Brought to you by:
Paper The following article is Open access

Cross-linking of succinate-grafted chitosan and its effect on the capability to adsorb Pb(II) ion

, and

Published under licence by IOP Publishing Ltd
, , Citation Abu Masykur et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 107 012014 DOI 10.1088/1757-899X/107/1/012014

1757-899X/107/1/012014

Abstract

The aim of this research was to improve the adsorption capacity of chitosan by modification of the chitosan using various cross-linking agents and followed by grafting using succinate anhydride. Succinate anhydride was grafted into chitosan that had been cross-linked using ethylene glycol di-glycidyl ether (EGDE), diethylene glycol diglycidyl ether (DEGDE) andbisphenolAdiglycidyl ether (BADGE) on the hydroxyl group of chitosan to yield Chit- EGDE-Suc, Chit-DEGDE-Suc, and Chit-BADGE-Suc, respectively. Modified chitosans were analyzed using FTIR and TG-DTA and then applied as adsorbents for Pb(II) ion. Adsorption was carried out in batch condition with a variation of solution pH, contact time, and concentration of Pb(II) in the solution. Adsorption ofPb(II) ion reached optimum condition at pH 5 and contact time of 120 minutes. Adsorption of Pb(II) ion on all of the adsorbents fit well the pseudo-second order kinetic equation. Adsorption capacities of Pb(II) on Chit-EGDE-Suc, Chit-DEGDE-SucdanChit-BADGE-Suc were 0.333, 0.388 and 0.898 mmolg-1, respectively, which mean that the adsorption of Chit-BADGE-Suc was the highest and followed by Chit- DEGDE-Suc and Chit-EGDE-Suc.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/107/1/012014