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Abstract

In this study, we investigate the use of imaging feature-based outcomes research (“radiomics”) 

combined with machine learning techniques to develop robust predictive models for the risk of all-

cause mortality (ACM), local failure (LF), and distant metastasis (DM) following definitive 

chemoradiation therapy (CRT). One hundred seventy four patients with stage III-IV oropharyngeal 

cancer (OC) treated at our institution with CRT with retrievable pre- and post-treatment 18F-

fluorodeoxyglucose positron emission tomography (FDG-PET) scans were identified. From pre-

treatment PET scans, 24 representative imaging features of FDG-avid disease regions were 

extracted. Using machine learning-based feature selection methods, multiparameter logistic 

regression models were built incorporating clinical factors and imaging features. All model 

building methods were tested by cross validation to avoid overfitting, and final outcome models 

were validated on an independent dataset from a collaborating institution. Multiparameter models 

were statistically significant on 5-fold cross validation with the area under the receiver operating 

characteristic curve (AUC)=0.65 (p=0.004), 0.73 (p=0.026), and 0.66 (p=0.015) for ACM, LF, and 

DM, respectively. The model for LF retained significance on the independent validation cohort 

with AUC=0.68 (p=0.029) whereas the models for ACM and DM did not reach statistical 

significance, but resulted in comparable predictive power to the 5-fold cross validation with 

AUC=0.60 (p=0.092) and 0.65 (p=0.062), respectively. In the largest study of its kind to date, 

predictive features including increasing metabolic tumor volume, increasing image heterogeneity, 

and increasing tumor surface irregularity significantly correlated to mortality, LF, and DM on 5-

fold cross validation in a relatively uniform single-institution cohort. The LF model also retained 

significance in an independent population.
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Introduction

For patients with head-and-neck squamous cell cancer (HNSCC), contrast-enhanced 

volumetric imaging with computed tomography (CT) and/or magnetic resonance imaging 

(MRI) is the standard of care for clinical workup (Pfister et al 2000), and the use of [18F] 

fluoro-2-deoxy-D-glucose (FDG) based positron emission tomography (PET) imaging has 

become increasingly integrated into initial workup, treatment planning, and monitoring 

(Kubicek et al 2010, Heron et al 2008, MacManus et al 2009, Thomas et al 2014, Nestle et 
al 2009, Schöder et al 2009, Ong et al 2008).

Multiple studies based on FDG-PET imaging have reported correlations of simple 

standardized uptake value (SUV) measures and volume-based measurements, such as 

metabolic tumor volume (MTV) and total lesion glycolysis (TLG), with oncologic outcomes 

in HNSCC (Allal et al 2002, Kubicek et al 2010, Higgins et al 2012, Lim et al 2012, 

Romesser et al 2012, Tang et al 2012, Abd El-Hafez et al 2013, Kikuchi et al 2014, 

Romesser et al 2014). To a limited degree, more complex analytics that explore the 

association of imaging features with oncologic outcomes have also been investigated, as 

these may be less dependent on the dose and timing of radiotracer administration (El Naqa et 
al 2009, Kwon et al 2014, Apostolova et al 2014). Although it appears that these individual 

imaging metrics are predictive to some degree for patient outcomes, they may not have 

sufficient predictive power to be clinically useful. The development of multiparametric 

models has been proposed as a method to improve prediction of clinical outcomes and select 

patients who could benefit from dose reduction or intensification strategies (El Naqa et al 
2009).

In this study, we investigate the use of imaging feature-based outcomes research 

(“radiomics”) combined with machine learning techniques to develop predictive models for 

the risk of mortality, local failure (LF), and distant metastasis (DM) in a subset of HNSCC 

patients with stage III-IV oropharyngeal cancer (OC) following definitive chemoradiation 

therapy. By incorporating multiple imaging metrics, these multiparametric models are tested 

to determine whether they may have greater predictive power than any of their individual 

components.

Materials and methods

Patients

From 12/2002 to 3/2009, all stage III-IV OC patients treated at our institution with definitive 

concurrent chemoradiation therapy with retrievable pre- and post-treatment FDG-PET/CT 

scans were identified. To ensure relative uniformity in technique and quality of scans for 

subsequent analysis, any patient with an FDG-PET/CT scan performed outside of our 

institution was excluded unless a repeat FDG-PET/CT scan was obtained at our institution 
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prior to initiation of treatment. Patients with metastatic disease at presentation, noted on 

staging or treatment planning imaging, were also excluded as were those patients who were 

managed surgically. This resulted in 174 assessable patients. Our Institutional Review Board 

approved this retrospective study and all patients provided informed consent.

Image acquisition

Pre-treatment FDG-PET imaging was performed as part of the standard treatment planning 

process for definitive concurrent chemoradiation therapy. The mean uptake time was 72±17 

minutes. Procedures for FDG-PET/CT imaging at our institution have been previously 

described (Lim et al 2012, Romesser et al 2014). In brief, patients are instructed to fast for a 

minimum of 6 hours, with water intake permitted and encouraged. Prior to administration of 

18F-FDG (dose range, 12–15 mCi), a blood glucose level of <200 mg/dL is confirmed. 18F-

FDG is injected intravenously, followed by an uptake period during which patients drink 

diluted oral contrast. Low-dose CT (120–140 kV, 80 mA) and PET scans are then obtained 

for the torso (3 min/bed position, thoracic inlet to upper thigh) with the arms up, followed by 

dedicated images of the head and neck (5 min/bed position) with the arms down. Intravenous 

contrast is also administered for radiotherapy planning scans. PET images were acquired on 

either a hybrid PET/CT GE or Siemens system, normalized and corrected for scatter, 

randoms, attenuation, decay and dead time, and reconstructed using the ordered-subsets 

expectation maximization (OSEM) algorithm (2 iterations and 8 subsets for Siemens 

scanner, and 2 iterations for GE scanners with 28, 21, and 20 subsets for Discovery LS, ST, 

and STE, respectively).

Image analysis

Pre-treatment attenuation-corrected FDG-PET scan images were converted to the 

Computational Environment for Radiotherapy Research (CERR) format. CERR is an open 

source radiotherapy research toolkit designed to facilitate developing and sharing research 

results for radiotherapy planning; it is MATLAB-based software and provides a common file 

type for the creation of multi-institutional treatment plan databases for various types of 

research studies, including dose-volume outcomes analyses and radiomics studies (Deasy et 
al 2003). Bounding boxes were generated for the primary lesion by creating cuboidal 

structures that encompassed the individual FDG-avid elements. For the purposes of this 

study, SUV was defined as the decay-corrected measurement of activity per unit volume of 

tissue (MBq/ml) adjusted by the total administered activity (MBq) and divided by the 

patient’s weight (kg) measured on the date of the scan. A threshold of 42% of the maximum 

SUV value (SUVmax) was then applied to define a region of interest (ROI) for further 

analysis, and the volume of ROI was defined as MTV (Erdi et al 1997).

A total of 24 representative features of the FDG-avid regions, defined as ROIs, were then 

extracted for each image. These features include common statistical features such as the 

SUVmax and quantizations of the intensity-volume histogram distribution of SUV values 

over the defined ROI volume. Additionally, more complex shape and textural features that 

take morphological features and second-order gray-level co-occurrence matrix (GLCM)-

based features of the analyzed ROI into account were included (Lian et al 2016, Huang et al 
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2016, Sutton et al 2016, Leijenaar et al 2013). These are further described in the following 

sections.

Statistical features

First-order statistical features were derived from the distribution of voxel values over the 

analyzed ROI intensity-volume histogram. They include kurtosis, skewness, slope, and the 

minimum, maximum, median, and average value of the SUV. Kurtosis is a measure of the 

flatness or “peakedness” of the intensity-volume histogram, whereas skewness is a measure 

of the asymmetry of the intensity-volume histogram. Slope is the change in volume over the 

change in the SUV threshold used to generate the ROI volume.

Shape features

Shape features are related to the morphology of the ROI itself and in this study include 

eccentricity, solidity, extent, and Euler number. Eccentricity is a measure of “non-

circularity” defined as the ratio of the minor axis to the major axis of the best fitted ellipsoid 

to the analyzed ROI, with an eccentricity of 0 or 1 corresponding to a linear or a perfectly 

round ROI, respectively. Solidity is derived by calculating the proportion of pixels of the 

ROI to the largest possible convex hull polygon structure of the ROI; the convex hull is the 

best-fitting polygon that encloses all the pixels of the ROI. An ROI of the same shape and 

volume as the convex hull would have a solidity of 1 whereas an irregular ROI would have 

solidity < 1. Extent is similar to solidity except that a rectangular prism or cuboid is used, 

instead of a convex hull, to measure the proportion. The Euler number is an integral value 

that indicates the number of connected objects in the ROI minus the number of holes.

Texture features

The GLCM was constructed by summing up the co-occurrence frequencies for each matrix 

of 13 directions across a 3D image with 16 gray-scale levels. Texture features quantify the 

voxel-to-voxel interaction within the ROI, and include homogeneity, entropy, contrast, and 

coherence (also known as energy in Haralick texture features) (Haralick et al 1973, Tesar et 
al 2008). These features are independent of the ROI position, orientation, and size and 

reflect the distribution of tumor metabolic uptake while minimizing the potential 

contribution of variations in administered dose and time to FDG-PET image acquisition (El 

Naqa et al 2009). Homogeneity is a measurement of the similarity in intensity of each voxel 

and its neighboring voxels whereas contrast is a measurement of the variability for the 

difference in intensity between each voxel and its neighbors. Entropy is a measurement of 

the randomness of the intensity level over the voxels in the ROI, and coherence measures the 

uniformity of the intensity level in the ROI. As these texture features are dependent on the 

intensity relationships between neighboring voxels, noise or artifacts caused in the image 

acquisition process may greatly impact on the values of imaging features. To remove or 

minimize noise or artifacts, a smoothing method was applied: for a voxel (v) in the ROI, a 

sphere with a user-defined radius (from 0.5 cm to 1.5 cm with a step of 0.5 cm) with the 

voxel (v) being centered was created. An intensity value averaged from all voxels in the 

sphere was placed in the voxel (v). This procedure was performed for all voxels in the ROI. 

Image features were extracted from the smoothed image. The post-smoothing was applied 

after reconstruction.
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Statistical analysis

All outcomes were measured from the start of radiation therapy to the time of event. All-

cause mortality (ACM) time was defined as the time to death from any cause. LF time was 

defined as the time to any LF in the high-dose region of radiation therapy treatment. DM 

time was defined as the time to first clinical or pathological evidence of distant disease 

recurrence. Patients were censored at the date of last follow-up if death did not occur.

Univariate and multivariate survival analyses were performed using Cox proportional-

hazards regression for ACM whereas competing-risks analysis, based on Fine and Gray’s 

proportional sub-hazards model, was used for LF and DM (Fine and Gray 1999). After 

univariate analysis on clinical variables, multivariate analysis was performed with variables 

with p-values < 0.05. For each endpoint, Kaplan-Meier analysis with log-rank test was 

performed to investigate the difference of survival rates between a lower risk group and a 

higher risk group (Kaplan and Meier 1958, Wilson 1927). Statistical analysis was performed 

using Stata/MP version 12 (Stata Corporation, College Station, TX).

Model development

Multiparameter logistic regression models were built incorporating clinical factors and 

imaging features. For the best-fitting model selection, leave-one-out cross validation 

(LOOCV) with forward feature selection was performed. A model that occurs with the most 

frequency during the LOOCV process was chosen as a final model for each endpoint. 

Models were characterized by the area under the receiver operating characteristic (ROC) 

curve (AUC) and p-values were computed using the Spearman’s correlation coefficient 

(Borkowf 2000, Hanley and McNeil 1982).

Cross validation

For an unbiased model estimate, a 5-fold cross validation method was iterated 30 times 

(Myles et al 1997). At each iteration, univariate logistic regression analysis was performed, 

and features with p-values < 0.05 were used in multiparameter logistic regression as shown 

in the above section, resulting in an AUC computed between the predicted and original 

outcomes. After the whole process, AUC values were averaged. In addition, ROC curve 

analysis was performed to determine an optimal cutoff value using Youden’s index based on 

which sensitivity and specificity were computed.

Validation on an independent dataset

Additionally, final outcome models (as shown in the above section) were tested on an 

independent cohort, consisting of 65 patients with stage III-IV OC treated with IMRT-based 

chemoradiation therapy at another institution (Washington University School of Medicine, 

St. Louis, MO, USA) from 7/2003 to 11/2009. PET images were acquired on a Siemens 

Biograph Duo scanner or a Siemens Biograph 40 scanner. Patients were instructed to fast for 

a minimum of 4 hours. Prior to administration of 18F-FDG (dose range, 10–15 mCi), a 

blood glucose level of <200 mg/dL was confirmed. A spiral CT scan was obtained at 

approximately 60 min postinjection and noncontrast CT images were obtained for 

attenuation correction and fusion with PET images. After that, emission images were 

obtained. For segmentation, a threshold of 42% of the maximum SUV value was used, and 
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the same set of image features used in this study was extracted. For more information about 

this dataset, see Garsa et al (2013).

Results

Primary cohort patients

We analyzed 174 HNSCC patients with stage III-IV oropharyngeal cancer following 

definitive chemoradiation therapy who were treated at our institution. Among them, 48 

(27.6%) patients died, and 12 (6.9%) and 33 (19.0%) patients had LF and DM, respectively. 

Characteristics of the primary study cohort are provided in Table 1. Median follow-up time 

was 55 months (range: 6–112 months). The majority (87.4%) of the patients were male, and 

most (69%) were current or former smokers (20.7% and 48.3%, respectively). The average 

age was 57 years (range: 27–84 years). The OC subsite was the tonsils in 47.1% of patients, 

base of the tongue in 48.9% of patients, and the soft palate or posterior pharyngeal wall in 

4% of patients. The overall stage was IV in 78.7% of patients and III in 21.3% of patients; 

39.1% of patients had T3 or T4 disease, and the majority had N2 disease (68.4%); only a 

small portion of patients in our cohort presented with N3 disease (4.6%). The median value 

for MTV was 11.2 cc (range: 2.2–60.9 cc).

All (100%) patients were treated with definitive concurrent chemoradiation therapy. The 

median dose to the tumor was 70 Gy (range: 66–70 Gy), and the median dose to the lower 

neck was 50.4 Gy (range: 50–70 Gy). Concurrent chemotherapy consisted of cisplatin alone 

in 56.1% of patients, cetuximab alone in 10.4% of patients, carboplatin and 5-fluorouracil in 

12.1% of patients, cisplatin and bevacizumab in 13.3% of patients, and other multidrug 

regimens in the remaining 8.1% of patients.

For pre-treatment scans, the median uptake time was 67 minutes. To investigate whether the 

variability in uptake time has impact on the results, patients were split into two groups with 

a cutoff of 67 in uptake time and four texture features were compared using Wilcoxon rank-

sum test. No significant differences were found between the two groups with coherence 

(p=0.396), contrast (p=0.880), entropy (p=0.445), and homogeneity (p=0.855).

The four most common sizes of voxel were 3.91×3.91×4.25 mm (n=56; 32.2%), 

4.69×4.69×3.27 mm (n=46; 26.4%), 5.33×5.33×4.00 mm (n=28; 16.1%), and 

5.15×5.15×2.40 mm (n=20; 11.5%). Using a Kruskal-Wallis test, the comparison of texture 

features between patients with the four different voxel sizes resulted in non-significance for 

coherence (p=0.278), contrast (p=0.707), entropy (p=0.547), and homogeneity (p=0.778).

We performed a Kruskal-Wallis test to investigate whether there are significant differences 

in texture features between different PET/CT scanners. No significant differences were 

found with coherence (p=0.271), contrast (p=0.783), entropy (p=0.479), and homogeneity 

(p=0.855). These results imply that the impact of variability in uptake time, voxel size, and 

scanner on texture features is not significant in this cohort.
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Predictive factors and models

For each endpoint, the predictive power of individual clinical factors (T, N, overall stage, 

smoking status, location, Karnofsky performance status [KPS], age, sex, and biologically 

equivalent dose with alpha/beta=10 [BED10]) and extracted imaging features were assessed 

using logistic regression. When a smoothing sphere with a radius of 0.5 cm was used, better 

power was achieved than that without the smoothing method. For instance, contrast and 

homogeneity features showed statistical significance in LF with AUC=0.69 (p=0.035) and 

AUC=0.70 (p=0.026), respectively, using the smoothing method, whereas there was no 

significant texture feature without the smoothing method. Thus, for all tests, we used 

imaging features extracted after smoothing the ROI with a sphere with a radius of 0.5 cm. 

Table 2 shows single factor AUC and p-value results that had statistical significance 

(p<0.05) for at least one endpoint, resulting from univariate logistic regression analysis. For 

comparison, SUVmax and SUVmean were also displayed, which did not show statistical 

significance for all three endpoints. KPS, T stage, extent, skewness, MTV, and TLG had 

significant correlations with all three endpoints. The best predictors were T stage 

(AUC=0.67, p<0.001) and skewness (AUC=0.67, p<0.001) for ACM whereas MTV was 

significantly associated with both LF and DM with AUC=0.81 (p=0.001) and 0.66 

(p=0.004), respectively. BED10 did not reach statistical significance for all three endpoints 

with AUC=0.49 (p=0.799), 0.51 (p=0.731), and 0.51 (p=0.490) for ACM, LF, and DM, 

respectively.

For the multiparameter logistic regression models, ACM was correlated to kurtosis and 

MTV; LF was correlated to homogeneity and MTV; DM was correlated to solidity, kurtosis, 

and MTV. The models are given in Table 3. The 5-fold cross validation used for an unbiased 

model estimate resulted in AUC=0.65 (standard deviation [SD]=0.02; p=0.004), 0.73 

(SD=0.04; p=0.026), and 0.66 (SD=0.04; p=0.015) for ACM, LF, and DM, respectively, 

showing statistical significance for all three endpoints.

Validation on an independent cohort

Characteristics of the independent validation cohort are provided in Table 4 (Garsa et al 
2013). All patients in the independent cohort had stage III-IV OC and were treated with 

definitive concurrent chemotherapy. Those patients who were also surgically managed were 

excluded, resulting in 65 evaluable patients. Among them, 31 (47.7%) patients died, and 10 

(15.4%) and 11 (16.9%) had LF and DM, respectively. Similar to the primary study cohort, 

the majority were male (78.5%), and the average age was 58 years (range: 38–78 years). 

Smoking status was unknown in 50.8% of patients, but among those whose information was 

available, 81.3% were identified as smokers. The majority of patients were stage IV 

(86.2%); many had advanced primary tumors, with 69.2% presenting with T3 (20.0%) or T4 

(49.2%) disease. Most (63.1%) patients presented with N2 disease although there was a 

larger proportion of patients in the independent cohort with N3 disease (7.7%) than the 

primary study cohort (4.6%). The median value for MTV was 18.7 cc (range: 3.5–64.7 cc). 

The models for ACM, LF, and DM were tested on this independent cohort. As shown in 

Table 3, significant predictive power was retained in LF with AUC=0.68 (p=0.029) whereas 

the models for ACM and DM showed borderline significance with AUC=0.60 (p=0.092) and 

0.65 (p=0.062), respectively.
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Survival analysis

For ACM, Cox proportional-hazards regression was performed whereas for LF and DM, 

Fine and Gray’s proportional sub-hazards models were performed with each single clinical 

variable, and, using variables with p<0.05, multivariate models were tested. Smoking history 

(69% were long-time smokers) was not statistically significant. KPS was most commonly 

associated with outcomes (p<0.05 for ACM, LF, and DM) as shown in Table 5. Other 

clinical factors significantly associated with outcomes included T stage with DM and ACM 

(p=0.001 and 0.010, respectively) and N stage with DM (p=0.001).

It should be noted that MTV was chosen in all three models as shown in Table 3. To 

investigate the significance of MTV further, patients were split into two groups by median 

MTV for each endpoint, and a Kaplan-Meier analysis with log-rank test was performed. 

Statistically significant differences were found for all three endpoints with p=0.034, 0.025, 

and 0.026 for ACM, LF, and DM, respectively. Additionally, patients’ MTV values were 

sorted in ascending order and grouped into three groups of equal size; those patients in the 

middle group were removed. In the comparison between one-third of patients with smaller 

MTV and one-third of patients with larger MTV, statistically significant differences were 

found for all three endpoints with p=0.014, 0.006, and 0.037 for ACM, LF, and DM, 

respectively (Figure 1A). Similarly, for each endpoint, predicted outcomes obtained using 

the predictive models shown in Table 3 were sorted, and one-third of patients in the middle 

were removed. In the comparison between the riskiest one-third of patients and the least 

risky one-third of patients, statistically significant differences were found for all three 

endpoints with p<0.001, 0.006, and <0.001 for ACM, LF, and DM, respectively (Figure 1B).

Discussion

In this study, we tested the association of FDG-PET imaging intensity, shape, and textural 

features with oncologic outcomes, both as individual factors and as models based on 

multiple factors. The strongest observed predictive power was obtained through the use of 

multiparametric models. Note that MTV was chosen in all three models as shown in Table 3. 

Models with MTV alone achieved reasonable performance with AUC=0.62 (p=0.016), 0.81 

(p=0.001), and 0.62 (p=0.028) for ACM, LF, and DM, respectively (see Table 2). On 5-fold 

cross validation, multiparameter models were statistically significant with AUC=0.65 

(p=0.004), 0.73 (p=0.026), and 0.66 (p=0.015) for ACM, LF, and DM, respectively. This is 

also observed in Figure 1, showing more separation in Kaplan-Meier curves between a lower 

risk group and a higher risk group when final models in Table 3 were used as compared with 

MTV alone.

The utility of FDG-PET imaging for modeling in HNSCC has been a subject of thorough 

investigation. Wong et al (2002) and Allal et al (2002, 2004) previously reported on the 

association of high SUV with poor outcomes in patients with head and neck cancer. Further 

studies have demonstrated that factors that incorporate volume and metabolic information of 

the tumor, such as gross tumor volume (GTV) and MTV, correlate better with ultimate 

outcomes (Lim et al 2012, Romesser et al 2014, Romesser et al 2012). This observation has 

been validated in independent datasets (Tang et al 2012). TLG, a function of the MTV and 

the mean SUV of the defined MTV, has also been identified as an independent predictive 
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factor for disease-free and disease-specific survival (Abd El-Hafez et al 2013, Dibble et al 
2012, Larson et al 1999, Lim et al 2012). These volume-based factors have been shown to be 

predictive and independent from p16 and p53 status (Kikuchi et al 2014). Textural features 

have been used to delineate tumor volumes by assisting with discrimination between normal 

and malignant tissue (Yu et al 2009a, Yu et al 2009b), and a recent study by Kwon et al 
(2014) identified an FDG-PET “heterogeneity factor” based on the change in tumor volume 

over the change in threshold (mathematically similar to the “slope” function described in our 

study) that significantly correlated with overall survival in patients with oral cavity cancer.

Multiparametric analysis of medical images has been explored as a modeling tool, 

incorporating multiple image features within an imaging modality or over multiple imaging 

modalities, in multiple clinical indications (Apostolova et al 2014, Cheng et al 2013, El 

Naqa et al 2009, Garzon et al 2011, Pinker et al 2014). In terms of FDG-PET for HNSCC, 

multiparametric analysis using textural features has been investigated to a limited degree; 

Cheng et al (2013) studied pre-treatment textural features in addition to TLG in a cohort of 

70 patients with stage III-IV OC, and developed a risk stratification model incorporating 

TLG and uniformity (coherence). They found that the model incorporating both TLG and 

uniformity had a stronger association with oncologic outcomes (progression-free, disease-

free, and overall survival) than the individual factors. Apostolova et al (2014) reported on the 

association of a shape-related factor “asphericity” with progression-free and overall survival 

and observed that this spatial irregularity in uptake in the primary tumor correlated with 

outcomes, especially when combined with MTV.

In this study, a cuboidal ROI was defined by a single physician to enclose the FDG-avid 

region with a generous margin, and then an FDG-PET SUV threshold of 42% was applied 

based on the work of Erdi et al (1997) to generate an ROI for further analysis. However, use 

of the optimal threshold is still controversial (Burger et al 2016). Several studies have 

suggested different threshold values including 40% (Miller and Grigsby 2002, El Naqa et al 
2009), 42% (Burger et al 2013, Wu et al 2014), and 50% (Cheebsumon et al 2012, Frings et 
al 2014). According to the European Association of Nuclear Medicine (EANM) guidelines 

(Boellaard et al 2015), 41% and 50% threshold values are recommended. A drawback of 

thresholding is the uncertainty regarding the optimal threshold value (Jeraj et al 2015). It 

seems that the optimal threshold depends on several factors including tumor size, tumor site, 

PET image size, reconstruction and acquisition parameters, patient biology, etc. Another 

disadvantage of the thresholding method is the tendency to overestimate the lesion when 

tumor is small (Foster et al 2014). In contrast, manual segmentation also has its drawback 

regarding segmentation time, labor, and operator variation. The change of feature values for 

different threshold values was investigated. The comparison of FDG-PET SUV thresholds of 

42% and 40% resulted in Spearman’s correlation coefficients > 0.91 (p < 0.001) for all 

texture features and MTV, suggesting that the differences in texture features and MTV 

between 40% and 42% thresholds are minimal.

Hatt et al (2015) found that the correlation between MTV and two texture features including 

entropy and dissimilarity tends to decrease with increasing MTV, and therefore tumor 

volume and texture features can provide complementary information for large tumors (>10 

cc). In this study, we used four texture features. In comparison of these texture features 
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between lesions with MTV > 10 cc and MTV ≤ 10 cc, we found that absolute Spearman’s 

correlation in entropy and coherence decreased from 0.57 and 0.44 to 0.18 and 0.12, 

respectively, which is in accordance with Hatt et al’s finding. In contrast, absolute 

Spearman’s correlation in contrast and homogeneity increased from 0.10 and 0.18 to 0.36 

and 0.36, respectively. However, the correlation of the two features with MTV was unable to 

be compared with Hatt et al’s work, since they did not investigate the correlation between 

MTV and the two features.

A question raised by the findings of this study is the mechanism by which the imaging 

features are associated with clinical tumor behavior, and how they may relate to tumor 

heterogeneity. Henriksson et al (2007) previously showed that heterogeneous uptake of FDG 

within HNSCC can discriminate between patches of active cells and areas with greater 

amounts of necrosis and stromal tissue in tumor xenografts. HNSCC is known to contain 

heterogeneous populations of cancer cells, some of which may demonstrate stem cell-like 

properties (Prince et al 2007), and may be associated with other forms of malignant 

behavior, including metastatic potential and chemotherapy and radiation insensitivity (Leith 

and Michelson 1990, Zhang et al 2013). Intratumoral genetic heterogeneity, defined by one 

investigator as the mutant-allele tumor heterogeneity (MATH) value above the median (32 

units in the cited study), has also been associated with poor survival outcome in patients 

with HNSCC (Mroz et al 2013). It is not yet known whether the imaging features 

investigated in this study have a biological and/or histopathological correlate to provide a 

mechanistic explanation for their predictive power.

Strengths of our study include: the relatively large cohort size, with all patients centrally 

pathologically confirmed and staged, and treated with consistent and reviewed radiation 

treatment plans; the use of an objective thresholding method to define the analyzed volume 

reduced potential bias from individually contoured ROIs; all imaging data was centrally 

processed and reviewed; and most importantly, the predictive models were demonstrated to 

be robust by validation on an independent dataset at a separate institution, demonstrating 

that the LF model is transportable to another institution despite differences in patient 

cohorts. However, the current study has several limitations that must be taken into 

consideration. In addition to the inherent biases present in any retrospective analysis, further 

selection bias may have been introduced at several steps. For example, while limiting the 

study patient population to those who had undergone FDG-PET/CT based pre-treatment 

imaging at our institution improved our technical access and quality of imaging data for 

analysis, it prevented the use of an unselected consecutive cohort. FDG-PET images were 

acquired on two separate PET/CT platforms, which may introduce technical issues in image 

processing and harmonization. The patient cohort was treated before standardized human 

papillomavirus (HPV) testing was performed, and very limited data pertaining to the 

patients’ HPV status (p16 or HPV DNA) was available. While prior studies have suggested 

that complex image features may be predictive regardless of HPV status (Kikuchi et al 
2014), this is a potential confounder that must be addressed in future studies.
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Conclusions

In the largest study of its kind to date, predictive models constructed using FDG-PET 

intensity, shape, and textural features significantly correlated to mortality, LF, and DM in a 

relatively uniform single-institution cohort as well as on cross validation. Additionally, the 

LF model retained significance in an independent population whereas the models for ACM 

and DM did not reach statistical significance, but resulted in reasonable predictive 

performance. Such models could assist in patient selection for dose reduction following 

identification of low-risk patients for LF, or treatment intensification with additional 

adjuvant chemotherapy following identification of high-risk patients for distant failure. 

However, understanding of the biological basis of image features, and validation with other 

datasets will be necessary before these models can be clinically implemented.
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Figure 1. 
Kaplan-Meier analysis with log-rank test for all-cause mortality, local failure, and distant 

metastasis in the primary study cohort. (A) Patients’ MTV values and (B) predicted 

outcomes were sorted in ascending order and grouped into three groups with equal size; 

those patients in the middle group were removed. (A) One-third of patients with smaller 

MTV and one-third of patients with larger MTV and (B) the riskiest one-third of patients 

and the least risky one-third of patients were compared. Shaded areas indicate 95% 

confidence interval.
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Table 1

Patient characteristics of the primary study cohort.

Metrics N (%)

Total number of patients 174

Median follow-up (range) 55 months (6–112)

Mean age (range in years) 57 years (27–84)

Gender

Male 152 (87.4%)

Female 22 (12.6%)

Median Karnofsky performance status Smoking status 90

Current 36 (20.7%)

Former 84 (48.3%)

Never 54 (31%)

Site

Tonsil 82 (47.1%)

Base of tongue 85 (48.9%)

Other (soft palate and posterior pharyngeal wall) 7 (4%)

Histology

Squamous cell carcinoma 174 (100%)

T stage

1 34 (19.5%)

2 72 (41.4%)

3 36 (20.7%)

4 32 (18.4%)

N stage

0 7 (4%)

1 40 (23%)

2 119 (68.4%)

3 8 (4.6%)

Overall stage

III 37 (21.3%)

IV 137 (78.7%)

Treatment status

Definitive 174 (100%)

Median dose to primary tumor 70 Gy

(range in Gy) (67.8–70)

Median dose to lower neck 50.4 Gy

(range in Gy) (50–70)

Chemotherapy type

Cisplatin 97 (55.8%)

Cetuximab 18 (10.3%)

Carboplatin + 5-FU 21 (12.1%)
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Metrics N (%)

Cisplatin + Bevacizumab 23 (13.2%)

Other 15 (8.6%)

PET/CT system (Pre-treatment)

GE Discovery LS 60 (34.5%)

GE Discovery ST 46 (26.5%)

GE Discovery STE 18 (10.3%)

Siemens Biograph 50 (28.7%)
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Table 3

Validation of multiparameter logistic regression models based on “probability of endpoint=1/(1+exp(-Y))”. In 

the 5-fold cross validation column, the performance shows average AUC and p-values, repeating 5-fold cross 

validation 30 times and the Independent validation column shows the performance when the predictive models 

were applied to an independent cohort. The sensitivity and specificity were computed using an ROC analysis. 

The parenthesis indicates standard deviation.

Endpoint Predictive model Performance
metric

5-fold
cross validation

Independent
validation

ACM Y=0.0481×MTV-0.735×Kurtosis+0.25

AUC 0.65(0.02) (p=0.004) 0.60 (p=0.092)

SEN 0.67(0.15) 0.58

SPE 0.60(0.16) 0.62

LF Y=0.0977×MTV-6.19×Homogeneity-2.31

AUC 0.73(0.04) (p=0.026) 0.68 (p=0.029)

SEN 0.65(0.06) 0.67

SPE 0.85(0.06) 0.70

DM Y=0.0244×MTV-5.57×Solidity-1.16×Kurtosis+6.32

AUC 0.66(0.04) (p=0.015) 0.65 (p=0.062)

SEN 0.62(0.16) 0.64

SPE 0.66(0.18) 0.80

ACM=all-cause mortality; LF=local failure; DM=distant metastasis; MTV=metabolic tumor volume; AUC=area under the receiver operating 
characteristic (ROC) curve; SEN=sensitivity; SPE=specificity.
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Table 4

Patient characteristics of the independent validation cohort.

Metrics N (%)

Total number of patients 65

Median follow-up (range) 28 months (2–83)

Mean age (range in years) 58 years (38–78)

Gender

Male 51 (78.5%)

Female 14 (21.5%)

Smoking status

Yes 26 (40.0%)

No 6 (9.2%)

Unknown 33 (50.8%)

T stage

1 2 (3.1%)

2 16 (24.6%)

3 13 (20.0%)

4 32 (49.2%)

Unknown 2 (3.1%)

N stage

0 8 (12.3%)

1 11 (16.9%)

2 41 (63.1%)

3 5 (7.7%)

Overall stage

III 9 (13.8%)

IV 56 (86.2%)
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Table 5

Multivariate Cox proportional-hazards regression for ACM and multivariate Fine and Gray’s proportional sub-

hazards models for LF and DM.

ACM

Metrics p-value Hazard ratio 95% CI

Age 0.774 1.00 0.97–1.02

KPS < 0.001 0.90 0.85–0.95

T stage 0.010 1.49 1.10–2.01

Stage 0.066 2.46 0.94–6.40

LF

Metrics p-value Sub-hazard ratio 95% CI

KPS < 0.001 0.83 0.77–0.89

T stage 0.223 1.55 0.77–3.13

DM

Metrics p-value Sub-hazard ratio 95% CI

KPS 0.022 0.94 0.89–0.99

T stage 0.001 1.73 1.25–2.40

N stage 0.001 2.62 1.52–4.50

ACM=all-cause mortality; LF=local failure; DM=distant metastasis; KPS=Karnofsky performance status.
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