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ABSTRACT

We discuss aspects of gravitational modifications of Schrödinger dy-

namics proposed by Diósi and Penrose. We consider first the Diósi–Penrose

criterion for gravitationally induced state vector reduction, and compute the

reduction time expected for a superposition of a uniform density cubical

solid in two positions displaced by a small fraction of the cube side. We

show that the predicted effect is much smaller than would be observable

in the proposed Marshall et al. mirror experiment. We then consider the

“Schrödinger–Newton” equation for an N -particle system. We show that

in the independent particle approximation, it differs from the usual Hartree

approximation applied to the Newtonian potential by self-interaction terms,

which do not have a consistent Born rule interpretation. This raises doubts

about the use of the Schrödinger–Newton equation to calculate gravitational

effects on molecular interference experiments. When the effects of Newto-

nian gravitation on molecular diffraction are calculated using the standard

many-body Schrödinger equation, no washing out of the interference pattern

is predicted.
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1. Introduction

There is now considerable interest in mounting experiments to search for, and/or

to place limits on, possible modifications of Schrödinger dynamics. We focus in this pa-

per on conjectured gravitational modifications of the Schrödinger equation associated with

the work of Diósi [1], Penrose [2] and their collaborators. These authors have proposed a

gravitationally based criterion, which we refer to as the Diósi–Penrose (DP) criterion, for

predicting when a superposition of two spatially displaced states of the same object will

reduce to either one state or the other. In Sec. 2 we briefly review the DP criterion and its

theoretical motivations, including the gravitationally driven stochastic equation formulated

by Diósi [1]. In Sec. 3 we evaluate the DP effect for a uniform cube displaced by a small

fraction of its side, and show that the predicted rate of gravitational state vector reduction

is too small to be observed in the proposed Marshall et al. [3] mirror superposition exper-

iment. A different, non-gravitational criterion based on displacement of the center-of-mass

wave packet, will however be tested by the Marshall et al. proposal.

Diósi [4] and Penrose [2] have also proposed a nonlinear equation, called the “Schröd-

inger–Newton”(SN) equation, for including non-stochastic effects of gravitation on quantum

evolution. In Sec. 4 we review the SN equation, give its specialization in the independent

particle approximation, and contrast this with the standard Hartree approximation as ap-

plied to the inter-particle Newtonian potential. We show that the two differ by a particle

self-interaction term, which is not included in the standard Hartree approximation to Newto-

nian dynamics, and which does not have a consistent probabilistic interpretation within the

framework of the Born rule. Salzman and Carlip [5], motivated by searching for distinctive

features of non-quantized gravitation, have recently argued that the SN equation implies
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potentially observable effects in molecular diffraction experiments. In Sec. 5 we consider

gravitational effects on molecular diffraction in standard many-body quantum theory as ap-

plied to the inter-particle Newtonian potential, which omits the suspect self-interaction effect

of the SN equation. We show (without invoking the Hartree approximation) that there is a

complete decoupling of gravitational effects from the center-of-mass motion of the molecule,

and thus no reduction in visibility of molecular interference fringes is predicted.

2. The Diósi–Penrose (DP) criterion and Diósi’s stochastic Schrödinger equation

Diósi [1] proposed that there is a “universal gravitational white noise”, represented

by a stochastic term φ(r, t) in the gravitational potential (where r is the coordinate three-

vector). Denoting the stochastic expectation by E[...], this fluctuating part of the gravita-

tional potential is assumed to obey

E[φ(r, t)] =0 ,

E[φ(r, t)φ(r′, t)] =h̄G|r − r′|−1δ(t− t′) ,

(1)

with G the Newton gravitational constant. Including φ in the Schrödinger equation, Diósi

is led to a stochastic dynamics

ih̄ψ̇(t) =

(

H +

∫

d3rφ(r, t)f(r)

)

ψ(t) , (2a)

with H the usual Hamiltonian and f(r) the local mass density operator. This in turn implies

that the stochastic expectation density matrix ρ(t) = E[ψ(t)ψ(t)†] obeys the dynamical

equation

ρ̇(t) =
−i

h̄
[H, ρ(t)]−

G

2h̄

∫ ∫

d3rd3r′

|r − r′|
[f(r), [f(r′), ρ(t)]] . (2b)

Letting X denote the system coordinates, and f(r|X) the mass density at r for the

system configuration X , Eq. (2b) implies that the off-diagonal matrix element 〈X|ρ(t)|X ′〉
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damps with a characteristic time τd(X,X
′) given by

τd(X,X
′)−1 =

G

2h̄

∫ ∫

d3rd3r′
[f(r|X)− f(r|X ′)][f(r′|X)− f(r′|X ′)]

|r − r′|
. (3)

(Note that Eq. (12) of Diósi’s paper where τd is defined contains an algebraic error, and

should read as in Eq. (3) above, which is what one gets when one takes the off-diagonal matrix

element of Diósi’s Eq. (11). This error was noted some time ago by Anandan [6].) Although

the density matrix evolution of Eq. (3) leads to exponential damping in time of the off-

diagonal density matrix element 〈X|ρ(t)|X ′〉, the stochastic Schrödinger equation of Eq. (2a)

does not lead to state vector reduction, since an initial superposition of configurations X

and X ′ does not evolve to just one of the two alternatives. However, a non-linear variant of

Eq. (2a), constructed according to the continuous spontaneous localization scheme reviewed

by Bassi and Ghirardi [7] and Pearle [7], does lead to state vector reduction, with the

stochastic expectation density matrix also obeying the evolution equation of Eq. (2b).

Penrose [2] has also proposed a role for gravitation in state vector reduction, based on

the observation that when a macroscopic mass distribution is moved significantly, the space-

time geometry is changed. Since standard quantum theory does not permit the description of

coherent superpositions of states constructed on two different background geometries, Pen-

rose argues that in a correct theory that merges spacetime geometry with quantum theory,

such coherences must decay. He thus arrives at a criterion which states that a coherent su-

perposition of matter density distributions ρ(x) and ρ′(x) should reduce to one or the other

in a characteristic time τ−1
d = ∆/h̄, with ∆ given by

∆ = G

∫ ∫

d3rd3r′
[ρ(r)− ρ′(r)][ρ(r′)− ρ′(r′)]

|r − r′|
. (4)

(In his papers, Penrose uses the notation x, y for what we have termed r, r′, and his 2000
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paper [2] giving Eq. (4) differs by a factor of 4π from his 1996 paper [2]. We will follow

the later version, and will reserve the designation x, y, z for the Cartesian components of r.)

Apart from obvious differences in notation, and an extra numerical factor of 2, Penrose’s

criterion of Eq. (4) is the same as Diósi’s criterion of Eq. (3), and we shall refer to the two

collectively as the Diósi–Penrose (DP) criterion.

Because Eq. (4) diverges for point particles, the effect predicted depends on the

radius assigned to the elementary mass distributions. Moreover, the density matrix evolution

of Eq. (2b) predicts energy non-conservation, which as discussed by Ghirardi, Grassi, and

Rimini [8], disagrees with experimental bounds unless the point particle mass distributions

are smeared considerably more than originally envisaged by Diósi. Rather than adding a

smearing radius as an additional parameter of the model, we note that for any smearing

radius greater than a typical interatomic distance of 10−8 cm, the mass distribution becomes

effectively uniform. Motivated by this, we shall assume a homogeneous mass distribution in

applying the DP criterion.

3. Magnitude of the DP estimator in the Marshall et al. mirror experiment

Continuing with Eq. (4), with mass distributions assumed homogeneous, let us con-

sider the specific geometry of the Marshall et al. [3] proposal, in which a cubical mirror with

side S = 10−3 cm is put into a superposition of two states displaced parallel to a side of the

cube by d = 10−11 cm. Since the displacement d is a small fraction of the mirror dimension

S, we follow Diósi [9] and Geszti [10] and expand Eq. (4) to leading, quadratic order in d.

Writing

ρ(r) =ρ0θ(S − x)θ(x)θ(S − y)θ(y)θ(S − z)θ(z) ,

ρ′(r) =ρ0θ(S − x)θ(x)θ(S − y)θ(y)θ(S − z − d)θ(z + d) ,

(5a)
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with θ(x) the standard step function that jumps from 0 to 1 at x = 0, we have

ρ(r)− ρ′(r) = ρ0θ(S − x)θ(x)θ(S − y)θ(y)[θ(S − z)θ(z) − θ(S − z − d)θ(z + d)] . (5b)

Substituting

θ(S − z − d) ≃θ(S − z)− dδ(S − z)

θ(z + d) ≃θ(z) + dδ(z) ,

(5c)

we find

ρ(r)− ρ′(r) ≃ dρ0θ(S − x)θ(x)θ(S − y)θ(y)[−δ(z) + δ(S − z)] , (5d)

with a similar expression with all coordinates replaced by primed coordinates. Thus Eq. (4)

becomes

∆ = Gd2ρ20I1 , (6a)

with I1 given by

I1 =

∫ ∫

d3rd3r′θ(S − x)θ(x)θ(S − y)θ(y)θ(S − x′)θ(x′)θ(S − y′)θ(y′)

×[−δ(z) + δ(S − z)][−δ(z′) + δ(S − z′)][(x− x′)2 + (y − y′)2 + (z − z′)2]−1/2 .

(6b)

Using the delta functions to eliminate the z, z′ integrals, imposing the theta function

constraints on the x, y, x′, y′ integrals and and scaling out the cube side S, we get finally

∆ = 2Gd2S3ρ20I , (7a)

with I the dimensionless integral given by

I =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dx′
∫ 1

0

dy′
(

1

[(x− x′)2 + (y − y′)2]1/2
−

1

[(x− x′)2 + (y − y′)2 + 1]1/2

)

.

(7b)
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The quadruple integral I can be simplified by transforming to sum and difference variables

ηx = x− x′ , σx = x+ x′, etc., giving the double integral form

I =4

∫ 1

0

dηx

∫ 1

0

dηy(1− ηx)(1− ηy)

(

1

[η2x + η2y ]
1/2

−
1

[η2x + η2y + 1]1/2

)

=2π/3 ≃ 2.0944 .

(7c)

The evaluation of the integral on the first line of Eq. (7c) was done using Mathematica R©;

as a check we also used Mathematica R© to numerically evaluate the quadruple integral of

Eq. (7b), giving the same result.

Putting everything together, we have

∆ = (4π/3)Gd2S3ρ20 , (8a)

which with d = 10−11 cm, S = 10−3 cm, and ρ0S
3 = 5× 10−12 kg gives

∆ =2.2× 10−20h̄c cm−1 ,

τd =h̄/∆ = 1.5× 109s .

(8b)

Hence, the characteristic time for gravitational effects on the superposed cube wave function,

according to the DP criterion, is much longer than the observation time interval of the

Marshall et al. proposal, which is given in terms of the mirror oscillation angular frequency

ωm by 2π/ωm = 2× 10−3s.

Thus, the Marshall et al. proposal, even it achieves the sought-for sensitivity, will

not confront the DP proposal for state vector reduction, when interpreted using homoge-

neous mass distributions. We emphasize at this point that the Marshall et al. paper does

not suggest that it will test gravitationally induced reduction models (although citation of

the Penrose papers [2] in the Marshall et al. proposal might lead readers to conclude oth-

erwise). The mirror experiment proposal suggests a different, non-gravitational, criterion

for state vector reduction, that superpositions reduce when an object is displaced by more

8



than the width of the center-of-mass wave packet, and this condition is met by the proposed

experiment. The purpose of the exercise we have just gone through has been, first of all, to

get the explicit formula for the DP criterion in the context of the mirror experiment, and

secondly, to demonstrate that the DP criterion and the center-of-mass displacement criterion

can make very different predictions. For completeness, we note that the mirror experiment

may also be sensitive to other types of spontaneous localization models, if the stochasticity

magnitude is taken large enough to give state vector reduction in latent image formation, as

discussed in Adler [11] (which draws on earlier analyses of the mirror experiment in [12]).

4. The “Schrödinger-Newton” (SN) equation in the independent particle

approximation versus the Hartree approximation

As an attempt to incorporate quantized matter into a purely classical theory of

gravitation, Møller [13] and Rosenfeld [14] have suggested that the source term in the classical

Einstein equation be taken as the expectation 〈ψ|Tµν |ψ〉 of the energy momentum operator

Tµν in the quantum state |ψ〉. As a nonrelativistic realization of this idea, Diósi [4] and

Penrose [2] have proposed what has come to be called the “Schrödinger–Newton” equation,

in which a quantum many-body system ofN particles moves in a gravitational potential given

by the quantum expectation of the operator Newtonian potential. Following the exposition

of Diósi [4], the many-body equation for particles of masses m1, ..., mN is taken as

ih̄∂ψ(X, t)/∂t =

(

−

N
∑

r=1

h̄2

2mr

∂2

∂x2r
+

N
∑

r,s=1

Vrs(xr − xs) +

N
∑

s=1

msφ(xs, t)

)

ψ(X, t) . (9a)

Here Vrs is a non-gravitational interaction potential, which we shall ignore for the present

discussion, X = (x1, x2, ..., xN ) denotes the spatial coordinates of the N particles, and φ(x)

is the Newtonian gravitational potential obtained from the nonrelativistic specialization of
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the Møller-Rosenfeld equation. In other words, φ is obtained by solving

∇2φ(x, t) = 4πG

∫

d3NX ′|ψ(X ′, t)|2
N
∑

u=1

muδ
(3)(x− x′u) , (9b)

where X ′ = (x′1, ..., x
′
N ). Inverting Eq. (9b) and substituting into Eq. (9a), we get the

Schrödinger–Newton equation

ih̄∂ψ(X, t)/∂t =

(

−

N
∑

r=1

h̄2

2mr

∂2

∂x2r
+

N
∑

r,s=1

Vrs(xr − xs)

− G
N
∑

u,s=1

∫

d3NX ′ mums

|xs − x′u|
|ψ(X ′, t)|2

)

ψ(X, t) .

(9c)

For a single particle of mass m, this reduces to a Schrödinger equation with a nonlinear and

nonlocal interaction term,

ih̄∂ψ(x, t)/∂t = −
h̄2∇2

2m
ψ(x, t)−Gm2

∫

d3x′
|ψ(x′, t)|2

|x− x′|
ψ(x, t) . (9d)

Let us now specialize Eq. (9c) to the case when the non-gravitational interaction Vrs

vanishes, so that it becomes

ih̄∂ψ(X, t)/∂t =

(

−

N
∑

r=1

h̄2

2mr

∂2

∂x2r
−G

N
∑

u,s=1

∫

d3NX ′ mums

|xs − x′u|
|ψ(X ′, t)|2

)

ψ(X, t) . (10)

We wish to study the form taken by Eq. (10) when we make an independent particle Ansatz,

ψ(X, t) =

N
∏

r=1

ψr(xr, t) , (11a)

with each single particle wave function ψr normalized to unity,

∫

d3xr|ψr(xr, t)|
2 = 1 . (11b)

Substituting Eq. (11a) into Eq. (10) and using Eq. (11b), and dividing by ψ(X, t), we get

N
∑

s=1

F (xs, t)/ψs(xs, t) = 0 , (12a)
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with

F (xs, t) = −ih̄∂ψs(xs, t)/∂t−
h̄2

2ms

∂2

∂x2s
ψs(xs, t)−G

N
∑

u=1

∫

d3x′u
mums

|xs − x′u|
|ψu(x

′
u, t)|

2ψs(xs, t) .

(12b)

Since the different terms in Eq. (12a) involve independent variables xs, the usual separation

of variables argument implies that each must be a constant,

F (xs, t))/ψs(xs, t) = cs , (13a)

with the constants cs summing to zero,

N
∑

s=1

cs = 0 . (13b)

However, if we introduce new single-particle wave functions ψ̂s(xs, t) through

ψs(xs, t) = exp(icst/h̄)ψ̂s(xs, t) , (13c)

then by virtue of Eq. (13b), we have

N
∏

r=1

ψr(xr, t) =

N
∏

r=1

ψ̂r(xr, t) , (13d)

and Eq. (13a) becomes F̂ (xs, t) = 0, where F̂ (xs, t) is obtained from F (xs, t) of Eq. (12b)

by replacing ψs by ψ̂s. We thus conclude that there is no loss of generality in taking the

separation constants cs all as zero, and the single-particle equation as F (xs, t) = 0, that is

ih̄∂ψs(xs, t)/∂t = −
h̄2

2ms

∂2

∂x2s
ψs(xs, t)−G

N
∑

u=1

∫

d3x′u
mums

|xs − x′u|
|ψu(x

′
u, t)|

2ψs(xs, t) . (14)

Equation (14) has an almost familiar look; it has the same structure as the time-

dependent single particle equation that one would get by treating the Newtonian inter-

particle potential in the Hartree approximation, except that it includes a self-interaction
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term coming from the u = s term in the summation,

−G

∫

d3x′s
m2

s

|xs − x′s|
|ψs(x

′
s, t)|

2ψs(xs, t) . (15a)

Such self-interaction terms of a single particle never appear in the Hartree equation, and do

not have a consistent interpretation within the Born rule interpretation of quantum theory.

A term with u 6= s in the potential energy of Eq. (14),

−G

∫

d3x′u
mums

|xs − x′u|
|ψu(x

′
u, t)|

2ψs(xs, t) , (15b)

has the interpretation that the gravitational potential felt by particle s at coordinate xs, as

a result of the presence of particle u at x′u, is the Newtonian potential −Gmums/|xs − x′u|

weighted by the probability |ψu(x
′
u, t)|

2 of finding particle u at x′u. However, this interpre-

tation does not extend to the case u = s, since when particle s is at xs, the probability

of simultaneously finding it at x′s is zero! In terms of projectors, in the case u 6= s we

have that Pu(x
′
u)Ps(xs) gives a nonzero projector for finding particle s at xs, and particle u

simultaneously at x′u. However, in the case u = s we have Ps(x
′
s)Ps(xs) = 0 for all x′s 6= xs.

We conclude from this analysis that the Schrödinger-Newton equation does not give

a consistent interpretation of the mutual gravitational interactions within a single system

of particles. It can, however, be used to calculate the gravitational effect of one group

of particles on a disjoint group of particles (say, of the sun on a planet), since then the

problematic self-interaction terms are not present.
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5. Gravitational effects on molecular scattering in standard

many-body quantum theory

In a recent archive posting, Salzman and Carlip [5] studied the single particle case,

Eq. (9d), of the SN equation, and based on this suggested that there may be significant

nonlinear gravitational effects in potentially observable situations, such as molecular inter-

ferometry experiments. However, the single particle case of the SN equation consists of a

self-interaction term which, as we observed in the preceding section, does not appear in the

standard Hartree approximation, and which does not have a Born rule interpretation. This

makes it problematic, we believe, to apply the SN equation to the mutual gravitational in-

teractions within a system of atoms, as needed, for example, to discuss gravitational effects

in molecular diffraction.

There is a standard way of treating gravitational effects on large molecules, within

conventional many-body theory (without use of the Hartree approximation), which leads to

a different conclusion from that reached in [5]. One simply includes in the interaction term

N
∑

r,s=1

Vrs(xr − xs) (16a)

of Eq. (9a) a Newtonian gravitational potential term

−
1

2

∑

r 6=s

Gmrms

|xr − xs|
, (16b)

in analogy with the usual treatment of the inter-particle Coulomb potential. Since both

Eq. (16a) (which includes the Coulomb force terms) and Eq. (16b) (which is the gravitational

perturbation) depend only on the relative coordinates xr − xs, they do not appear in the

equation for the center-of-mass wave function of the molecule. The center of mass will thus
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obey a free-particle Schrödinger equation, subject to external potentials (such as diffraction

gratings) acting on the molecule. Therefore, one expects no significant effect on the molecular

interference pattern from the mutual gravitational interactions of the molecular constituents.

Such gravitational perturbations will very slightly change the shape and energy levels of the

molecule, but will not exert an influence on its center-of-mass motion, other than (when

relativistic effects are taken into account) through their small modification of the mass of

the molecule.

We conclude with a question that suggests further work. As noted above, the SN

equation arises from applying the Møller–Rosenfeld semiclassical equation to the Newtonian

interaction of a many-particle system. Do the problems that we have encountered indicate

that a semiclassical approach to gravitation is inconsistent, and hence that gravity must be

quantized [15]? Or do they only indicate that a modification of the Møller–Rosenfeld and

SN approach should be sought, which will make possible a consistent semiclassical theory of

gravitational effects?
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