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Abstract. We have used the full Sommerfeld integral formalism as well as
an asymptotic formalism to study the near- and far-field radiation patterns of
an electric dipole in the vicinity of a planar dielectric half space. We present
systematic results for the polarization dependence of the radiation patterns in
both half spaces and the ratio of the integrated power radiated into the two half
spaces as a function of the relative refractive index as well as the dipole position.
We find that the radiation patterns are highly structured and directed. Furthermore,
the ratio of the integrated power increases significantly on increasing the relative
refractive index, which can be exploited to enhance the sensitivity of spectroscopic
studies of surface-bound molecules; however this ratio drops quickly for a dipole
more than 0.2 wavelength from the interface.
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1. Introduction

Driven initially by a need to understand the radiation pattern from a radio antenna located near the
earth’s surface, the angular, radial and height dependence of the field strength from an oscillating
electric dipole located some distance above a planar half space has attracted much interest over the
years, starting with Sommerfeld in 1909 [1]. This problem is equally important in the context of
collecting the maximum signal from fluorophores positioned in the vicinity of a planar interface.
In addition to the far-field behaviour relevant to most radio and spectroscopic applications, the
near-field effect of a substrate on, e.g., two-dimensional (2D) photonic crystal arrays formed
near an interface is surely also important.

It is immediately obvious that the problem presents significant mathematical difficulties,
since the phase velocities normal to the interface differ in the two media, yet the contours of
constant phase must match at the interface. Qualitatively, what happens is that the oscillating
dipole in a medium with a lower refractive index excites both homogeneous and evanescent modes
in the higher refractive index medium and the presence of the additional mode allows matching
of the Maxwell boundary conditions at the interface; the details are, however, all important. In
addition to the mathematical complexity associated with the special functions entering the formal
solution, numerical problems arise in its application.

In this paper, we studied the half space problem via simulation for a dipole located just
above the interface that is oriented: (i) perpendicular to the interface; (ii) randomly in the plane
of the interface; (iii) randomly in all directions. We systematically investigated the polarization
dependence of the radiation patterns and the dependence of the ratio of the integrated power
between the two half spaces on the relative refractive index as well as the distance of the dipole
above the interface. From this information, one can obtain the behaviour for a dipole with any
specified orientation. Clearly it is of primary interest to know how the power is directed. This
problem has been extensively investigated, both theoretically [2]–[4] and experimentally [5, 6],
but to our knowledge has not been treated sufficiently rigorously.
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Figure 1. The thick arrows show the contour used to evaluate the Sommerfeld
integral.

2. Simulation methods

2.1. The Sommerfeld formalism

The near-field simulations carried out in this study were done using the Sommerfeld integral
decomposition of a spherical wave [7],

eikir

r
= i

∫ ∞

0
dkρ

kρ

kz

J0(kρ) eikz|z|. (1)

Here, r is the distance between source and field points, ki = √
εiµik0 is the magnitude of the wave

vector of the medium, k0 being that of the vacuum. J0 is the first cylindrical Bessel’s function

and kz =
√

k2
i − k2

ρ. The subscript i is + or − depending on which side of the interface is being
considered and the interface is taken to be the x–y plane. Equation (1) represents an integral
decomposition of the spherical wave into a cylindrical wave, with wave number kρ, and a plane
wave in the z direction, given by kz. The contour of integration on the complex plane is shown in
figure 1; it lies just below the real axis for values of kρ less than kmax which is chosen to be larger
than the larger of the two values of ki. In this way, the branch cuts and branch points (dictated by
the expression for kz defining out-going radiation [8]) are avoided. (Singularities can also occur
on the real axis when layers are present.)

The electric Green’s tensor has been derived and used by many authors [8]–[10] and is
defined as

↔
G(�r − �r′) =

(
↔
I +

�∇ �∇
k2

i

)
eiki|�r−�r′|

4π |�r − �r′| . (2)

The source point is at the position �r′ and the field point at �r. In terms of tensor components the
physical meaning of this Green’s function is that Gαβ is the α component of the electric field
vector at the position �r due to a vector dipole of unit strength pointing in the β direction at the
position �r′. The operator in equation (2) is now applied to the representation of equation (1) to
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yield the desired decomposition. The interface electromagnetic boundary conditions

ẑ ×
(

↔
G

+
− ↔

G
−)

= 0, ẑ ·
(

ε+ ↔
G

+
− ε− ↔

G
−)

= 0,

(3)

ẑ × �∇ ×

 ↔

G
+

µ+
−

↔
G

−

µ−


 = 0, ẑ · �∇ ×

(
↔
G

+
− ↔

G
−)

= 0,

can then be applied. The waves in the z-direction separate naturally into TE and TM modes that
propagate through the media completely independent of each other and are coupled only at the
source. A derivation of the electric Green’s tensor in the more general context of multiple layers
in a stratified media is given in Paulus et al [11]. There it is shown how the boundary conditions
are used and how the mode coupling at the source is taken into account. Some corrections
and significant improvements will be published elsewhere [12] along with a derivation of the
magnetic Green’s function.

The magnetic field due to the electric dipole can be obtained from Maxwell’s equations as

�H (�r) = − i

k
�∇ × �E. (4)

This equation can be applied locally to obtain the magnetic field from the appropriate components
of the electric Green’s tensor. It is correctly applied only to the z plane wave and ρ conical wave
components of the representation before kρ integration and not to the integrated form that contains
the results of ‘folding’ the two media together under the kρ integral. The TE (transverse electric)
and TM (transverse magnetic) modes are thus treated separately and the results added up before
kρ integration [8, 13]. In this way, the correct boundary conditions are satisfied. Using these

considerations a magnetic Green’s function
↔
GH can be derived for the electric dipole with the

physical meaning analogous to the electric Green’s function as given above. These details will
also be discussed elsewhere [12].

The radial part of the time averaged Poynting vector given by

�S = 1
2

( �E × �H∗), (5)

can then be calculated using the appropriate tensor components.
Here, we present numerical results using the Gauss–Kronrod method for numerically

integrating on the contour in the kρ plane shown in figure 1. This is adequate for radial distance out
to more than 25 wavelengths. For comparison results are given for far field using an asymptotic
approach, which we now discuss.

2.2. Asymptotic approach

The far-field simulations carried out in this study were done using an asymptotic approach based
on the Lorentz reciprocity theorem [4]. This method allows us to calculate the power Pp,s(θ, ϕ)

radiated into the direction (θ, ϕ) in the differential solid angle d� = sin θ dθ dϕ, associated
with a dipole oriented at the angle (α, ϕ0). Pp,s(θ, ϕ) is normalized by the total integrated
power of a dipole radiating in the vacuum. In order to obtain Pp,s(θ, ϕ), we require three basic
quantities, Pp

||(θ), Ps
||(θ), Pp

⊥(θ). The subscripts stand for the dipole orientation, either parallel or
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Figure 2. Schematic of the half space structure; k is the direction of observation.

perpendicular to the interface, and the superscripts stand for the polarization of the emissions.
Pp

⊥(θ) corresponds to the signal emitted by a dipole oriented perpendicular to the interface, that is
(α = 0, ϕ0). Pp

||(θ) and Ps
||(θ) correspond to the p-polarized and s-polarized signal emitted in the

ϕ = 0 and ϕ = π/2 planes, respectively, by a dipole oriented parallel to the interface at ϕ0 = 0,

that is (α = 0, ϕ0 = 0). Pp,s(θ, ϕ) is given by

Pp(θ, ϕ) = cos2 αPp
⊥(θ) + sin2 α cos2 (ϕ − ϕ0)P

p
||

P s(θ, ϕ) = sin2 α sin2 (ϕ − ϕ0)Ps
||

, (6)

and

Pu(θ, ϕ) = Pp (θ, ϕ) + P s (θ, ϕ), (7)

where Pu(θ, ϕ) corresponds to unpolarized radiation. Considering an incoming wave propagating
from infinity in the opposite direction, as is done when using the Lorentz reciprocity approach,
the three basic quantities, PP

||(θ), Ps
||(θ), P

p
⊥(θ), are proportional to the absolute amplitude of the

ratios between the resultant electric fields at the dipole position, E(zo), which can be calculated
from Fresnel reflection and transmission coefficients, and the incoming electric field Ein

Pp
⊥(θ) = 3

8π
n(θ)

∣∣∣∣E
p
⊥(z0, θ)

E
p
in

∣∣∣∣
2

, Pp
||(θ) = 3

8π
n(θ)

∣∣∣∣∣E
p
||(z0, θ)

E
p
in

∣∣∣∣∣
2

,

(8)

Ps
||(θ) = 3

8π
n(θ)

∣∣∣∣E
s
||(z0, θ)

Es
in

∣∣∣∣
2

,

where 0 < θ < π/2 corresponds to the upper half space and π/2 < θ < π corresponds to the
lower half space (figure 2); here n(θ) = n1 for 0 < θ < π/2, n(θ) = n2 for π/2 < θ < π.

3. Simulation results

We assume the upper half space has refractive index n1 and the lower half space has refractive
index n2(n2 > n1). The relative refractive index is defined as n = n2/n1 (figure 2).
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Figure 3. Far-field radiation patterns P(θ)  versus θ . Per denotes a dipole oriented
perpendicular to the interface; 2Pi denotes a dipole randomly oriented in the
plane of the interface; and 4Pi denotes a randomly oriented dipole. The radiation
patterns are independent of ϕ for the above cases. The polarization of the emitted
signal is indicated by the different types of the lines. The same convention is
adopted for the remaining plots.

3.1. Polarization dependence of the radiation patterns for a dipole located slightly above the
interface (at z0 = 0.001 nm) observed in the far-field and in the near-field for various
observation distances

Figure 3 shows the s, p and unpolarized far-field radiation pattern on a logarithm scale for dipoles
located at z0 = 0.001 nm in the upper half space. The radiation pattern is highly structured and
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Figure 4. Near-field radiation patterns P(θ)  versus θ at five wavelengths from the
source.

directed and P(θ) has a global maximum/minimum (with the in-plane averaged p-polarized
emission having a minimum) at the critical angle between the media for all the above three
cases.

Figures 4 and 5 show the near-field radiation patterns for the above cases calculated at five
wavelengths and 25 wavelengths from the position of the dipole, respectively (we have carried
out calculations at other observation distances which we do not give here for brevity). The global
maximum/minimum of P(θ) approaches the critical angle with increasing observation distances.
The rapidly oscillating behaviour of the P(θ) beyond the global maximum/minimum arises from
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Figure 5. Near-field radiation patterns P(θ)  versus θ at 25 wavelengths from the
source.

an interference of the homogenous modes with the travelling surface modes required to match
the boundary conditions. The oscillation frequency increases and the amplitude decreases with
increasing observation distances.

3.2. Ratio of the integrated power into the upper half space and the lower half space with
respect to the relative refractive index for a dipole located at z0 = 0.001 nm

We also calculated the integrated power emitted over the upper half space and the lower half
space respectively; the ratio of these two powers is shown in figure 6. As the relative refractive
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Figure 6. Ratio of the integrated power versus relative refractive index. The
curves are far-field results and the dots are near-field results.

index increases from 1.01 to 3.50, this ratio increases (i) from 1.51 to 8.81 for a dipole oriented
perpendicular to the interface; (ii) from 1.24 to 47.4 for the unpolarized signal emitted by a dipole
randomly oriented in the plane of the interface; and (iii) from 1.33 to 16.37 for the unpolarized
signal emitted by a randomly oriented dipole. Clearly the relative refractive index plays an
important role in determining the distribution of the radiation.

3.3. Position dependence of the integrated power ratio

Figure 7 shows the z0 dependence of the ratio of the integrated power radiated into the upper half
space and the lower half space calculated from the far-field radiation patterns. The ratio drops
quickly and approaches a constant value when the dipole is more than about 0.2 wavelength
away from the interface. The interface influences the radiation pattern dramatically only when
the dipoles are close to the interface. Note the ratio of the integrated power calculated from
the near-field radiation pattern will deviate from the far-field results at large z0 (larger than 1.5
wavelengths in the present case), because the power radiated to the upper half space and lower
half space observed at near field depends on the dipole position; for this reason such plots are
not given.
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Figure 7. Ratio of the integrated power versus dipole position in the far field.

4. Conclusions

We find that the electric dipole radiation pattern shows a number of interesting features: (i) it is
highly structured and directed; (ii) as expected the radiation pattern observed at near fields evolves
and approaches the radiation pattern observed at far field, but shows interesting structure along
the way; (iii) the integrated power ratio increases significantly with increasing relative refractive
index; and finally (iv) the power ratio drops quickly for dipoles more than 0.2 wavelength away
from the interface.

We emphasize that when performing spectroscopic measurements, where the light is
typically collected from the air side of substrate-anchored molecules, the signal collection can be
significantly enhanced from using a transparent, high-dielectric-constant substrate and collecting
the light emitted into the substrate. This fact is apparently not appreciated in various spectroscopy
communities.
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