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Abstract. We show that single-file water in nanopores can be viewed as a
one-dimensional (1D) Ising model, and we investigate, on the basis of this,
the static dielectric response of a chain of hydrogen-bonded water molecules
to an external field. To achieve this, we use a recently developed dipole lattice
model that accurately captures the free energetics of nanopore water. In this
model, the total energy of the system can be expressed as the sum of the
effective interactions of chain ends and orientational defects. Neglecting these
interactions, we essentially obtain the 1D Ising model, which allows us to derive
analytical expressions for the free energy as a function of the total dipole moment
and for the dielectric susceptibility. Our expressions, which agree very well with
simulation results, provide the basis for the interpretation of future dielectric
spectroscopy experiments on water-filled nanopore membranes.
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1. Introduction

Water confined to hydrophobic, sub-nanometre channels forms single-file chains in which
each water molecule is hydrogen-bonded to its nearest neighbours [1]. Such chains occur,
for instance, in the cavities of transmembrane proteins in biological cells, where they play
an important role in the transport of ions through the cell membrane [2]–[5]. Similar quasi-
1D confinement can also be realized by carbon or boron-nitride nanotubes [1, 6], providing
promising building blocks for future filtration devices [7]–[9], fuel cells [10]–[13] and sensing
devices [14]. An important step towards the realization of these applications was recently made
by Cambré et al [15], who observed for the first time that carbon nanotubes fill with water
down to sub-nanometre diameters. While their work demonstrates that narrow carbon nanotubes
indeed fill with water, experimental verification of the single-file structure inside the pores as
predicted by simulations is still lacking.

At room temperature and atmospheric pressure, water in sufficiently narrow carbon
nanotubes forms essentially continuous chains of dipolarly ordered water molecules connected
by hydrogen bonds [1, 13]. Flips of the orientation of such chains occur rarely via the diffusion
of a defect with anomalous hydrogen-bonding [11, 16]. For tubes longer than about 0.1 mm, this
macroscopic order is destroyed by orientational defects, which act as domain walls between
dipole-ordered segments of opposite direction. Theoretical and computational investigations
of such nanopore water are facilitated by a recently developed dipole lattice model, which
accurately captures the free energetics and dynamics of this system [11, 13, 17]. A particularly
convenient formulation of the model, the charge picture, in which the energy is expressed as
the sum of Coulomb-like interactions between defects and chain ends, permits us to carry out
computer simulations of water-filled narrow pores from nanoscopic to macroscopic lengths
and spanning multiple time scales [14]. Using this model, we have recently shown how these
unique ordering properties of nanoconfined water can be probed experimentally by dielectric
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spectroscopy and how the excitation energy, the diffusion constant and the effective interaction
of defects can be deduced from such measurements [14].

The thermodynamic and kinetic properties of the model become particularly simple if the
distance between the effective charges located at defect sites and at the chain ends is large such
that their Coulomb-like interactions can be neglected [17]. Under such conditions, defects are
uncorrelated, drastically simplifying the calculation of the ordering properties [13] and of the
dielectric response of nanopore water [14]. Here, we show that in this case, single-file water
can be described as a 1D Ising model, in which domain walls play the role of the orientational
defects occurring in the water chain. Exploiting this analogy, we determine analytically the
free energy as a function of the total dipole moment of a single-file water chain, and use this
result to investigate the response of a chain to an external homogeneous electric field in the
direction of the pore axis. We derive an analytical expression for the dielectric susceptibility of
nanopore water, which can be used to make contact with dielectric spectroscopy experiments
and implies that susceptibilities of systems at different temperatures or sizes are related to each
other by a law of corresponding states. Computer simulations carried out without making the
approximation of uncorrelated defects confirm all of our results.

The remainder of this paper is organized as follows. In section 2, we introduce the dipole
lattice model and discuss under what conditions it reduces to the 1D Ising model. We then
show that nanopore water is well described by a system of uncorrelated defects and defect pairs
in section 3. An analytical expression for the total dipole moment distribution is derived in
section 4 and used in section 5 to investigate the response to an external field. We end with
some conclusions in section 6.

2. From the dipole model to the Ising model

A single-file chain of water molecules in a narrow pore consists of one or more ordered
segments, or domains, in which the dipole moments of all water molecules point approximately
in the same direction. In these segments, each water molecule donates a hydrogen bond to a
water molecule on one side and accepts one from a molecule on the other side. Segments of
opposite orientation are connected by orientational defects, water molecules with anomalous
hydrogen-bonding. There are two types of defect, named L-defects and D-defects, alluding to
the orientational defects occurring in hexagonal ice [11, 13]. Whereas the L-defect molecule
donates two hydrogen bonds without accepting any, the D-defect molecule accepts two
hydrogen bonds without donating any. A single-file water chain containing both an L-defect
and a D-defect is shown schematically in figure 1(a).

2.1. The dipole lattice model

The free energetics of single-file water are well described by a recently developed dipole lattice
model [17]. This model, in which point dipoles are arranged on a 1D lattice with regular spacing
a, as depicted in figure 1(b), reproduces the filling/emptying of a pore as well as the ordering
properties of the pore very accurately [13]. In the present paper, we consider only pores that are
completely filled, i.e. the water molecules form a continuous chain without gaps. In this case,
all N lattice sites are occupied by a dipole of magnitude µ, which is either parallel to the pore
axis for water molecules within ordered segments or orthogonal to it for defect molecules. The

New Journal of Physics 12 (2010) 093044 (http://www.njp.org/)

http://www.njp.org/


4

(b)

(c)

(a)

D L

(e)

(d)

Figure 1. A single chain of water molecules containing two defects separated by
a single molecule, i.e. a defect pair. (a) Whereas the D-defect molecule accepts
two hydrogen bonds (dashed lines) without donating any, the L-defect molecule
donates two bonds without accepting any. (b) In the dipole model, each molecule
is represented by a dipole (arrow) on a lattice site (full circle). (c) In the charge
representation, defects carry two charges and chain ends carry a single charge. A
defect pair is represented by two kinks separated by two parallel spins in the 1D
Ising model (d), which is isomorphic to a system of uncorrelated defects (large
discs) (e).

energy of a particular configuration of dipoles is then given by the sum of all dipole–dipole
interactions, leading to the Hamiltonian

H = −

N−1∑
i=1

N∑
j=i+1

2si s j

| j − i |3
, (1)

where the discrete spin-like variable si specifies the orientation of dipole i . Whereas si = ±1
for dipoles in ordered segments, defect dipoles orthogonal to the pore axis are assigned si = 0,
because the interactions of the defect dipoles with other dipoles in the chain are negligible.
The energy of the hydrogen bonds between adjacent water molecules is not taken into account
explicitly in the above Hamiltonian, because the total number of hydrogen bonds is not changed
by the formation of defects such that the total energy due to hydrogen bonding is the same for
all configurations. Here and in the following, energy is measured in units of ε = µ2/(4πε0a3),
where ε0 is the vacuum permittivity.

It has been shown rigorously that 1D systems only display a true order–disorder transition
if the interaction decays more slowly than 1/r 2 with distance [18, 19]. Hence, similar to other
1D models with short-ranged interactions [20], the dipole model defined above is disordered
in the thermodynamic limit at all finite temperatures because of the finite energy and the
entropic benefit of the defects that destroy the order. As the temperature approaches T = 0,
defects become rarer such that the correlation length grows exponentially but remains finite at
all temperatures T > 0. As a consequence, no non-trivial critical behaviour is observed in the
1D dipole model.
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2.2. Charge picture

In the mathematically equivalent charge picture of the dipole model, illustrated in figure 1(c),
the total energy is written as the sum of interactions of effective charges carried by defects
and chain ends. This charge picture is not only physically transparent and appealing, but also
computationally very efficient and a useful basis for theoretical considerations. In the charge
picture, the Hamiltonian is given by

H =

2nd+1∑
m=1

2nd+2∑
n=m+1

′

qmqn8(|xm − xn|) + nd Ed, (2)

where nd is the total number of defects, Ed = ζ(2) − 1 the defect excitation energy and ζ(x)

is Riemann’s zeta function [21]. The effective charges of magnitude qm = ±1 are located at
positions xm at the endpoints of dipole-ordered segments and interact via

8(x) = 29 ′(x) + z9 ′′(x) ≈
1

x
. (3)

Here, 9 ′(x) and 9 ′′(x) are polygamma functions [21]. For distances x larger than one lattice
spacing, the interaction of effective charges is practically indistinguishable from the Coulombic
1/x interaction. Since in the charge picture effective charges are located at the endpoints of
ordered segments, defects carry two of these charges and chain endpoints only one. The sign
of the effective charges depends on the orientation of the corresponding ordered segments.
Whereas D-defects carry a positive effective charge, the charge of L-defects is negative but
of equal magnitude. Thus, defects of the same type repel each other, while defects of opposite
type attract each other. Note that the prime next to the sum sign in (2) indicates that we do not
include the interaction of the two charges forming a defect in this sum, because this contribution
is incorporated into the defect excitation energy Ed. The parameters of the effective Hamiltonian
can be obtained from molecular simulations carried out at room temperature and atmospheric
pressure, yielding the values a = 0.265 nm and µ = 1.9975 D for the lattice spacing and the
magnitude of the dipole moment, respectively [13]. For these parameters, the effective defect
charges have a magnitude of 2µ/a ≈ 0.31e and chain endpoints carry charges of half this
magnitude.

Using a related but different approach to our derivation of the charge picture, Cardy [22]
has shown that the effective interaction between domain walls in a 1D spin model has a
logarithmic distance dependence if pairs of spins interact as 1/r 2. In contrast to water in
nanopores, where there is no phase transition in the thermodynamic limit, such a system displays
a Kosterlitz–Thouless-like transition due to the logarithmic interaction of the defects [23].

2.3. The Ising model

Useful approximations of the effective Hamiltonian can be derived by neglecting most or
all of the Coulomb interactions between the effective charges carried by defects and chain
ends [17]. These simplified models were used in previous work for the investigation of the filling
transition and helped to clarify the influence of the Coulomb interactions on the structural and
thermodynamic behaviour of nanopore water [17].

Here, we go one step further and map all defect configurations onto the configurations
of a 1D Ising model, in which spins are located between the sites of the dipole lattice model
(see figure 1(d)). In this analogy, the orientational defects of the dipole model correspond to
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the kinks of the 1D Ising model located between spins of opposite direction. Consequently, a
chain with N molecules corresponds to an Ising model with N − 1 sites, a difference in size that
can be neglected for long chains. This particular mapping automatically takes into account that
defects cannot be located at chain ends. The constraint that defects have to be separated by a
single molecule implies that kinks in the Ising system are always separated by at least two spins.
This is the case for the defect pair shown in figure 1, for example. The Hamiltonian of the Ising
model is then given by

H = nd Ed, (4)

where the defect number nd corresponds to the number of kinks. The defect excitation energy
Ed is the energy needed to introduce a kink, Ed = 2J , where J is the Ising coupling constant.

The relation of the total dipole moment along the pore axis of the dipole lattice model to
the magnetization of the Ising model is complicated by the fact that a defect is located on a
molecule with a dipole moment orthogonal to the axis. Consequently, the generation of a defect
at a chain end changes the total dipole moment by ±3µ, while the hop of a defect to an adjacent
site changes it by only ±2µ. In contrast, both the generation and the hop of a kink in the Ising
model change the magnetization by ±2 times the magnetic moment of a single spin. Thus, a
one-to-one correspondence between the magnetization and the total dipole moment cannot be
established. Nevertheless, for long chains, these complications can be either neglected or easily
accounted for, as we shall see below.

If we not only neglect all Coulomb-like interactions but also ignore the configurational
constraints of the model, which prevent adjacent defects and defects next to chain ends, we
obtain a system of completely uncorrelated defects (figure 1(e)). This approximation is justified
if the distances between defects (and endpoints) are typically large, i.e. if the defect number is
small compared to the number of molecules in the chain. Every site of the lattice can then be
occupied by either zero defects or one defect, each of which contributes the defect energy Ed to
the total energy of the system. In this simplified model, we have to account for the degeneracy
of states due to the two possible orientations of the chain, which then renders this model exactly
isomorphic to the 1D Ising model.

3. Uncorrelated defects and defect pairs

The success of approximations in which most or all of the charges are neglected raises the
question: to what extent can a chain of water molecules be described by a system of completely
uncorrelated defects? In the following, we will inspect the validity of this approximation, which
underlies the analogy with the Ising model.

3.1. Uncorrelated defects

Collecting states with the same number of defects and noting that the number of distinct
configurations with nd defects is given by the binomial coefficient

(N
nd

)
, one can rewrite the

partition function of a gas of completely uncorrelated defects as

Zs(β, N ) = 2
N∑

nd=0

(
N

nd

)
e−βEdnd, (5)
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Figure 2. Average defect number 〈nd〉 (a) and order probability P0(N ) (b).
Simulation results are depicted as full symbols which are connected by thin
lines for 〈nd〉. The approximation of uncorrelated defects is shown as dashed
lines and the approximation of uncorrelated defects and defect pairs as solid
lines. Open symbols indicate rescaled simulation results obtained using the law
of corresponding states given by (15).

where the factor of 2 on the right-hand side takes into account the symmetry of the original
model with respect to dipole inversion. Using the binomial identity, one obtains

Zs(β, N ) = 2(1 + e−βEd)N . (6)

In the following, we will use this expression to derive expressions for various properties of the
model and compare them with numerical results.

According to (5), the average defect number 〈nd〉 is given by

〈nd〉 = −
1

Zs(β, N )

∂ Zs(β, N )

∂(βEd)
= N

e−βEd

1 + e−βEd
. (7)

In figure 2(a), we compare this analytical expression with simulation results determined in
Monte Carlo simulations using the full Hamiltonian (2). For long chains, the system of
uncorrelated defects qualitatively reproduces the simulation results, but the results are shifted
by a constant on the logarithmic scale to lower values. As explained later in this section, this
offset is due to the neglect of defect pairs, which have an excitation energy only slightly higher
than that of single defects. For short chains, on the other hand, the defect number obtained in
the simulations deviates considerably from the straight line expected for uncorrelated defects.
The reason for this behaviour is that a single defect in an otherwise ordered chain interacts
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attractively with the effective charges at the chain ends. This interaction, which is neglected in
the uncorrelated defect model, lowers the free energy required to create a defect and therefore
increases the defect density. The interplay between the increase in entropy and the decrease
in the influence of the chain ends with increasing system size even leads to the formation of
shallow minima in the defect number at N ≈ 40 and 20 for temperatures T = 298 and 387 K,
respectively.

Similar behaviour is observed for the order probability P0(N ), i.e. the probability that the
system is free of defects. This probability is obtained as the number of ordered states divided by
the partition function, i.e.

P0(N ) =
2

Zs(β, N )
= (1 + e−βEd)−N . (8)

As shown in figure 2(b), this approximation slightly overestimates the order probability
compared to the results for the full Hamiltonian. For long chains, the difference between
simulation results and the approximation of uncorrelated defects can be attributed to the
occurrence of defect pairs, as we shall see in the following.

3.2. Uncorrelated defect pairs

A defect pair consists of an L- and a D-defect separated by a single molecule (see figure 1(a)).
In contrast to single defects, which form at chain ends, defect pairs can form anywhere within
ordered segments. The generation of a defect pair within an ordered segment changes the total
dipole moment by −4 sµ independently of its position within the segment. Here, s denotes the
orientation of the ordered segment and can take the values +1 and −1. Since in the charge picture
the L- and the D-defect consist of charges with equal magnitude but opposite sign, a defect pair
is charge neutral and forms an effective dipole aligned with the chain. As a consequence, the
interaction of a defect pair with other effective charges decays rapidly with distance.

The excitation energy of a defect pair far from other effective charges is given by the sum
of twice the defect excitation energy Ed and the interaction energy of the two defects with each
other,

Ep = 2Ed − 8(1) − 28(2) − 8(3), (9)

where 8(x) is the Coulomb-like interaction (3). Due to the strong interaction of the two defects
forming the defect pair, the defect pair excitation energy is only about 15% larger than the
excitation energy of a single defect. For a water-filled carbon nanotube at ambient conditions,
the defect pair excitation energy is βEp ≈ 15.55, compared to βEd ≈ 13.44 for the excitation
energy of a single defect.

Due to the high defect pair excitation energy Ep, the density of defect pairs is low, but it
cannot be neglected with respect to the density of single defects. For large systems, one can
safely assume that defect pairs are uncorrelated and independent of single defects. In this case,
the partition function of a system of uncorrelated defect pairs, Zp(β, N ), is given by

Zp(β, N ) = (1 + e−βEp)N , (10)

resembling the form of the partition function of a system of individual uncorrelated defects
given by (6). Thus, the partition function of a system of uncorrelated defects and defect pairs
becomes

Z(β, N ) = Zs(β, N )Zp(β, N ). (11)
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The average defect number, including the defects occurring in defect pairs, is then given by

〈nd〉 = −
1

Z(β, N )

[
∂ Z(β, N )

∂(βEd)
+ 2

∂ Z(β, N )

∂(βEp)

]
, (12)

such that

〈nd〉/N =
e−βEd

1 + e−βEd
+ 2

e−βEp

1 + e−βEp
. (13)

This analytical result agrees well with the simulation results shown in figure 2(a) for N & 104.
Taking into account defect pairs, the order probability becomes

P0(N ) ≈
2

Z(β, N )
= [(1 + e−βEd)(1 + e−βEp)]−N , (14)

which is in excellent agreement with simulation results obtained for the full Hamiltonian, as
shown in figure 2(b).

3.3. Corresponding states

For a system of uncorrelated defects with a large defect excitation energy, i.e. b ≡ e−βEd � 1,
a law of corresponding states can be derived. To obtain this relation, which is useful to
investigate systems that are too large for numerical simulations, we approximate the partition
function as Zs(β, N ) ≈ 2(1 + Nb), the defect number as 〈nd〉 ≈ Nb and the order probability
as P0(N ) ≈ 1 − Nb. These expressions agree well with simulation results, and they depend on
the system size and the temperature only through the average defect number Nb. Note that b is
the inverse of the average domain length l. Thus, from the point of view of thermodynamics, a
system of size N at an inverse temperature β can be viewed as a coarse-grained description of a
larger system with size N ′, an inverse temperature β ′ and a defect excitation energy E ′

d, provided
Nb = N ′b′. This condition, requiring that the two systems have an equal average number of
defects, is equivalent to the relation

N

N ′
= e(βEd−β ′ E ′

d), (15)

which can be used to relate results obtained at one temperature to those obtained at another
temperature, as shown in figure 2. Here, the horizontal axis was rescaled using (15), leading
to a constant shift of the curves to the left when going from lower to higher temperatures. For
sufficiently long chains, we obtain excellent agreement between the original and the rescaled
data. Note that here we use the same values for the lattice spacing a and the dipole moment µ at
both temperatures, resulting in Ed = E ′

d. In general, these parameters depend on the temperature
and thus the defect excitation energy is a function of T .

Therefore, for long water chains, the order probability and the average defect number are
quantitatively reproduced by a system of uncorrelated defects and uncorrelated defect pairs.
Using the analogy between such a system and the 1D Ising model, one can also derive an
analytical expression for the free energy as a function of the total dipole moment, as we will do
in the next section.
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Figure 3. Free energy as a function of the total dipole moment per site. The
curves are shifted so that the free energy of the ordered states vanishes. Dashed
lines are simulation results for the full Hamiltonian. For negative values of the
total dipole moment, we plot the free energy for uncorrelated defects, which
have a higher free energy at vanishing dipole moment than the results for the
full Hamiltonian. For positive values of the total dipole moment, we show
results obtained including uncorrelated defect pairs, which agree well with the
simulation results.

4. Total dipole moment distribution

Since the orientation of individual water molecules with respect to the pore axis can flip due
to the formation and diffusion of thermally excited hydrogen bonding defects, the reduced
total dipole moment D =

∑
i si , related to the total dipole moment M by M = µD, is a

fluctuating quantity with a statistical distribution P(D). From this distribution, the free energy
F(D) = −kBT ln P(D) follows. Free energy curves F(D), shown in figure 3 as obtained from
Monte Carlo simulations for the full Hamiltonian (dashed lines) [13], reflect the transition,
with increasing system size, from a predominantly ordered system to a disordered system. For
short chains, the free energy curves display two minima corresponding to the ordered states at
D/N = ±1 separated by a high free-energy barrier with the maximum at D/N = 0, effectively
forming a two-state system. For long chains, the free-energy curves exhibit a pronounced
quadratic minimum for vanishing dipole moment with residual minima corresponding to the
ordered states. For intermediate system sizes, we observe a crossover behaviour with two deep
minima for the ordered states, and one shallow minimum for vanishing dipole moment. At all
systems sizes, the free energy is symmetric with respect to D = 0 such that the total dipole
moment vanishes on average.

We obtain an analytical expression for the free energy as a function of the total dipole
moment using the analogy between hydrogen-bonding defects in the water chain and kinks (or
domain walls) in the 1D Ising model. To do that, we follow Antal et al [24], who derived the
partition function as a function of the magnetization of the 1D Ising model for various boundary
conditions assuming a small kink density. Treating ordered and disordered states separately, we
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obtain for the partition function for fixed reduced dipole moment D

ZN(D) =


1 for |D| = N ,

ZN (D) = bI0(by) + Nb
I1(by)

y
else,

(16)

where Ii(x) are modified Bessel functions of the first kind [21] and y =
√

N 2 − D2. The only
difference compared to the corresponding expression for the Ising model is that in single-file
water the possible values for odd and even defect numbers are different, which we can account
for by a factor of 1/2 in the expression for the partition function of disordered states of the Ising
model [25]. The distribution of the total dipole moment is obtained as

PN (D) =
1

Z N
Z N (D), (17)

where

Z N = 2 +
N−3∑

D=−N+3

ZN (D). (18)

Consequently, the free energy as a function of the total dipole moment is given by

βF(D) = − ln Z N (D). (19)

In the limit of long chains, the distribution of the total dipole moment is Gaussian and the free
energy is parabolic, βF(D) = −D2/2Nl, where we have omitted an irrelevant constant. Thus,
the width of the Gaussian distribution, σ =

√
Nl, grows for increasing system size and average

domain length l = eβEd .
In figure 3, we compare the free energy as a function of the total dipole moment obtained

from simulations using the full Hamiltonian with the analytical expression for uncorrelated
defects (19). Although the shape of the free energy for disordered states is captured by the
approximation of uncorrelated, single defects, free energies are too high with respect to the
ordered states. The reason is that uncorrelated defect pairs lead to a larger statistical weight of
the disordered states in the partition function, i.e.

ZN(D) =

{
1 for |D| = N ,

ZN (D)(1 + e−βEp)N else.
(20)

Here, we have exploited the fact that the change in the total dipole moment due to the occurrence
of defect pairs is small compared to the change due to different positions of single defects and
can be neglected. The degeneracy of the disordered states arising from the extra entropy of the
defect pairs results in a linear shift,

βFp = − ln Zp = −N ln(1 + e−βEp), (21)

with respect to the free energy given by (19). Taking this shift into account, we obtain excellent
agreement between simulations and theory, as shown in figure 3.

The shift Fp in the free energy is small for predominantly ordered systems with . 105

molecules (for example, for a larger system size of N = 106 the shift is only βFp ≈ 0.18).
Thus, the shift in the free energy can be neglected for short chains. For longer chains, the
shift increases the statistical weight of the disordered states with respect to the ordered states.
However, since the ordered states have a small statistical weight for long chains, this shift does
not appreciably affect the thermodynamic behaviour. As a consequence, the degeneracy of the
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Figure 4. Static dielectric susceptibility χ(N ) of a water-filled nanopore
membrane at temperatures T = 298 and 387 K as obtained by numerical
summation according to (26) (dash-dotted line) and analytically using the
assumption of uncorrelated defects ((32), solid lines). The analytical and
numerical curves are indistinguishable on the scale of the figure. Also shown
are results of Monte Carlo simulations [14] for T = 298 K (full squares) and
T = 387 K (full circles). Data rescaled according to the law of corresponding
states given by (15) and (35) are shown as open symbols.

disordered states with respect to the ordered states can be neglected for most averages over the
probability distribution function of the total dipole moment, such as the average total dipole
moment or its fluctuations (see figure 4). Therefore, analytical results for the field dependence
of these quantities derived for the 1D Ising model [26] are applicable to single-file water. In
the following, we use the free energy as a function of the total dipole moment to investigate the
response of the total dipole moment of nanopore water to a static external electric field.

5. Static dielectric response

In an electric field, the dipole moments tend to orient into the field direction. A homogeneous
electric field E in the direction of the pore axis couples to the total dipole moment M of the
water chain and leads to an electrostatic interaction energy −DE f, where Ef = Eµ/ε is the
reduced electric field. Consequently, the distribution function of the total dipole moment at field
Ef can be obtained from the distribution function at vanishing field P(D) via

P(D, Ef) =
P(D)eβ DEf∑
{D}

P(D)eβ DEf
, (22)

where the sum is over all possible values of D. Since βF(D, Ef) = − ln P(D, Ef) up to a
constant depending on the field Ef, the free energy is given by

F(D, Ef) = F(D) − DEf, (23)

where βF(D) is the free energy for a vanishing external field. Thus, the effect of an external
homogeneous electric field in the direction of the pore axis is simply to tilt the free-energy
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curves by −DE f. We next use the results for P(D) from Monte Carlo simulations and from the
analytical expression given by (16) (see figure 3) and investigate the influence of the electric
field on the total dipole moment of the chain.

5.1. Linear response

The linear response of the total dipole moment M of the water chain to an electric field, E , is
quantified by the static dielectric susceptibility χ defined as

χ =
1

ε0 V

d〈M〉

dE

∣∣∣∣
E=0

, (24)

where the derivative is evaluated at E = 0 and angular brackets indicate a canonical ensemble
average. In the above equation, V denotes the volume of the sample and 〈M〉/V is the
polarization. The susceptibility χ is related to the equilibrium fluctuations of the total dipole
moment for vanishing electric field via the fluctuation-dissipation theorem [27],

χ = β
〈M2

〉

ε0 V
, (25)

where we have taken into account that 〈M〉 = 0. Since the susceptibility is defined for a bulk
material of volume V , we will consider the susceptibility of a membrane with parallel pores
with a given area density. For easier comparison with previous results [14], we will use a pore
density of 2.5 × 1011 cm−2 corresponding to a volume per molecule of v = 106 nm3. We assume
that in this membrane the pores are sufficiently far apart such that water wires in adjacent pores
are uncorrelated. Consequently, the static susceptibility of such a membrane is equal to that of
a single pore with volume V = Nv.

Since the assumption of uncorrelated defects yields an excellent approximation for the
total dipole moment (see figure 3), we can estimate the static susceptibility using the partition
function Z N (D) for fixed D from (16). Expressing the average of the squared total dipole as

〈M2
〉 =

∑
{D}

µ2 D2 Z N (D)∑
{D}

Z N (D)
, (26)

and approximating the sums by integrals that we evaluate numerically, we calculate the
dielectric susceptibility using (25). The results of this calculation agree very well with
simulation results for both temperatures and all system sizes investigated here (see figure 4),
confirming that defects are indeed uncorrelated to a large extent.

For uncorrelated defects, we also find a relation between the static dielectric susceptibilities
of corresponding states. In the limit of large system sizes, the partition function for fixed total
dipole moment D is given by a Gaussian distribution [24],

Z̃N (D) =
2bebN

√
2π Nb

e−D2b/2N . (27)

Approximating the sums by integrals yields

〈D2
〉 =

1

Z̃N

(
2N 2 +

∫ N

−N
dDD2Z̃N (D)

)
, (28)

where

Z̃N = 2 +
∫ N

−N
dDZ̃N (D). (29)
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Analytical integration of (28) and (29) then leads to

〈D2
〉 =

N

b
G(bN ), (30)

where

G(y) =

y − ey/2
√

2y
π

+ eyerf
(√

y
2

)
eyerf

(√
y
2

)
+ 1

. (31)

Here, y = bN = exp(−βEd + ln(N )) and erf(x) denotes the error function [21]. Thus, we obtain
the following approximation for the dielectric susceptibility,

χ(β, N ) =
βµ2

ε0V

N

b
G(bN ). (32)

This expression captures the static dielectric susceptibility for all system sizes to a good
approximation (see figure 4). For short chains, the number of defects and, hence, y are small.
The function G(y) can then be approximated by G(y) ≈ y, and we find, in agreement with
results obtained for a two-state model [14],

χshort(β, N ) =
βµ2

ε0v
N . (33)

This expression does not depend on the defect excitation energy and is a consequence of the
two-state behaviour of the total dipole moment, which, in the presence of an external electric
field, was confirmed by molecular dynamics simulations [28]. In this work [28], the authors
apply a field of up to ∼109 V m−1 to a chain of five water molecules. They compare simulation
results of the average value and the variance of the total dipole moment to predictions of a two-
state model and find them in excellent agreement. Up to fields of ∼2 × 108 V m−1, the average
dipole moment of individual water molecules in the direction of the pore axis is essentially the
same as in the field-free case. Only for larger field strengths do individual water molecules align
into the field direction, leading to an appreciably larger component of the dipole moment along
the axis.

For large values of y, corresponding to long chains, the function G(y) converges to
G(y) ≈ 1 and the dielectric susceptibility is given by

χlong(β, N ) =
βµ2

ε0v
eβEd, (34)

as expected from the analytical solution of the 1D Ising model in the thermodynamic limit
[14, 26]. The crossover between this constant regime and the linear regime for short chains
occurs at a chain length of about exp(−βEd) at which there is one defect in the chain on average.
Note that equation (34) for the susceptibility in the long chain limit can be obtained from the
short chain expression (33) simply by replacing the chain length N by the average domain length
exp(−βEd).

The argument of the function G(bN ) in (32) has the same value for corresponding
states with the same average number of defects, i.e. with Nb = N ′b′. Since the volume V is
proportional to the pore length (for a single pore as well as for a membrane with a given pore
density), i.e. V = vN and V ′

= vN ′, we obtain a relation between the dielectric susceptibilities

New Journal of Physics 12 (2010) 093044 (http://www.njp.org/)

http://www.njp.org/


15

of the two corresponding systems with dipole moments µ and µ′ and excitation energies Ed

and E ′

d,

χ(β, N )

χ(β ′, N ′)
=

βµ2

β ′µ′2
e(βEd−β ′ E ′

d). (35)

We used this relation to obtain estimates for the static dielectric susceptibility at T = 298 K
from simulations at T = 387 K, and the other way round, and found good agreement (see
figure 4). Here, we again neglect the temperature dependence of the dipole moment and the
excitation energy in our simulation, i.e. µ = µ′ and Ed = E ′

d, for which (35) simplifies to
χ(β, N )/χ(β ′, N ′) = exp[(β − β ′)Ed]β/β ′.

The limiting cases given by (33) and (34) permit us to determine the average dipole moment
of a water molecule along the pore axis, µ, and the defect excitation energy, Ed, from the linear
increase of the dielectric susceptibility at small system sizes and its value in the thermodynamic
limit, provided one knows the number of chain molecules N = L/a, where L is the length of
the chain. Once the defect excitation at one specific temperature has been determined, the laws
of corresponding states given by (15) and (35) can be applied, effectively decreasing the number
of measurements needed to determine the dipole moment and the excitation energy at another
temperature. Thus, dielectric spectroscopy experiments offer the possibility to provide useful
information on the microscopic structure of 1D water chains in narrow pores.

Since for very strong electric fields all dipoles align with the field, the total dipole moment
saturates as a function of the field strength, such that the linear relation between field strength
and total dipole moment quantified by the susceptibility cannot remain valid for arbitrarily
strong fields. The limit of the linear regime can be estimated in the following way. Linear
response certainly breaks down at field strengths for which the value of the total dipole moment
as expected from the value of the susceptibility, 〈M〉 = ε0V χ E , equals or exceeds the dipole
moment at saturation, 〈M〉 = Nµ. Equating these two expressions, one finds a critical field
Ec = µN/ε0V χ , which can be regarded as an upper limit of the linear response regime.
Inserting the expression of the susceptibility for short chains (33), one obtains Ec = kBT/Nµ,
implying that the critical field decreases for growing chain length. For long chains, insertion
of the susceptibility from (34) yields Ec = kBT/eβEdµ. Thus, once the chain has reached a size
of about eβEd , in which there is at least one defect in the chain on average, the critical field Ec

ceases to be a function of the chain length.

6. Conclusion

In summary, we have shown that a single-file chain of water molecules at room temperature
can be accurately described as a 1D Ising model. In this analogy, the domain walls (kinks) of
the Ising model correspond to the hydrogen-bonding defects in the water chain. While in the
Ising model, domain walls do not interact with each other, because only neighbouring spins
are coupled, hydrogen-bonding defects interact via effective 1/r potentials. Nevertheless, the
analogy between the Ising model and the water chain holds, because at ambient conditions
hydrogen-bonding defects occur with low density such that their interactions can be neglected.
As a consequence, hydrogen-bonding defects occurring in a 1D water chain are statistically
uncorrelated just as their Ising model counterparts. Only for very short chains do the Coulomb
interactions between defects and chain endpoints matter and lead to a defect density higher than
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that of a gas of non-interacting defects. Consequently, appreciable deviations from Ising like
behaviour are observed.

Based on the approximation of uncorrelated defects, we have derived explicit expressions
for the defect density and the order probability. These expressions agree very well with the
results of Monte Carlo simulations in which all interactions are included. The agreement is even
better if the effects of pairs of hydrogen-bonding defects separated by a single water molecule
are taken into account. Although these defect pairs provide the predominant mechanism for
defect generation and recombination in long tubes, their occurrence can be neglected with
respect to the static dielectric response of the system. Consequently, we were able to obtain
an analytical expression for the length-dependent static susceptibility exploiting the relation to
the Ising model. From this expression, we derived a law of corresponding states that relates the
susceptibilities of systems of different sizes and temperatures with each other. This law offers
an efficient way to determine the temperature dependence of the defect excitation energy in
dielectric spectroscopy experiments.

The derivation of the relation to the 1D Ising model presented here should also be
applicable to water in wider tubes, which exhibits polygonal water rings with ferro-electric-
like order [29]–[31] akin to that of single-file water. Similar behaviour is also expected for other
hydrogen-bond-forming molecules or molecules with permanent magnetic or dipolar moments.
For example, it was recently shown in molecular simulations that acetonitrile forms dipole-
ordered single-file chains similar to those of water [32]. This variety of substances is of great
interest for the design of super-capacitors as exemplified here for single-file water in carbon
nanotubes, where we find that the static susceptibility is about 100 times larger than that of bulk
water, although the water density in the membrane is about 3000 times smaller than that in the
bulk. Thus, water-filled nanopore membranes may serve as high-k dielectrics, e.g. for use in
sensing devices [33, 34].

Our estimation of the susceptibility of water-filled membranes is based on the assumption
that chains of water molecules in different pores are uncorrelated with each other. This
assumption may be inaccurate if the distance between pores is sufficiently small, such that water
chains in neighbouring pores interact with each other. Then, collective phase behaviour may set
in, introducing strong correlations and stabilizing ordered phases. Such phase transitions and
their effect on the dielectric behaviour of the material are a topic we are currently addressing in
our research [35].
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