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Abstract
Optically thin dielectric slabs, in which a fully etched-through
two-dimensional patterning is applied, are used to form high-Q optical
cavities with modal volumes approaching the theoretical limit of a cubic
half-wavelength. Resonant cavities are formed from local defect regions
within the photonic lattice. Simple group theoretical techniques are
developed to design cavities which support resonant modes with a particular
polarization and radiation pattern. Numerical simulations using the
finite-difference time-domain method are then used to study the detailed
emission and loss properties of these modes. The cavities are probed
spectroscopically through photoluminescence measurements, which when
compared with numerical results show the presence of both donor and
acceptor type modes. These experimental results show the predictive power
of the modest symmetry analysis presented here in describing highly
localized defect states within photonic crystals.

Keywords: Photonic crystal, microcavity, semiconductor laser, InGaAsP

1. Introduction

Planar photonic crystal (PC) waveguide structures [1–3]
have been the subject of intense research activity in recent
years, as they hold a great deal of promise for use
in future generations of high-density lightwave circuits.
Significant progress has been made in the study of in-plane
waveguides [4–7], coupled resonator–waveguide systems [8–
10] and add–drop devices [11, 12]. One particular area of
interest is the study of optical nanocavities in two-dimensional
PC slab waveguides, where the strong dispersion of the
photonic lattice can be used to trap light in volumes close to the
theoretical limit of a cubic half-wavelength [13–16]. Mature
fabrication technologies such as planar lithography allow for
the precise control of the cavity geometry in these systems [17].

3 To whom correspondence should be addressed.

As a result, the development of basic design methods for
PC nanocavities is of considerable importance. In particular,
the ability to create optical nanocavities with defect mode
resonances of a given polarization, frequency and emission
pattern has relevance beyond just optical device technologies,
in the development of PC-based systems for more fundamental
studies such as cavity-QED explorations of coherent electron–
photon interactions.

In this paper, we examine the resonant mode properties
of intentionally introduced localized defects within two-
dimensional PC slab waveguides. The cavity of interest here
is composed of an optically thin dielectric slab surrounded by
air and patterned with a two-dimensional hexagonal array of
holes (figure 1(a)). A defect is created by altering the dielectric
constant in a small region of space in the hope of trapping light
within the defect region. This can be achieved in practice by
varying the radius of the central hole, or by removing a hole
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Figure 1. (a) Illustration of the two-dimensional hexagonal PC slab waveguide structure. (b) Fundamental TE-like (even) guided mode
bandstructure (r/a = 0.36, nslab = neff = 2.65). The guided mode bandgap extends over a normalized frequency of 0.29–0.41. The air
(cladding) light line is shown as a solid black curve.

entirely and varying the nearest-neighbour holes. By changing
the nature of the defect in such a manner, one can profoundly
affect the properties of the resonant cavity modes. In particular,
the polarization and radiation pattern of the emitted modes can
be largely controlled by the design of a suitable defect cavity.

The design and analysis of a given defect cavity begins
with a study of the symmetries present in the system. Simple
group theoretical techniques are used to produce approximate
forms for the resonant modes of the cavity. In addition, the
symmetry analysis provides information on the transformation
properties of these resonant modes, as well as a scheme for
labelling them. The results of the group theory analysis
are extended through numerical calculations using the finite-
difference time-domain (FDTD) method [14]. FDTD allows
for a detailed investigation of the emission characteristics of the
PC cavities, including their spectral response, resonant mode
field patterns and loss properties.

The following sections detail a study of the optical
properties of experimentally realized defect cavities of varying
symmetry in a two-dimensional PC slab waveguide. Section 2
outlines the application of simple group theory in producing
approximate results describing many of the salient properties
of the PC defect cavities. Section 3 presents the results of
FDTD simulations, establishing a close correspondence with
the group theory analysis while elucidating more detailed
properties of the defect mode resonances. In addition,
experimental data in the form of spectroscopic probing through
photoluminescence (PL) measurements of fabricated devices
is given.

2. Symmetry analysis

The spatial symmetries within Maxwell’s equations are
determined by the translation and rotary–reflection symmetries
of the dielectric function, ε(r) [18, 19]. As such, group
theory can be used to predict and categorize the resonant
modes of defects within PC structures. A two-step process
is implemented here. The unperturbed slab waveguide modes
are first used to generate approximate field patterns for the PC
modes at the band-edges defining the guided mode bandgap.

The PC band-edge states are then used as a symmetry basis
to generate approximate forms for the localized defect modes
lying within the bandgap.

2.1. Band-edge modes

The modes of a symmetric slab waveguide, patterned or
unpatterned, separate into modes of even or odd parity with
respect to a mirror plane in the middle of the dielectric slab.
Of interest here are the fundamental guided modes, which, for
the slab thicknesses of the devices analysed in section 3, have
a wavelength commensurate with the emission band of the
quantum wells. This effectively reduces the spatial dimension
of the problem from three to two. In the mirror plane of
the waveguide, the fundamental even and odd modes can be
represented by scalar fields Bz and Ez, respectively.

For the hexagonal photonic lattice of the cavities studied
here a bandgap opens up in the frequency spectrum of the
fundamental even guided modes, but not in the fundamental
odd mode spectrum [14]. For this reason we focus on the
fundamental even modes (TE-like) of the slab waveguide,
whose magnetic field patterns within the mirror plane of an
unpatterned slab are given by Bk⊥(r⊥) = ẑe−i(k⊥·r⊥) for
in-plane momentum k⊥ and coordinates within the mirror
plane r⊥. For a two-dimensional PC (with or without vertical
waveguiding), the point group symmetry of the hexagonal PC
is D6h. Narrowing our scope to TE-like modes of a symmetric
slab, the point group symmetry of the system can be effectively
reduced to C6v = D6h/σh, where the horizontal mirror plane
(σh) lies in the middle of the dielectric slab. A plot of the
approximate4 in-plane bandstructure for the fundamental TE-
like guided modes of a half-wavelength thick hexagonally
patterned slab waveguide is given in figure1(b).

Upon patterning the slab waveguide, coupling occurs be-
tween waveguide modes with similar unperturbed frequen-
cies and similar propagation constants modulo G, where G

is a reciprocal lattice vector. The high-symmetry points

4 In this calculation a two-dimensional hexagonal PC with host dielectric
constant given by the effective index of the fundamental TE mode of the half-
wavelength thick slab is analysed [14].
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Figure 2. Illustration of the real and reciprocal spaces of the two-dimensional hexagonal PC. (a) Real space lattice. |a1| = |a2| = a.
(b) Reciprocal space. |G1| = |G2| = 4π/

√
3a, |kX| = 2π/

√
3a, |kJ | = 4π/3a.

of the first Brillouin zone (IBZ) are the six X-points
({±(0, 1)kX,±(

√
3/2, 1/2)kX,±(

√
3/2,−1/2)kX}), the six

J -points ({±(1/2,
√

3/2)kJ ,±(1/2,−√
3/2)kJ ,±(1, 0)kJ }),

and the �-point = (0, 0). The first-order bandgap of the
hexagonal lattice (see figure 1(b)) is defined from above by the
X-point (‘conduction’ band-edge) and below by the J -point
(‘valence’ band-edge). The different degenerate X- and de-
generate J -points in the IBZ are labelled as in figure 2(b). The
group of the wavevector at the X-, J - and �-points is C2v, C3v

and C6v, respectively. Character tables [20] for these groups
are given in table 1.

2.1.1. X-point. From Bloch’s theorem we know the
eigenmodes at the X-point of a hexagonal PC must be
the product of a periodic function and a plane wave with
momentum kX. In the PC structures studied here, we are
interested in wavelengths near the first-order bandgap. These
wavelengths correspond to the lowest-frequency modes at the
X-point, which in the unperturbed waveguide have a frequency
ωX

0 ≈ c|kX|/neff , where the guided mode has an effective
index neff and a scalar field within the symmetry plane of the
slab waveguide given by B = ẑe−ikX1 ·r⊥ .

A symmetry basis for the modes of the patterned
slab waveguide at the X-point (irreducible representations
(IRREPs) of the little group at the X-point) can be found
by applying the symmetry operations of the group of the
wavevector (GokX

= C2v) to the seed vector BkX1
. In this case,

the basis is simply (BkX1
,B−kX1

). Projecting this symmetry
basis onto the IRREP spaces of C2v yields

BX1
A2

= ẑ cos(kX1 · r⊥),

BX1
B1

= ẑ sin(kX1 · r⊥),
(1)

where A2 and B1 label the IRREP spaces of C2v (see table 1).
Considering that the dielectric structure, as defined here, has
a low-index air hole at the origin, then BX1

A2
corresponds to

the ‘valence’ band mode and BX1
B1

to the ‘conduction’ band
mode [21].

In order to fully define the modes at the X-point all modes
of the star of k (�k) must be included. The result is the set of
degenerate valence band modes,

VBX
A2

= ẑ

( cos(kX1 · r⊥)
cos(kX2 · r⊥)
cos(kX3 · r⊥)

)
, (2)

and degenerate conduction band modes,

CBX
B1

= ẑ

( sin(kX1 · r⊥)
sin(kX2 · r⊥)
sin(kX3 · r⊥)

)
. (3)

2.1.2. J-point. A similar procedure may be performed in
order to determine approximate forms for the TE-like valence
and conduction band modes at the J -point of the IBZ. An
approximate form for the valence band-edge and conduction
band-edge modes at the J -point is

VBJ
A′

2
= ẑ

(
e−ikJ1 ·r⊥ + e−ikJ3 ·r⊥ + e−ikJ5 ·r⊥

e−ikJ2 ·r⊥ + e−ikJ4 ·r⊥ + e−ikJ6 ·r⊥

)
, (4)

CBJ
E = ẑ




e−ikJ1 ·r⊥ + e−ikJ3 ·r⊥ − 2e−ikJ5 ·r⊥

e−ikJ1 ·r⊥ − e−ikJ3 ·r⊥

e−ikJ2 ·r⊥ + e−ikJ4 ·r⊥ − 2e−ikJ6 ·r⊥

e−ikJ2 ·r⊥ − e−ikJ4 ·r⊥


 , (5)

where A′
2 and E are IRREP labels describing how each

symmetry basis transforms under C3v, the point group at the
J -point.

2.2. Conduction band donor modes

By perturbing the dielectric constant in a small region of a
periodic PC lattice, one mixes the Bloch modes of the lattice
and localized defect modes can form. If the perturbation
corresponds to a local increase in the dielectric constant,
then the localized modes are formed predominantly from the
conduction band modes, specifically the modes at the band-
edge. This is a result of the fact that mode frequencies decrease
with an increase in the dielectric constant [21]. Thus, the
conduction band-edge modes are ‘pulled’ into the bandgap of
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Table 1. Point group character tables.

the PC near the defect, resulting in a localized state. This type
of localized mode will be termed a donor mode in analogy to
the electronic defect states in crystalline materials.

For the hexagonal PC lattice the minimum in the
conduction band occurs at the X-point (see figure 1(b)).
Therefore, the appropriate symmetry basis to use for describing
localized donor modes is the degenerate conduction band-edge
modes of CBX

B1
. The simplest defect is that of a single missing

air hole in the photonic lattice. By removing a hole we have
destroyed the translational symmetry of the photonic lattice
and are left with its point group symmetry, C6v.

The matrix representation of the CBX
B1

basis under the
operations of C6v is labelled Sd1, and its characters are shown
in table 1. From the C6v character table we find that Sd1 =
E1 ⊕ B ′′

1 . Using the projection operators on CBX
B1

, a set of
basis functions for E1 and B ′′

1 appears as follows:

Bd1
B ′′

1
= ẑ(sin(kX1 · r⊥) − sin(kX2 · r⊥) + sin(kX3 · r⊥)),

Bd1
E1,1 = ẑ(2 sin(kX1 · r⊥) + sin(kX2 · r⊥) − sin(kX3 · r⊥)),

Bd1
E1,2 = ẑ(sin(kX2 · r⊥) + sin(kX3 · r⊥)).

(6)
The (d1, B ′′

1 ) donor mode transforms like a hexapole, whereas
the degenerate (d1, E1) modes transform as an (x, y)-dipole
pair.

By introducing defect regions with lower symmetry than
the host photonic lattice one is able to remove degeneracies
in the localized mode spectrum. The X- and Y -split cavities
studied below have a defect region with C2v symmetry as
opposed to the full C6v symmetry of the lattice. The effects of
this symmetry lowering can be quite easily determined using
group theory by looking at the compatibility relations between
the IRREPs of the full and reduced symmetry groups:

C6v → C2v,

Bd1
B ′′

1
→ Bd1,1

B1
,

Bd1
E1,1 → Bd1,2

B1
(x-dipole),

Bd1
E1,2 → Bd1

B2
(y-dipole).

(7)

In the case of the X- and Y -split cavities with C2v symmetry,
group theory predicts the splitting of the degenerate dipole-
like modes into x and y dipole-like modes with differing
frequencies. This is born out both in the numerical simulations
and in the experimental measurements of section 3 below.

2.3. Valence band acceptor modes

If the dielectric constant had been reduced in a small region
within the photonic lattice, by enlarging an air hole for instance,
then instead of pulling the conduction band modes down into
the PC bandgap the valence band modes are ‘pushed’ up into
the bandgap. In this case modes localized to the defect region
are formed predominantly from mixtures of Bloch modes from
the valence band-edge. This type of defect mode is termed
an acceptor mode, again in analogy to the electronic states
in a crystal. For the hexagonal lattice the maximum of the
valence band occurs at the J -point (see figure 1(b)). As in the
previous section, the obvious symmetry basis used to describe
the acceptor modes is the set of degenerate valence band modes
at the J -point, VBJ

A′
2
.

The simplest type of acceptor defect region consists of an
enlargement of a single hole in the photonic lattice. This type
of defect maintains the point group symmetry of the lattice,
C6v. The characters of the representation of VBJ

A′
2

under the
C6v point symmetry group, which we label Sa1, are given in
table 1. Sa1 decomposes into irreducible blocks B ′′

2 ⊕ A′′
2.

Using the projection operators, the basis functions of VBJ
A′

2

are coupled together to form the following localized acceptor
modes:

Ba1
A′′

2
= ẑ(cos(kJ1 · r⊥) + cos(kJ3 · r⊥) + cos(kJ5 · r⊥)),

Ba1
B ′′

2
= ẑ(sin(kJ1 · r⊥) + sin(kJ3 · r⊥) + sin(kJ5 · r⊥)).

(8)
In the X- and Y -split cavities with C2v symmetry, Ba1

A′′
2

and

Ba1
B ′′

2
transform as A2 and B2 IRREPs, respectively:

C6v → C2v,

Ba1
A′′

2
→ Ba1

A2
,

Ba1
B ′′

2
→ Ba1

B2
.

(9)

For defect regions which strongly perturb the photonic
lattice it is possible that a larger number of localized defect
modes will form than can be described by the limited symmetry
basis used above. This is the case for the Y -split cavity
described below, where the defect region is composed of two
enlarged holes and has a relatively deep potential well for
acceptor modes. As a result, in the FDTD simulations and the
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PL measurements of the Y -split cavity an additional shallow
acceptor (SA) type mode (Y -A20), not covered by the VBJ

A′
2

symmetry basis, is present.

In order to capture more fully the possible defect modes
in a deep potential well, the symmetry basis can be expanded
in a number of ways. One method would be to modulate the
current symmetry basis (VBJ

A′
2
) by a set of envelope functions5.

However, this would only be applicable in cases where there
are two distinct length scales for the defect region and the
underlying lattice6. Another technique, which could be used
in the case of the Y -split cavity, is to enlarge the starting
symmetry basis by solving for the localized acceptor modes
of each enlarged hole within the Y -split cavity separately,
and then to couple the two basis sets. The symmetry basis
in this case includes two copies of the acceptor modes given
in equation (8), which are spatially separated by the distance
between the two enlarged holes. This method works well for
enlarged holes which are significantly displaced so as to be
weakly coupled. For the closely spaced enlarged holes of the
Y -split cavity it is more appropriate to treat the two enlarged
holes as a single perturbation of the photonic lattice.

A third method, which will be adopted here, is based
upon the observation that for defect regions which provide
a deep potential well it is also possible that defect modes will
form which are composed of unperturbed PC modes located
not just at the edge of the bandgap, but also at other nearby
(in frequency) high-symmetry k-points within the IBZ. In
order to represent these additional localized resonant modes
the unperturbed PC modes at the additional high-symmetry
k-points must be included in the symmetry basis. For the
hexagonal lattice the valence band at the X-point is close in
frequency to the bandgap edge at the J -point (see figure 1(b)).
The symmetry basis for the X-point valence band-edge is the
triply degenerate VBX

A2
basis set. The representation of VBX

A2

under C6v, labelled Sa2, has the character values shown in
table 1 and decomposes into irreducible spaces E2 and A′′

2.
The acceptor type modes formed from the X-point valence
band modes in a symmetric defect cavity are

Ba2
A′′

2
= ẑ(cos(kX1 · r⊥) + cos(kX2 · r⊥) + cos(kX3 · r⊥)),

Ba2
E2,1 = ẑ(2 cos(kX1 · r⊥) − cos(kX2 · r⊥) − cos(kX3 · r⊥)),

Ba2
E2,2 = ẑ(cos(kX2 · r⊥) − cos(kX3 · r⊥)).

(10)

The Y -split cavity does not have C6v symmetry, but rather
C2v symmetry. This reduction of symmetry causes the E2

IRREP space to split into A1 ⊕A2, and the A′′
2 space to transfer

5 We have implicitly assumed up to now that the envelope of each of the
symmetry basis fields is invariant under all the symmetry operations of the
group of the wavevector. This is consistent with assuming that the envelope
simply represents exponential decay into the unperturbed regions of the
photonic lattice, i.e. contains no nodes representative of higher-order envelope
functions.
6 For the highly localized defect cavities studied here the energy associated
with the curvature of a higher-order envelope function within the defect region
is on the order of the energy associated with the Bloch part of the field.

over into an A2 IRREP space:

C6v → C2v,

Ba2
A′′

2
→ Ba2,1

A2
,

Ba2
E2,1 → Ba2,2

A2
,

Ba2
E2,2 → Ba2

A1
.

(11)

The SA mode (Y -A20) found in the Y -split FDTD simulations
of the next section transforms as the A2 IRREP under C2v

symmetry operations. The dominant Fourier component
within the FDTD-generated field pattern of Y -A20 is kX1 , from
which we can conclude that this mode is given by Ba2,2

A2
as

opposed to Ba2,1
A2

.

3. FDTD simulations and photoluminescence
measurements

Expanding upon the symmetry analysis of the defect cavities
described above, in this section numerical calculations using
the FDTD method [14] are presented. The FDTD simulation
results provide information about the resonant frequency,
radiation pattern and modal loss of PC defect cavity resonant
modes. Moreover, the FDTD calculations establish the
effectiveness of the chosen symmetry bases used in the group
theoretical analysis of the previous section in describing the
defect cavity modes.

The FDTD calculations were performed on a mesh with
20 points per lattice spacing. Excitation of the cavity modes
was performed by an initial field (Bz) with a localized Gaussian
profile, located in a position of low symmetry so as not
to exclude any possible resonant modes. The even modes
of the patterned slab waveguide were selected out by using
an even mirror symmetry (σh = +1) in the middle of the
slab waveguide. In order to choose a consistent mode basis
(only important for degenerate modes), as well as to reduce
computation time, a pair of vertical mirror planes (σx , σy) were
used to filter out cavity modes according to their projection on
the IRREPs of C2v. Each cavity mode is thus labelled by the
C2v IRREP by which it transforms and an index corresponding
to its energy (frequency) level.

PL measurements performed on microfabricated PC
cavities are also presented in conjunction with the FDTD
simulations, thus providing a strong tie between theoretical
and experimental analyses. For these measurements the
PC structures were formed in a waveguide layer containing
multiple InGaAsP quantum wells which emit light in the
1500 nm wavelength band [22]. Optical pumping was provided
by a 830 nm semiconductor laser diode, and the resulting
PL was collected from a direction normal to the surface of
InGaAsP sample (vertical emission from the planar defect
cavities). A more detailed description of the fabrication
process and measurement set-up can be found in [18].

3.1. Symmetric (S) cavity

The simplest cavity geometry that can be readily implemented
consists of a single missing hole (schematically shown in
figure 3(a)). We shall refer to this cavity as a symmetric or
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Figure 3. PC defect cavity geometries. (a) S-cavity. (b) X-split
cavity. (c) Y -split cavity.

S-cavity as it retains the full point group symmetry of the
hexagonal lattice (C6v). An FDTD-simulated spectrum of a
defect cavity with a central missing hole and a linear grade7

in r/a (from the centre outwards) of 0.38–0.34 is plotted in
figure 4 as a dashed curve. The spectrum is plotted versus
normalized frequency, ωn = a/λ0, where a is the lattice
spacing and λ0 is the free-space wavelength. A normalized
slab thickness, d/a, of 0.41 was used in the simulated
structures to be consistent with the fabricated devices. To
reduce computation time, the number of mirror periods (p)
surrounding the central missing hole was limited to five in
the simulations, save for the more extended modes for which
cavities with eight periods were also simulated in order to more
accurately estimate the modal losses present in the fabricated
devices (see table 2).

In figure 4, there appear to be two distinct resonance
peaks within the guided mode bandgap of the TE-like modes.
Performing a mode filter [14] using the C2v mirror planes, we
find that each resonance peak contains two different modes,
yielding a total of four different localized modes whose
magnetic field patterns within the mirror symmetry plane of
the slab are shown in table 2. The two resonant modes
(accidentally degenerate) associated with the peak near the
valence band-edge correspond to SA modes which transform
as the A′′

2 and B ′′
2 IRREPs of C6v, and have the same dominant

in-plane Fourier components as Ba1
A′′

2
and Ba1

B ′′
2

of the symmetry
analysis in section 2. The addition of these SA modes is a result
of the linear grading in hole radius, which forms a potential
well for acceptor-type modes. Of particular interest is the
strongly localized pair of degenerate deep donor (DD) dipole-
like modes near the centre of the bandgap. From the plots of the
electric field intensity of the x- and y-dipole modes shown in
figures 5(a) and (b), we see that the fundamental k-components

7 As a result of nonidealities in the fabrication process [22], the air holes near
the centre of the cavity are larger than those at the perimeter in the fabricated
devices. A linear grading of the hole radius of 10% is quite common.

0.3 0.34 0.38 0.42

SA modes

S-B20 /A20

VB

DD (x,y)-dipole
modes} CB

}

Normalized frequency (a/ )

S-B10/
S-B21

Figure 4. FDTD and PL spectra of an S-type defect cavity with
a = 515 nm, r/a = 0.36 nominally (graded centre outwards from
0.38–0.34), nslab = 3.4 and d/a = 0.409. FDTD simulation results
are shown as a dashed curve.

of the x and y dipole-like modes correspond nicely with the
approximate field patterns predicted by the symmetry analysis.
Bd1

E1,1
represents the x-dipole mode and Bd1

E1,2
the y-dipole

mode. Even the subtle difference in the in-plane radiation
pattern of the (x, y)-dipole modes as calculated numerically
using FDTD is contained within the symmetry analysis as can
be seen by the lack of a third standing wave component in the
y-dipole (Bd1

E1,2
) mode.

A PL spectrum from an S-defect cavity with a = 515 nm,
r/a ≈ 0.36 and d/a = 0.41 is shown overlaid upon the FDTD
simulation in figure 4. The emission from the S-cavity also
shows the presence of two dominant peaks, one very close to
the DD peak and one close to the SA peak. Owing to the
small scale of the PC defect cavities, the field patterns of the
DD modes strongly resemble that of an oscillating electric
dipole. A vector plot of the E-field of the x- and y-dipole
modes in the plane of the slab is shown in figures 5(c) and (d).
Polarization measurements of the DD peak [23] confirm that
the emission is polarized predominantly along two orthogonal
directions consistent with the x- and y-dipole directions. The
experimental determination of the absolute frequency of the
DD dipole modes provides a reference point from which to
classify the rest of the cavity modes, and also provides a
measure of the accuracy of the FDTD calculations.

A list of properties of the two SA and two DD localized
defect modes is given in table 2. The numerically calculated
losses of each cavity mode are represented by effective in-
plane and out-of-plane quality factors [14], Q|| and Q⊥,
respectively. The effective mode volume, Veff , is calculated
from an estimate of the full-width at half-maximum value of
the electric field energy density in each direction [24], and
is given in units of cubic half-wavelengths. As a result of
the large porosity of the PC obtained during the fabrication
process [22], FDTD simulations predict a rather large vertical
diffraction loss (small Q⊥) for the highly localized dipole-
like modes. In contrast, the unintentionally introduced linear
grade in hole radius provides sufficient in-plane localization to
produce high-Q SA modes. For the fabricated defect cavities
with eight periods of the PC mirror (p = 8), the quality factor
for the S-B20 mode is theoretically estimated to be as high as
7500, limited by radiative losses in the plane of the photonic
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Table 2. Characteristics and magnetic field amplitude patterns of the resonant modes in a symmetric cavity with r/a linearly graded from
0.38–0.34 (d/a = 0.409, nslab = 3.4, p = 5).

(a) (b) (c) (d )

Figure 5. In-plane radiation losses (electric field amplitude saturated) of the x- and y-dipole modes (degenerate case) are shown in (a)
and (b), respectively. In (c) and (d) the vector plots of the electric field of the (x, y)-dipole modes in the middle of the slab waveguide are
shown.

lattice. It is for this reason that room-temperature lasing in
S-defect cavities is limited to the SA mode peak [18], and
reduced temperatures are required in order for the DD dipole-
like modes to lase (see section 3.3).

3.2. X-split (X) cavity

Another type of defect cavity that was fabricated and tested,
referred to as the X-split cavity, is shown in figure 3(b). In this
cavity the four air holes on the top and bottom of the central
missing hole are moved inwards a distance $y, reducing the
defect symmetry from C6v to C2v. In the fabricated structures
$y ∼ 0.05a ∼ 25 nm. An FDTD spectrum of an X-split
cavity with $y matching that of the fabricated devices is
plotted in figure 6. The magnetic field amplitudes of the
different resonant modes found in the FDTD spectrum are
shown in table 3. The DD (x, y)-dipole modes are seen to split,
as expected from the symmetry analysis of the previous section,
with the x-dipole being higher in frequency. The geometry of
the cavity also introduces two SA modes, X-A20 and X-B20.
These are the same modes as those found in the S-cavity in
which the linear grade in hole size created a potential well for

0.3 0.34 0.38 0.42

X-A20

X-B20

VB

DD (x,y)-dipole
modes }

X-B21

X-B10

CB
SA modes }

Normalized frequency (a/ )

Figure 6. PL and FDTD spectra showing the resonant modes of a
X-split defect cavity with r/a = 0.38–0.34, d/a = 0.409,
nslab = 3.4 and $y = 0.05a. FDTD simulation results are shown as
a dashed curve.

additional acceptor-type modes. As such, these modes have
the same dominant in-plane Fourier components as Ba1

A2
and

Ba1
B2

of section 2.

S167



O Painter et al

Table 3. Characteristics and magnetic field (amplitude) patterns of the resonant modes in an X-split cavity (r/a = 0.38–0.34, d/a = 0.409,
nslab = 3.4, $y = 0.05a, p = 5).

Figure 6 also contains a PL spectrum for an X-split
cavity (r/a = 0.38–0.34, d/a = 0.409, $y = 0.05a)
overlaid upon the FDTD spectrum. The PL spectrum shows
the presence of two pairs of resonance peaks. The SA and
DD peaks of the S-cavity have each split into two distinct
resonances. The positions of these peaks correspond well
with those of the FDTD simulation, and allow for their
identification (see table 3) using the nomenclature developed
in section 2. This classification is further supported by
polarization measurements of the DD modes [23]. These
measurements show that the two modes are highly polarized
along orthogonal directions, with the longer-wavelength peak
identified as the y-dipole mode and the shorter-wavelength
peak as the x-dipole mode.

FDTD calculated properties of the SA and DD resonant
modes of the X-split cavity are listed in table 3. As in the
S-cavity the DD dipole-like modes are seen to be highly
localized; however, the vertical diffraction loss suffered by the
dipole-like modes is much more severe in the case of theX-split
cavity, especially so for the x-dipole mode. This can be seen
in the PL spectrum of the X-split cavity, in which the higher-
frequency DD peak is significantly broader than its lower-
frequency partner. Room-temperature lasing (pulsed) was
limited to the X-A20 and X-B20 SA modes. Measurements
of the threshold pump power of each SA mode from a large
array of devices showed a consistently lower threshold value
for the higher-frequency X-B20 mode [18], in agreement with
its higher estimated Q-value given in table 3.

3.3. Y-split (Y ) cavity

In the Y -split cavity, illustrated in figure 3(c), the nearest-
neighbour holes on both sides of the central missing hole along
the�J -direction are enlarged and moved slightly inwards. The
degree of splitting is measured by r ′/r , the scaling factor
of the enlarged holes. The cavities studied here use hole
enlargements which result in a much stronger perturbation
of the cavity than in the X-split case. A FDTD simulation
showing the mode spectrum of a Y -split cavity with the two

0.3 0.34 0.38 0.42

VB

SA mode
Y-A20

DA modes}
Y-B20

Y-A21

DD x-dipole
mode}

Y-B10

CB

Normalized frequency (a/ )

Figure 7. PL and FDTD spectra of the resonant modes in a Y -split
defect cavity with r/a = 0.38–0.34, r ′/a = 0.51, d/a = 0.409 and
nslab = 3.4. FDTD simulation results are shown as a dashed curve.

nearest-neighbour holes enlarged by r ′/r = 1.5 is shown
in figure 7. The magnetic field amplitudes of the various
localized defect modes of theY -split cavity are given in table 4.
There are now at least four different localized modes within
the photonic bandgap. The two enlarged holes act as centres
for acceptor modes and give rise to two deep acceptor (DA)
modes in the spectrum. These DA modes are labelled as
Y -A21 and Y -B20, and correspond to the SA modes of the
S- and X-split cavities. The strength of the perturbation to
the photonic lattice produces an additional SA mode as well.
As noted in 2, this mode has the same dominant in-plane
Fourier components as Ba2,2

A2
of the symmetry analysis. We

further note that the splitting of the (x, y)-dipole modes is
so strong in this case that the y-dipole mode is completely
pushed out of the bandgap and only the x-dipole mode
remains.

The PL spectrum for a Y -split cavity (r/a = 0.38–0.34,
r ′/a = 0.51, d/a = 0.409), shown with the FDTD spectrum
in figure 7 confirms many of the predictions made by the
group theory and FDTD analyses. In particular, we note the
presence of an SA peak, two DA peaks and a single DD peak.
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Table 4. Characteristics and magnetic field (amplitude) patterns of the resonant modes in a Y -split cavity (r/a = 0.38–0.34, r ′/a = 0.51,
d/a = 0.409, nslab = 3.4, p = 8).

Polarization measurements of this DD mode [23] show it to be
strongly polarized in a direction corresponding to the x-dipole
mode. Table 4 also contains a list of the FDTD-calculated
properties of the Y -split cavity defect modes. It is interesting
to note that the DA modes are as well localized as the DD
dipole-like mode. The low Q-values of the DA modes and
the x-dipole mode are due to the large size of the splitting
holes. Room-temperature (pulsed) lasing was observed from
all but the DD x-dipole mode in the Y -split cavities [18]. At
reduced temperatures (T < 150 K), it was possible to obtain
pulsed lasing action of the x-dipole mode [16]. As the DA
modes have similar Q-values to that of the x-dipole mode, it
is suspected that the difficulty in obtaining lasing from the DD
mode may have more to do with the misalignment of the gain
spectrum with the resonance wavelength of the defect cavities
fabricated and tested in this experiment than with the modal
loss.

4. Summary

The optical properties of defect cavities in two-dimensional
PC slab waveguides have been examined analytically through
group theoretical methods, numerically through FDTD
calculations and experimentally through PL spectroscopy of
fabricated devices. The simple group theory analysis provides
significant predictive power by using symmetry arguments to
describe the approximate behaviour of a given device, while
the FDTD simulations uncover more detailed, quantitative
information that complements the group theory results and
can be directly compared with experiment. The combination
of these two methods results in a highly descriptive model
for the behaviour of the defect modes of PC cavities
of varying symmetry. Experimental characterization of
fabricated structures largely confirms the predictions of this
model, and this close correspondence illustrates the degree to
which the emission properties of the resonant modes of these
systems can be specified by a careful design that utilizes the
techniques described in this paper.
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