeneity directly related to volume, it can 

only be used as a feature of image heterogeneity if the changes of volume and homogeneity are in 

opposite directions, i.e., if the combined multiplicative changes of volumes and homogeneity are 

either zero or negative. On the other hand, as contrast and dissimilarity are inversely related to volume 

they can be used as an image heterogeneity feature if the combined multiplicative changes of volumes 

and homogeneity are either zero or positive. Since contrast is approximately two times more sensitive 

to volumes compared to dissimilarity, homogeneity and dissimilarity are the two textural features that 

should be used to measure heterogeneity. These two features also provide complementary 

heterogeneity information which can be used for cross validation.  

5.  Conclusion 

Homogeneous regions appear heterogeneous on PET images as quantified by textural features. 

Textural features generated using GLCM depends on quantization and volume. Since these features 

differentially vary with volume, regions should be segmented using methods are that are robust to 

variations in contrast and noise using quantization level 64. Small scale heterogeneity phantom studies 

suggest that homogeneity and dissimilarity are the most suitable textural features to be used as 

heterogeneity measures where there are combined changes in both heterogeneity and volume due to 

treatment. Further investigations are required with different heterogeneous phantoms to fully 

understand the volume effects on these textural indices. Nonetheless, to use these textural features as 

prognostic biomarkers for an AI assisted system, changes in textural features between baseline and 

treatment scans should be utilized along with the changes in volumes to train the system.  
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