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Max-Planck Institute of Colloids and Interfaces, D 14424 Potsdam, Germany
E-mail: andreas.fery@mpikg-golm.mpg.de

New Journal of Physics 6 (2004) 18
Received 5 November 2003
Published 6 February 2004
Online at http://www.njp.org/ (DOI: 10.1088/1367-2630/6/1/018)

Abstract. In recent years, an increasing number of microcapsule systems have
been realized and have found applications in various fields of research and
technology. Amongst others, polyelectrolyte multilayer capsules (PMCs) offer
a great variety of materials and superior control over the wall thicknesses.
We present here a review on the different techniques that are available for
characterizing the mechanical properties of PMCs. We compare results that were
obtained using these techniques on the same system, namely PMCs made from
polyallylamine and polystyrenesulfonate multilayers and discuss perspectives of
the field.
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1. Introduction

Controlled encapsulation and release is an extremely important topic in many areas of daily life,
e.g. in food sciences, life science and pharmacy, cosmetics, cleaning or printing and coating. In
view of the many diverse applications there are also very different materials to be encapsulated,
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and the requirements on capsules and walls vary drastically. Hence, it is not surprising that many
different ways and systems have been tried and investigated and many of them are expected to
find their application slot. To name a few extremes of capsule size, in the lower-nm range there
are dendrimers [1] and guest–host or inclusion compounds, whereas in the high-nm range we
have supramolecular aggregates similar to micelles and vesicles of low- and high-molecular-
weight compounds [2]–[4] up to droplets and gel particles with diameters above 100 µm [5].
New developments have taken place in supramolecular and polymer chemistry [6], but as in
other areas of technology the size range between 0.1 and 1 µm is especially difficult to achieve.
New developments in colloidal science have been achieved recently and one of these will be
the focus of this work. We will report on a concept which is attractive for physicists, because it
does not require much chemical synthesis and is highly modular such that different properties
can be tuned individually. For many applications most important properties are capsule wall
permeability, adhesion and mechanics; here we will concentrate on the latter. For comparison of
properties and techniques we also refer to other types of micro- and nanocapsules.

2. Systems

2.1. Polyelectrolyte multilayers

In the general concept, new techniques to prepare well-defined organic multilayers on planar
support are adapted to coat colloidal particles. The method that has experienced most widespread
attention in the past decade consists of adsorbing a polyelectrolyte (a polymer with many charged
groups) on an oppositely charged substrate. Surprisingly, and not well understood, one achieves
a stable charge reversal of the surface that can again be reversed by adsorbing the oppositely
charged polymer [7, 8]. Thus one can obtain multilayers by cycling the adsorption process.
Using x-ray and neutron reflection measurements it has been shown that surface roughnesses
below 1 nm can be achieved, and also the roughness of inner interfaces was only 1–2 nm
[9]–[12]. Thus, the thickness can be tuned in the nm range by a number of deposition cycles,
chemical composition and preparation conditions [13]. The building blocks need not only be
synthetic or natural polymers, but multiply charged organic [14] or inorganic particles [15, 16],
proteins [17, 18], or multivalent ions [19] can also be used. Since cohesion mostly depends
on many electrostatic interactions the system is stable against desorption, but since individual
interactions are weak the structure depends on conditions during fabrication, partly also on
later treatment. Thus, it was shown that film thickness depends on pH [20, 21], ionic strength
[10, 22], humidity [23] and temperature [24], and also rearrangements can be achieved varying
these parameters, the sensitivity depending on the actual composition. Of special relevance
here is that generally the films are impermeable for large particles and polymers but permeable
for entities with molecular weight <1 kDa. In the latter case, diffusion coefficients typical for
polymeric glasses (10−14–10−16 cm2 s−1) were found, strongly depending on molecular size [25].

2.2. Multilayer capsules

Since films are constructed via adsorption the process can also be applied on curved surfaces,
such as colloidal particles [26, 27] (Scheme 1). Indeed all available light scattering, neutron
scattering and scanning force microscopy data point to the equivalence of the coating of planar or
curved support. The particle is then dissolved or depolymerized, the conditions again depending
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Scheme 1. Production of hollow polyelectrolyte multilayer capsules by coating
of colloidal particles (a,b) and subsequent dissolution of the particles under
conditions that do not destabilize the multilayers (c,d).

on the type of core [28]. Meanwhile, many types of inorganic, organic and even biological
(cells) cores have shown to be feasible, but there is room for much improvement to get rid
of all dissolution products and not to affect the wall by the process, either chemically or
mechanically due to the osmotic pressure transiently established during core dissolution [25].
Thus, monodisperse capsules with diameters between 20 nm and 20 µm and with a uniform wall
typically between 10 and 50 nm have been achieved. In the context of this review it is important
that the mechanical properties can be varied in a broad range since materials can be selected from
low-molecular-weight organic or inorganic compounds to stiff polymers and particles, and by
sintering even porous inorganic composites can be obtained. Adhesion can be varied independent
of the mechanics by adsorbing a ∼1 nm thick outer layer with defined charge or specific binding
units. Particle sizes around 1 µm are attractive for applications because the high volume/wall
ratio (∼100) enables a high payload. Still, our prime motivation to provide data on capsules with
sizes above 1 µm results from the fact that, in this case, optical techniques are applicable that
enable dynamic observations.

3. Mechanical properties

Although, as pointed out above, microcapsules can be built from a variety of materials, which is
expected to lead to different mechanical properties, we limit ourselves here only to measurements
of capsules made from multilayers of polyallylamine and polystyrenesulfonate. This is the
best studied system in the field (see [29] for an overview). Since methods to characterize
the mechanical properties of microcapsules are still evolving, the first task is to explore the
limits and potential of different techniques. Therefore, we compare the results obtained using
different methods on the same system. In general, we will distinguish between methods that
use osmotic pressure effects to exert forces on the microcapsules and methods that rely on the
micromanipulation of individual capsules.

3.1. Methods relying on osmotic pressure effects

Polyelectrolytes possess many dissociable groups, but for charge neutrality over distances of
a screening length of typically below 10 nm there is a counter-ion cloud creating an osmotic
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pressure π, which depends on the degree of dissociation and on the ionic milieu and can be
measured by classical techniques. Hence, inclusion of polyelectrolytes in capsules causes an
osmotic pressure tending to expand the volume; an outside polyelectrolyte tends to compress the
capsule. Thus, an excess of polyelectrolyte inside or outside the capsule creates a uniform force,
and the response yields information on mechanical properties. The effect of polyelectrolyte, in
the solution, on the capsule shape was investigated by Gao and co-workers [30, 31].

Figure 1 presents a series of confocal fluorescence microscopy images of capsules, staining
the wall by a dye, on increasing the outside polyelectrolyte (PE) concentration. One realizes that
at low PE concentration all capsules are nicely spherical; however, at high PE concentration
they are all deformed. By quantitatively measuring the fraction of deformed capsules as a
function of PE concentration a critical osmotic pressure πc can be derived where most capsules
are nonspherical (figure 2(a)). By varying the wall thickness d the square dependence of πc

(figure 2(b)) can be obtained.
This dependence is expected for the Euler instability of a spherical shell with radius R and

uniform wall thickness h, neglecting plastic deformations, according to

πc = 4µ

(
h

R

)2

. (1)

Hence, by knowing R we can derive the elastic modulus µ from the data in figure 2(b). In the
specific case we obtain µ = 500 MPa (corresponding toYoung’s modulus of E = 1500 MPa for
a Poisson ratio of 0.5), a value which as expected was found to increase with molecular weight
for the same pair of PE and also depends on the type of PE. The values of E are as high as typical
for polymeric glasses similar to PMMA which is not what was initially expected. Actually one
might expect that the experiment typically measures the weakest link allowing for an indentation
which would yield a lower value of E and has no square dependence on h. Obviously, the wall is
sufficiently homogeneous to enable application of this simple model. However, if one assumes a
purely elastic response of the wall towards deformations, the capsules should fully collapse once
the pressure is higher than the buckling threshold. This is not the case. Rather one finds a finite
indentation that grows with the increase in osmotic pressure. This can be explained by partially
plastic deformations of the material that limit the growth of the buckled zone.

3.1.1. Osmotic swelling of capsules. While in the first approach osmotic pressure was produced
by increasing the concentration of PE outside the capsule, recently the swelling behaviour of
capsules that were filled with PE was investigated. The capsules were filled with PSS by controlled
precipitation using Y3+ ions [32], which could then be removed such that the PSS was redissolved
and consequently exerted an osmotic pressure on the capsule membrane. The increase in radius
depends on the concentration of the encapsulated polyelectrolyte. On the basis of this result,
elasticity of the membrane material was estimated to be of the order of 100–300 MPa [33].

In general, the advantage of approaches that are based on the use of charged macromolecules
to exert osmotic pressure on the microcapsules lies in the fact that with one experiment, the whole
ensemble of capsules can be probed. In practice, the morphological changes that are induced by
the osmotic pressure are monitored with confocal optical microscopy which adds some technical
demands, but still hundreds of capsules can be probed in one experiment. The drawback of
these methods is that forces cannot be changed in situ and high concentrations of macro-ions
are necessary to induce pressures that are high enough to lead to deformations. At such high
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Figure 1. Confocal fluorescence microscopy images of polyelectrolyte capsules
exposed to increasing concentrations of polyelectrolyte in the solution. In the
polyelectrolyte-free solution (a), the capsules are spherical in shape, whereas
the addition of polyelectrolyte leads to buckling of the capsule membrane and
indentations appear (b,c).

concentrations, the osmolarity is no longer linear in the polyelectrolyte concentration and thus
independent measurements of the osmotic pressure are necessary which have been carried out
for the buckling studies [30, 31] and in the swelling studies [33]. In the swelling experiments,
(quasi-) static situations are investigated, which have to be taken into account when comparing
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Figure 2. The critical osmotic pressure that leads to the capsule buckling
instability can be determined from the concentration dependency of the percentage
of buckled capsules in solution (a). Variation of the capsule wall thickness d

for constant radius m shows the predicted quadratic dependency of the critical
pressure on the wall thickness normalized on the radius (b).

values with other techniques: on the long time scale the material could molecularly rearrange in
a viscoelastic fashion and thus lower elastic constants are to be expected.

3.2. Methods relying on micromanipulation of individual capsules

Methods that rely on micromanipulation of individual capsules are technically more demanding
than the methods mentioned above and cannot offer good statistics since the whole ensemble
is not probed in one experiment but only a limited number of capsules. However, they promise
superior control over the applied forces, a greater range of forces and the possibility to change
forces in situ. Thus, a lot of effort is put in this direction, using different approaches.
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Figure 3. SEM image of a silica particle mounted on an AFM cantilever. The
particles are glued to the cantilever using a micromanipulator and small amounts
of glue (less than 10−15 l).

In the micropipette technique, which was originally introduced by Evans and Kwok [34, 35]
and used for studying the mechanical properties of vesicles with great success [36], a micropipette
of a few microns inner diameter is used to aspire individual objects. Using hydrostatic pressure,
small pressure differences can be applied across the membrane and the induced deformation can
be monitored using optical microscopy. Bäumler and co-workers [37] have used the micropipette
technique for polyelectrolyte capsules. They observed that visible deformations only occurred for
large pressure differences as compared with those typically found in vesicle systems (typically by
a factor of 1000 higher). Also, the capsules’ response was qualitatively different, since it was not
possible to vary the area/volume ratio in a controlled and continuous way. Rather, the capsules
showed no detectable deformation up to a critical pressure difference at which they collapsed
and remained in collapsed form also after the pressure difference was released, showing a plastic
deformation behaviour. The qualitative differences to the vesicle experiments can be understood
by the fact that in the case of the capsule experiments reported above, no material creating an
osmotic pressure was encapsulated. Thus, there is no mechanism that keeps the capsule volume
constant. Consequently, the capsule collapses rather than being stretched. This problem could
be overcome by encapsulating macromolecules as explained above. Still the plastic behaviour
encountered complicates a quantitative interpretation.

The atomic force microscope (AFM) [38] can measure forces between 10−11 and 10−6 N
and at the same time detect deformations smaller than 1 nm, which renders the technique an
interesting candidate for microcapsule deformation studies. A general review on the use of AFM
as a force spectroscopy instrument can be found in [39]. While in imaging AFM a sharp tip is
interacting with the specimen, in the force spectroscopy the colloidal probe technique [40, 41] is
widely used: a colloidal particle of several microns diameter is mounted on an AFM cantilever
and is replacing the conventionalAFM tip (figure 3 shows a scanning electron microscopy picture
of a colloidal probe). The benefit of using a colloidal particle as a force probe lies in obtaining a
well-defined geometry and at the same time increasing the sensitivity for small interactions by
increasing the interaction area when compared with the sharp tip.

Attard and Gillies [42] first used the colloidal probe technique to study the deformation
characteristics of viscoelastic particles resting on a flat substrate. The same approach was
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Figure 4. Schematic view of the colloidal probe AFM set-up used for studying
PE-microcapsule mechanics: the piezo-crystal P is used to press the cantilever
against the capsule resting on a flat substrate. The forces necessary to deform
the capsule result in deflection of the cantilever that can be measured by the
laserpointer method (the laser L is reflected from the cantilever and a position-
sensitive detector D can thus detect small deflection changes).

independently used by Lulevic [43, 44] and Dubreuil [45] to probe the mechanics of
polyelectrolyte microcapsules. Optical control was in both cases achieved by using a standalone
AFM mounted on an inverted optical microscope as sketched in figure 4 (animation in movie 1
shows a schematic capsule measurement).

The first AFM studies focused on monitoring the force–deformation behaviour of
microcapsules for large deformations from 20% of the capsule diameter up to 100% (total
destruction of the capsules). It was found that forces in the low µN range had to be applied to
induce such deformations. Capsules filled with polymer material showed about 10 times higher
stiffness than non-filled capsules. Similar to earlier studies using the micropipette technique,
a plastic deformation behaviour was found for high deformations. Whereas those experiments
are valuable for application aspects of the microcapsules, where high deformations occur, a
quantitative interpretation of the force–deformation data in terms of elastic constants of the
wall material has so far proven to be complicated. Similar to the case of the micropipette
measurements, the main problem lies in the fact that there is no physical mechanism that
ensures a conservation of the capsule volume under a static load, unless the capsules are filled
with osmotically active substances. However, in a dynamic experiment, the permeability of the
capsule walls is expected to be of key importance for the effective stiffness of the capsules:
if the compression is fast compared with the solvent permeation, the encapsulated volume is
conserved and the main contribution to the resistance of the capsule against compression stems
from the fact that to conserve the volume, the area of the membrane has to be increased (a
sphere has the smallest area/volume ratio). Thus, the membrane has to be stretched and transient
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tensions occur. If the transport of solvent across the wall is fast as compared with compression,
these tensions are not created. The permeability of PE microcapsules for water molecules is not
known; however, the permeability properties of the walls for larger molecular weight molecules
have been studied intensively [25, 46, 47] and it is well known that the capsule walls are permeable
for molecular weight <10 000 (further treatment of the capsule can change their permeability
drastically [24, 48]). The micropipette measurements as well show that large volume changes can
occur on a time scale below the video resolution (20 ms) [37]. Thus, one expects not a full, but
most probably a partial volume conservation depending on the rate of compression for dynamic
measurements. The extent of volume conservation is as well expected to depend on the details
of preparation since defects in the capsule walls can dominate the permeability. Consequently,
attempts to derive elastic constants of the wall material from the large deformation behaviour
assuming zero-membrane permeability have resulted in estimates of the Young modulus in the
1–10 MPa range [49], about a factor of a thousand to a hundred lower than found with other
methods [30, 31, 33].

A possible way to overcome the problem of the unknown permeability/partial volume
conservation that is present for large deformations is by measuring the capsules’ small
deformation behaviour: Irrespective of the permeability properties a hollow capsule reacts
towards small deformations with a restoring force that is proportional to the deformation (the
elastic response of the capsule wall material). The force Felast scales [50] similar to

Felast ∝ 4
3Eh2ε. (2)

If the membrane is impermeable, an additional restoring force arises since the membrane has to
be stretched to keep the volume constraint when the spherical capsule is deformed. This volume
constraint adds a term that scales as [50]

Fvolume ∝ 16π

3
EhRε3. (3)

Here E denotes the materials’Young’s modulus, h the wall thickness, R the capsule radius and
ε the deformation normalized on the capsule diameter. Both formulae neglect prefactors of the
order of 1 containing the materials’ Poisson’s ratio for the sake of simplicity. Owing to the
different scaling in the deformation ε, the volume constraint loses its impact for sufficiently
small deformations. Balancing the two terms shows that the relative deformation εcrossover of the
crossover from the linear behaviour to the volume-constraint-dominated regime depends on both
the wall thickness and the radius of the capsule:

εcrossover ≈
√

h

4πR
. (4)

Figure 5 shows a direct comparison of the linear and volume-constraint contributions for a
microcapsule of 50 nm wall thickness. More elaborate numerical calculations by Feng and Yang
[51] and Taber [52] are in qualitative agreement with these simple scaling arguments.

To probe this regime, the sensitivity of the measurements has to be in the sub-nano-Newton
range which was recently achieved by Dubreuil and Fery [45]. For capsules of 20 µm diameter
and wall thicknesses of the order of 20–40 nm, deformations up to 200 nm (corresponding to
ε = 0.01) were probed. A linear force–deformation relation was found (see figure 6 for a typical
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Figure 5. Comparison of the two main contributions with the capsule stiffness
of a capsule of 50 nm wall thickness and 20 µm diameter (——: linear elastic
membrane term; – – –: volume-constraint term). Even for an impermeable
membrane, the linear term dominates for small deformations. The crossover
would be at 400 nm deformation. For finite permeability, the impact of the volume-
constraint term further decreases and the crossover value shifts to higher ε.

force–deformation curve) and the quadratic scaling of the capsules ‘spring constant’ as predicted
by the theory mentioned above was verified by using capsules of different wall thickness.

The elastic moduli derived from the measurements are of the order of 1.5–1.8 GPa and thus
comparable with those found in the buckling experiments of Gao [30, 31] and a factor of 10
higher than those found in swelling experiments [33], which can be explained by the fact that
different templates and different dissolution conditions were used in the latter experiments.

An interesting new development in this context is the combination of force spectroscopy with
quantitative microinterferometry [45]. Using the microinterferometry technique, the shape of
the capsules can be reconstructed from the interference pattern of monochromatic light reflected
from the transparent substrate and the capsule walls. Previous work has shown that for simple
geometries, a quantitative shape reconstruction with high lateral and vertical resolution can
be obtained from the interference pattern. Thus, optical microscopy can be used not only for
locating the capsules but also to derive information about the way in which they deform for
a given force/loading rate. Movie 2 shows the changes of the interference pattern during a
loading–unloading cycle. Figure 7 shows snapshots of the microinterferometry images during
the deformation and the corresponding force–deformation curve: the discontinuities in the force
deformation curve appear together with additional fringes in the central area. This is typical for
a buckling instability of the membrane.

4. Conclusion and outlook

The mechanical properties of microcapsules are of obvious importance for practical applications,
but they are also an intriguing object to study for physical reasons. Shells can be prepared with a
high definition of layer thickness with layers of components drastically different in mechanical
properties. It is this nanocomposite character which also lends abalone, muscle or bones their
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Figure 6. (A) A typical force versus deformation characteristic of a hollow
capsule for small deformations (ε < 0.01); the deformation is proportional to
the applied force. (B) The slope of the force deformation curve is plotted as a
function of the squared wall thickness.A quadratic scaling which rules out volume
contributions as discussed above is seen.

unique mechanical strength. It has become apparent that rather elegant and complementary
techniques have become available to derive quantitative data on individual shells. For future
work it appears most promising to study the relation between modulus, adhesion and local
curvature of shells as well as shape transitions. For the systems we have presented one expects
that mechanics and adhesion can independently be varied which appears most promising also
for applications [53]. Also for polyelectrolyte multilayer capsules, we show that the laws of
continuum mechanics hold down to dimensions of the order of 10 nm. Future trends in this area
concern the limits of continuum mechanics, dynamic forces and the importance of structural
transitions within individual layers.
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Figure 7. Snapshots of the microinterferometry images during the deformation
as insets in the force–deformation curve. Labels A, B, C refer to deformation
regimes: (A) no change in the contact area is noticed (pictures 1 and 2 are
identical), in (B) an increase in the adhesion area is observed (increase in the
central dark zone in pictures 2–4) and (C) a buckling of the capsule in the adhesion
area took place (fringes inside the central area in pictures 5 and 6).
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