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Abstract.

Thermoelectric measurements have the potential to uncover the density of states of

low-dimensional materials. Here, we present the anomalous thermoelectric behaviour

of mono-layer graphene-nanowire (NW) heterostructures, showing large oscillations as

a function of doping concentration. Our devices consist of InAs NW and graphene

vertical heterostructures, which are electrically isolated by thin (∼ 10nm) hexagonal

boron nitride (hBN) layers. In contrast to conventional thermoelectric measurements,

where a heater is placed on one side of a sample, we use the InAs NW (diameter

∼ 50 nm) as a local heater placed in the middle of the graphene channel. We measure

the thermoelectric voltage induced in graphene due to Joule heating in the NW as a

function of temperature (1.5K - 50K) and carrier concentration. The thermoelectric

voltage in bilayer graphene (BLG)- NW heterostructures shows sign change around

the Dirac point, as predicted by Mott’s formula. In contrast, the thermoelectric

voltage measured across monolayer graphene (MLG)-NW heterostructures shows

anomalous large-amplitude oscillations around the Dirac point, not seen in the Mott

response derived from the electrical conductivity measured on the same device. The

anomalous oscillations are a signature of the modified density of states in MLG by

the electrostatic potential of the NW, which is much weaker in the NW-BLG devices.

Thermal calculations of the heterostructure stack show that the temperature gradient

is dominant in the graphene region underneath the NW, and thus sensitive to the

modified density of states resulting in anomalous oscillations in the thermoelectric

voltage. Furthermore, with the application of a magnetic field, we detect modifications

in the density of states due to the formation of Landau levels in both MLG and BLG.

1. Introduction

Over the years, dimensionally mismatched two-dimensional (2D) - one-dimensional (1D)

heterostructures [1] have demonstrated diverse set of advanced functionalities of the

ar
X

iv
:2

00
9.

08
88

2v
3 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
2 

D
ec

 2
02

0



Anomalous thermopower oscillations in graphene-InAs nanowire vertical heterostructures2

heterojunctions [2, 3, 4, 5]. Recently, these systems have emerged as a fertile ground

for realizing novel phenomena like anomalous Coulomb drag [6], and formation of 1D

waveguides in 2D materials [7]. The latter has opened new avenues for applications,

where charge carriers in 2D systems are guided through 1D cavities [7], holding potential

as a method for transmitting information, analogous to photons in optical fibers.

Moreover, such engineering of reduced dimensionality offers a strategy to enhance the

thermopower (or Seebeck coefficient) of a material [8, 9, 10, 11]. However, to realize the

true potential of these reduced dimensions and manipulate them further, it is important

to probe the modulation in the local density of states (DOS), for which non-invasive

probes are essential. In this regard, non-invasive thermo-electric measurements are

suitable tools [12, 13, 14, 15, 16, 17], which can be employed for mixed-dimensional

systems. In comparison to quantum capacitance [18, 19] and scanning microscopy

techniques [20, 21, 22, 23, 24, 25, 26, 27, 28], thermopower measurements can be easily

implemented in 2D-1D systems.

In conventional thermoelectric measurements [15, 29, 30], a heat source is typically

placed a few microns away and electrically isolated from the actual device to create

a spatially-uniform temperature gradient. In our devices, an InAs nanowire (diameter

∼ 50nm) placed vertically on the graphene channel (almost in its center) and separated

by a thin hexagonal boron nitride spacer (hBN ∼ 10nm) acts like a local nano-heater.

Passing a current through the nanowire (NW) generates heat, and its close proximity

leads to heat transfer into the graphene channel and hence a finite thermoelectric

voltage. By utilizing this unique heating method, we observe unprecedented large

oscillations in the thermoelectric voltage measured across monolayer graphene (MLG) at

low temperatures (∼ 1.5K to 20K) as a function of the carrier concentration around the

Dirac point. Notably, no oscillations are seen in the Seebeck coefficient calculated using

Mott’s formula based on the measured resistance. The magnitude of oscillations in the

MLG devices reduces with increasing temperature and qualitatively follows the trend

of Mott’s formula at higher temperatures (> 20K). In contrast, for bilayer graphene

(BLG) devices, the thermoelectric voltage does not show oscillations and follows Mott’s

prediction upto the lowest temperature (1.5K), with an expected sign change around

the Dirac point. Notably, our observation differs from the oscillations observed in ref

[15] where the Universal conductance fluctuations (UCF) are manifested as oscillations

both in resistance as well as in thermopower at low temperatures.

We explain the observed oscillations of the thermopower with density near the Dirac

point, as a consequence of changing effective carrier type inside the graphene channel.

We propose that this can arise due to the 1D confinement of carriers in graphene,

and subsequent formation of sub-bands that modify the local DOS. To support this

proposal, we analyze the carrier density profile in the graphene channel underneath

the NW and show that the electrostatic potential of the NW creates a cavity for the

charge carriers in graphene, resulting in a modulation of local DOS and hence large

oscillations in thermoelectric voltage. To understand why the oscillations are seen

only in the thermoelectric response and not in the resistance data, we calculate the
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Figure 1: (a) Device schematic for measuring thermoelectric voltage in graphene. The heterostructure

consists of an InAs NW on top of a hBN encapsulated graphene stack assembled on Si/SiO2 substrate.

Thermoelectric voltage (VTE) is measured across two probes on graphene while a constant DC current

(ISD) is passed through the NW. Passing current through the NW heats the region of graphene below

the nanowire, and gives rise to a finite thermoelectric voltage in graphene. In this setup carrier

density in graphene (nG) can be tuned with the backgate voltage (VBG). Voltage VG is applied to

the graphene to tune the density of the NW. (b) 2-probe resistance of graphene (RG) versus backgate

voltage for MLG (upper panel) and BLG (lower panel). VD2 and VD1 indicate (shown by arrows) gate

voltages corresponding to charge neutrality points for graphene beneath the NW and for rest of the

graphene channel, respectively. (c) VTE plotted with ISD at T=1.5K for two different VBG = 1.5V and

VBG = 4.2V indicated by dark blue and sky blue open circles, respectively. The red and black dashed

lines are parabolic fits to the data. VTE plotted with I2SD in the inset. The linear fits (red and black

dashed lines) show that VTE has thermoelectric origin.

temperature profile in the NW-graphene heterostructures. These calculations reveal

that the temperature gradient exists predominantly in the region of the graphene that

is underneath the NW. The resulting sub-bands from the confining potential give rise

to large DOS at certain fillings and hence a high thermoelectric voltage. The absence

of such thermoelectric oscillations in NW-BLG heterostructures, due to the weaker

confinement, confirms the validity of our physical picture. However, the observed

aperiodicity in the thermopower oscillations suggests that the dominant electron-hole

puddles near the Dirac point in monolayer graphene may have additional contribution

to the oscillations. As a step forward, we measure the thermoelectric voltage in the

presence of a perpendicular magnetic field and observe periodic oscillations in both the

MLG and BLG devices due to the formation of Landau levels (LL). This further confirms

our model which suggests that the formation of a confinement potential gives rise to

DOS modulation, and subsequent oscillations in thermoelectric voltage in MLG at zero

magnetic field.

2. Experimental details

In this section we describe the device structure of the MLG-NW and BLG-NW devices.

The hybrid heterostructures are fabricated by transferring an InAs NW on top of

hBN encapsulated MLG or BLG assembled on Si/SiO2 substrate using a dry transfer

technique [31, 32]. The NW and the graphene are separated by a thin layer of hBN
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Figure 2: Thermoelectric response of NW-BLG devices: (a) VTE versus nG plotted for different

temperatures. The data at 6.7K, 13K and 19K are magnified by 7x, 10x and 10x, respectively. The

horizontal and vertical dashed lines indicate the zero voltage and the zero density levels, respectively.

VTE flips sign across the charge neutrality point. (Inset) The magnitude of the dip in VTE on the hole

side, is plotted versus temperature. The dashed line is a fit to the eye. (b) and (c) are comparison

between VTE and Seebeck coefficient for two devices D1 and D2 respectively. The blue lines represent

the Seebeck coefficient (SM ) calculated using the Mott formula (Eqn. 1) at T = 1.5K versus nG. The

red lines are VTE versus nG at T=1.5K for D1 and D2 devices respectively. For BLG, the shape of the

VTE matches well with the Seebeck coefficient SM .

(∼ 10nm). The lengths of the NW and graphene channels are ∼ 0.4-0.6 µm and 10-12

µm, respectively, and the width of the graphene is ∼ 10-15 µm. As shown in Fig. 1a,

a constant current ISD passes through the NW when a DC voltage is applied across it

through a resistor. Joule heating in the NW creates a temperature gradient in graphene

from the position of the NW towards the colder graphene probes. We measure the open

circuit voltage (VTE) across the graphene channel as shown in Fig. 1a. The carrier

concentration in the graphene (nG) and NW are tuned by the backgate voltage (VBG)

and graphene gate voltage (VG), respectively. The 2-probe resistance (RG) of MLG and

BLG as a function of VBG are shown in upper and lower panels of Fig. 1b, respectively.

The two arrows indicate VD2 and VD1, which are the gate voltages corresponding to

charge neutrality points for the graphene that is just beneath the NW, and rest of the

graphene channel, respectively; this will be discussed in detail later. The higher value of

| VD2 | indicates that the graphene region below the NW is more n-doped as compared

to the rest of the graphene. Fig. 1c shows the measured open circuit voltage, VTE versus

ISD plot for two different gate voltages (VBG = 1.5V and 4.2V) for a MLG device. Both

the curves show a quadratic dependence of VTE on ISD as indicated by the dashed

lines. The inset showing VTE ∝ I2SD confirms that measured VTE across the graphene

channel arises from a thermoelectric response. The positive and negative amplitude of

VTE refer to the sign change of the thermoelectric voltage with VBG (Fig. 3). Note that

in contrast to our previous work [6], where we concentrated on Coulomb drag (part of

the signal that flips with current reversal), here we focus mainly on the non-flipping

part of the signal. As discussed in section SI 2, in this measurement, the non-flipping

part dominates over the flipping part.
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Figure 3: Thermoelectric response of NW-MLG devices: Figure (a) and (b) show comparison between

VTE with the Seebeck coefficients for two NW-MLG devices D3 and D4 at T=1.5K and T=50K

respectively. The purple lines (left axis) indicate density dependence of VTE for D3 and D4 respectively.

The horizontal and vertical dashed lines indicate the zero voltage and Dirac point respectively. On the

right axis of (a) and (b) we plot the theoretically estimated Seebeck coefficient SM for D3 and D4

MLG devices (black) based on the measured electrical resistance and the Mott formula. The overall

shape of SM matches with VTE at higher temperature, although doesn’t match with the VTE at the

lower temperature. (c) VTE versus nG plot for device D4 at different temperatures ranging from 1.5K

to 50K. In (a) and (c), VTE show rapid oscillations with nG at lower temperatures (T < 20K). The

oscillation amplitude reduces as the temperature increases as well as at higher graphene densities.

3. Results

In this section we will first present the thermoelectric response for two BLG devices

D1 and D2 followed by for two MLG devices D3 and D4 respectively. Fig. 2a shows

measured VTE with carrier density, nG, for D1 BLG device at different temperatures

ranging from 1.5K to 19K. VTE changes sign across the Dirac point (nG = 0). We see

from Fig. 2a that VTE decreases in magnitude with increasing temperature. The inset

shows the peak magnitude of VTE (for hole side) as a function of temperature, where

the dotted black line is a guide to the eye. In Fig. 2b and 2c we plot the theoretically

estimated Seebeck coefficient SM (blue line) at T =1.5K of the D1 and D2 BLG devices

respectively, using the Mott formula:

SM =
π2k2BT

3e

∂lnσ

∂n

∂n

∂µ
(1)

We utilize the measured resistance (1/σ) of the BLG device (Fig. 1b lower panel)

to evaluate SM . We compare the experimentally measured VTE with Mott formula of

Seebeck coefficient (SM) as shown in Fig. 2b and 2c by plotting VTE versus nG (red line)

at the left axis and SM (blue line) at the right axis. We find that the overall shape of

the VTE for both the NW-BLG heterostructures follows the trend of the Mott formula.

Fig. 3a, 3b present the comparison of experimental VTE with the Seebeck coefficient

for two NW-MLG devices D3 and D4 at T=1.5K and T=50K respectively. In the left

axis we plot of VTE with graphene density (purple plot), whereas in the right axis we

plot the Seebeck coefficient SM versus nG (black line), obtained using Mott’s formula for

the respective temperatures. Fig. 3c shows the doping dependence of VTE for device D4

at different temperatures ranging from 1.5K to 50K. In Fig. 3a and 3c (for T< 20K),

the most striking observation is that the amplitude of VTE changes between positive
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and negative values as the carrier density is varied near the Dirac point. Notably, the

periodic nature of the oscillation changes with the graphene density; more periodic near

nG = 0 and becoming less periodic as we move away from the neutrality point. The

oscillations vanish further at higher densities, as well as when the system temperature is

increased. For example, at T > 20K, the oscillations disappear and the overall shape of

VTE resembles that of the BLG devices (Fig. 2). The comparison in Fig. 3a at T=1.5K

shows that SM calculated from the device gate response doesn’t show any oscillations,

otherwise present in the density responses of VTE for the MLG devices. However, the

overall shapes of VTE and SM qualitatively agree at T=50K as shown in Fig. 3b. From

Fig. 3a and 3c, we find the average period of oscillations in VTE at T=1.5K to be δn ∼
1.08 × 1010/cm2 and 0.8 × 1010/cm2 respectively which corresponds to energy scale of

∼ 13meV and 10meV (δEF = h̄vF
√
πδn ) respectively. In Fig. S6 of Supplementary

Info, we plot the standard deviation (SD) of VTE oscillation amplitude as a function of

temperature, where the dashed black line is a guide to the eye. The SD is calculated

over the density range of ±0.25 × 1011/cm2. We see that the SD approaches zero at

∼ 20K, which corresponds to a thermal energy broadening (3.5kBT ) of ∼ 7 meV (kB
being Boltzmann constant ∼ 1.38 × 10−23 JK−1).

4. Discussion

In this section, we discuss the origin of thermopower in our unique nano-heating

geometry and propose possible scenarios which may give rise to the observed oscillations

in VTE, otherwise absent in RG. In a conventional thermoelectric measurement setup,

the heater is usually placed asymmetrically on one side of the sample (few µm away)

which creates a uniform temperature gradient along the channel length and gives rise to

non-zero VTE proportional to the Seebeck coefficient of the material [33, 34]. In contrast,

here, InAs NW placed on top of the graphene serves as a local heater. Since it is placed

approximately at the center of the channel, passing a current through the NW creates

a temperature profile which peaks at the center of the NW and is expected to decay

symmetrically on both side of the NW in graphene. To explain the origin of non-zero

VTE, we write it in terms of local Seebeck coefficient S(x) and temperature gradient ∂T
∂x

as [12]:

VTE =
∫ +L/2

−L/2
S(x)

∂T (x)

∂x
dx (2)

where x is the distance from the center of the channel. If we consider the temperature

profile to be Gaussian [35, 12] and centered around the NW, it creates a temperature

gradient which is anti-symmetric around the center. For samples with perfect

geometrical symmetry i.e. when the NW is placed exactly at the center of the graphene

channel, ∂T
∂x

takes equal and opposite magnitudes around the center. If S(x) is uniform

or symmetric around the center, we would get zero average VTE from Eqn. (2). It

is therefore evident that asymmetry in S(x) or ∂T
∂x

or both can lead to a finite VTE.

Asymmetry in temperature profile can arise either due to device geometry if the NW
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is not placed exactly at the center of the graphene channel, or due to asymmetric

Joule heating due to different NW contact resistances at the two ends. For S(x), the

symmetry can be broken either by the device skewness or due to non-identical density

profiles around the center. Most real devices have intrinsic structural asymmetry as

shown in Supplementary Information (section SI 1), which can lead to asymmetry in the

temperature profile as well as in the Seebeck coefficient. Thus, the finite VTE observed

in our NW-BLG heterostructures is not surprising, and VTE will change its sign only

once around the Dirac point when the S(x) changes its sign with charge carrier type as

seen in Fig. 2.

The non-zero VTE signals in Fig. 2 and 3 are due to the intrinsic asymmetry in the

device geometry; this is always present in real samples due to unavoidable uncertainties

in device fabrication. Thus, the resultant thermopower magnitude is dependent on

the inherent asymmetry of the devices, and may vary from device to device. This is

reflected as a finite background signal in VTE as shown in Fig. 2b and 2c, where VTE
can have positive or negative values at higher nG which is device specific. However,

the oscillations in VTE are unaffected by the asymmetry, and are reproducible across

multiple devices.

From the previous discussion, it is clear that to understand the anomalous

oscillations of VTE in NW-MLG heterostructures, it is necessary to look beyond Eqn.

2. Since thermopower is directly proportional to ∂lnσ
∂n

, the changing sign in VTE with

the density indicates that the effective carrier type varies as n changes. In order to

understand this, we first investigate the local density modulation in graphene. Two

different Dirac points in the gate response of RG (Fig. 1b) indicate a non-uniform density

profile along the channel. The 2D colormap in Fig. 4b shows how RG evolves with the

VBG and VG gate voltages. The black and green dashed lines highlight the variation

of the main Dirac point (VD1) and the weaker Dirac point (VD2) with VBG, and from

their slopes (section SI 3 for the details) we assign VD2 and VD1 to the graphene part

underneath the NW and to the rest of the graphene channel, respectively. The density

mismatch can arise from the trapped charge impurities at the interface of NW- hBN-

Graphene hybrid. As shown schematically in Fig. 4a, the density mismatch (p− n− p)
results in misaligned Fermi energies of the two regions. This can create a cavity for the

charge carriers underneath the NW resulting in a modulation of the local DOS as shown

by the red line in Fig. 4c (details in the section SI 4). The polarity of S(x) depends on

the type of majority charge carrier, and the effective carriers of the cavity will modulate

between electron and hole as a function of the Fermi energy shift. Note that VTE ∝ ∂σ
∂n

leading to a sign change as the Fermi energy passes through the discrete levels of the

cavity as shown in Fig. 4c. However, for our geometry, a symmetric case will produce

zero thermoelectric voltage (Eqn. 2). Thus, to get the observed oscillations in VTE, the

discrete energy levels together with asymmetry in S(x) or ∂T
∂x

are required, the latter

being always present in our devices as described in the previous section.

To validate our proposed cavity model, we compare the discrete energy levels

responsible for the thermoelectric oscillations with the required cavity dimensions. In the
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Figure 4: (a) (Upper panel) The hexagonal lattice of graphene is shown in the x-y plane. The red-

yellow patch indicates the graphene part underneath the NW. The region of graphene below the NW

is n type, while the remaining graphene channel is p type, for the gate voltages between VD2 and VD1

(Fig. 1b). (Lower panel) The schematic of the band-diagram (p− n− p). (b) (Upper panel) Backgate

response of RG for MLG plotted in log-scale at T=1.5K. The two peaks indicated by the vertical arrows

indicate non-uniform density across the graphene channel. (Lower Panel) 2D colormap of the RG in

log-scale plotted as a function of VBG and VG at T=1.5K. The green and black dashed lines highlight

the trajectories of the two charge neutrality points with the gate voltages. (c) The red line is the

theoretically calculated DOS versus energy for MLG for a cavity with ∼ 600nm width with a Gaussian

broadening of δE = 1meV. The black line corresponds to the case with no confining potential. (d) The

total temperature rise ∆T plotted with position along the X direction. (inset) The absolute value of

the temperature gradient | dT
dX | plotted with position X. Details about these thermal calculations are

described in SI 7.

previous section we have estimated the energy scale responsible for the VTE oscillations

∼ 7 − 10meV corresponding to a cavity size of 0.6 − 0.4µm, comparable to the length

of the NW (details in section SI 5). Note that the other dimension (diameter ∼ 50nm)

will produce discrete energy levels with orders of magnitude larger value, not seen in

our experiments. From the values of VD1 and VD2 (Fig. 1b), the estimated strength

of the cavity potential is ∼ 115meV for MLG and ∼ 40meV for the BLG device

(details in section SI 5), and thus can explain the absence of oscillations in NW-BLG

heterostructure. The weaker confinement is expected in BLG due to large DOS at the

Dirac point. To explain the density dependence of the magnitude of VTE oscillations
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lines are guide to the eye.

in Fig. 3, we would like to point out the qualitative resemblance between the VTE and

Mott’s prediction at higher density, where the magnitude of S(x) is expected to decrease

with increasing density. Moreover, the effect of screening is also likely to play a role

in reducing the strength of the confinement with increasing carrier concentration (SI 5

for the details). Note that the DOS calculation in Fig. 4c does not include the effect

of screening, and also we have not considered relativistic effects[36, 37, 38], which are

beyond the scope of this work.

We now discuss why the oscillations are seen only in the thermoelectric response but

not in Mott’s prediction derived from the resistance data. We calculate the temperature

profile in the NW-graphene heterostructures using a 3D Fourier heat diffusion model (see

section SI 7 for details). The temperature profile and its gradient across the graphene

are shown in Fig. 4d for uneven Joule heating due to different NW contact resistances

at its two ends. Fig. 4d shows that the temperature gradient is dominant in the region

of graphene underneath the NW, and thus contributes to the measured VTE significantly

according to Eqn. 1. The contribution to VTE from the remaining part of the graphene

channel is small as the temperature gradient is close to zero. In contrast, the resistance

measured across the graphene is dominated by the contribution from the rest of the

graphene channel (∼ 10µm X 10µm) compared to the very small part of graphene

(∼ 50nm X 600nm) just underneath the NW.

The NW in this experiment serves a dual purpose, to produce both a highly localized

temperature gradient and also a cavity potential in the part of the channel in its

immediate vicinity. Fig 5a shows a 2D colormap of thermopower with nG and magnetic

field for the MLG device, where one can observe LLs for B ≥ 0.1T . Fig. 5b and 5c show

the measured periodic oscillations in VTE for MLG and BLG, respectively, at B ∼ 0.6T

and at ∼ 0.8T . As expected, the period of the oscillations increases with increasing

magnetic field as shown in the insets of Fig. 5 (SI 6 for details). The period in density

δn ∼ 0.85× 1011/cm2 at B =0.8T for BLG corresponds to δE ∼ 3.3meV (h̄2πδn/2m∗),

which qualitatively matches the Landau level spacing of ∼ 3.2meV (δELL ∼ h̄eB/m∗)
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at B = 0.8T, where m∗ ∼ 0.03me . For BLG, no oscillations in VTE at B=0 but periodic

oscillations at finite magnetic field (section SI 6) further confirm that at zero field there

is no modulation in the DOS due to the weaker confinement potential.

Although the concept of cavity formation leading to thermopower oscillation is

highly likely, there are other possibilities which may contribute to the oscillations. The

fact that the oscillations are always observed in the vicinity of the Dirac point and

decay quickly as the density is tuned away from nG = 0, indicates that the electron-

hole puddles can play a role in anomalous oscillations in VTE in MLG. Since the device

asymmetry is always intrinsic, the overall effective carrier type changes from electron

to hole as the Fermi energy is tuned across the Dirac point. The apparent aperiodicity

in VTE, especially away from the Dirac point suggests that the charge inhomogeneities

near the Dirac point may contribute to the oscillations.

Finally we note that, in this work we compare the measured thermoelectric voltage

with the theoretically estimated Seebeck coefficient SM to emphasize that the oscillations

are observed only in VTE, not in RG. This observation excludes the possibility of UCF

[15] as a possible source of oscillations.

5. Conclusions

The thermoelectric response of the NW-MLG devices using InAs NW as a local heater

shows anomalous oscillations at low temperatures, which is absent for the NW-BLG

devices. The oscillations are only observed in thermopower, not in the electrical

resistance. We ascribe them to the changing effective carrier type in the graphene

channel with density. By analysing the density profile in graphene, we show that a

cavity formed below the nanowire leads to the modification in local density of states

which may reflect as alternating sign in the thermoelectric voltage. We also argue

that the ubiquitous charge inhomogeneities in graphene near the Dirac point combined

with the intrinsic asymmetry may also contribute to the oscillations. Thus, our work

will pave the way for designing thermoelectric devices using dimensionally mismatched

systems, with the potential to enhance the thermopower in two-dimensional materials.

We envisage that decoration of graphene by nanostructures resulting in locally enhanced

DOS can lead to a high Seebeck coefficient.
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SI 1. Device fabrication

All the devices used in the thermopower measurements are heterostructures of InAs nanowire
(NW) and graphene encapsulated by hexagonal Boron Nitride (hBN). In our experiment,
we pass current through the NW, which acts as a local heating source, and measure the
thermoelectric voltage across the graphene. Graphene flakes are exfoliated from bulk graphite
crystals using scotch tape and then transferred onto 285 nm thick SiO2, thermally grown over
p++ doped Si substrate. hBN flakes are separately obtained following a similar exfoliation
method. Suitable MLG/BLG flakes are identified under the microscope and encapsulated
by hBN flakes using the hot pickup technique [1, 2]. After assembling the graphene stack,
we separately pick up the suitable NW from a separate substrate and carefully align it at
the center of the hBN/graphene/hBN stack. The thickness of the top hBN, which separates
the NW from the graphene, is chosen to be around ∼ 10 − 12 nm (Fig. S1 c). After
assembling the heterostructures, separate probes for graphene and NWs are fabricated (Fig.
S1 b). For graphene, we adhere to the conventional one-dimensional edge contact fabrication
[3] technique, whereas, for the NWs, ohmic contacts are fabricated following the chemical
etching technique [4] where saturated (NH4)2S solution is used for removing the native
oxide. After contact fabrication, all the samples are characterized at room temperature as
well as at T=1.5K. The backgate response of the MLG and BLG has been presented in Fig.
1b of the main manuscript. The typical resistance of the NWs was around ∼ 25− 50 kΩ.

As shown in the optical images (Fig. S1 a, b), most of the devices possess intrinsic
structural asymmetry where the NW is not placed exactly at the center of the graphene
channel, which leads to a non-zero thermopower signal. Non-zero VTE can also result from
the unequal contact resistances of the NW probes leading to an asymmetric temperature
profile across the center. Fig. S1 c shows the thickness of a top hBN flake to be ∼ 10 nm,
which separates the graphene channel from the NW.

SI 2. Data extraction

The measurement schematic of our thermopower technique is shown in Fig. S2, where we
pass a DC current through the NW (ISD) and measure thermopower voltage VTE across
the graphene probe. We apply backgate voltage VBG in the Si/SiO2 substrate to tune the
graphene density nG and VG to adjust the NW density. Due to the proximity of the NW to
the graphene channel, which is separated by a thin hBN (∼ 10nm) layer, passing a current
through the NW may generate drag voltage due to Coulomb interaction between the two
systems. Here we describe the method used for accounting for the drag effect and extracting
the thermopower signal from the raw data. Fig. S3 a and S4 a show 2D colormap of VTE with
heater current ISD and nG for MLG and BLG devices, respectively. The raw signal contains
both drag (VD) as well as the thermopower signal (VTE). The drag signal (flipping part)
flips sign as the direction of the current ISD is reversed whereas the VTE (the thermopower)
signal remains unchanged upon reversing the current direction. To separate out the drag
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Figure S1 (a), (b) are the optical images of a InAs NW-hBN-Graphene-hBN device. The
black and white dashed lines indicate the encapsulated monolayer graphene and the InAs
nanowire placed on top of it, respectively. One observes the InAs nanowire been placed
asymmetrically between two graphene probes (pink area). The yellow areas in (b) indicate
separate metal probes of the InAs nanowire. The scale bar is 5 µm for both (a) and (b).
(c) The AFM data showing thickness of the top hBN to be ∼ 10 µm. This hBN electrically
separates the graphene channel from the NW.
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Figure S2 Thermopower measurement schematic. VTE measured in graphene while passing
a constant DC current through the NW.
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Figure S3 2D colormap of VTE measured in MLG plotted with heating current ISD and
with graphene density nG at T=1.5K and B=0T. Figure (a), (b) and (c) are the raw signal
(Vraw) and the extracted non-flipping (VTE) and the flipping signals (VD) respectively.
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Figure S4 2D colormap of VTE measured in BLG plotted with heating current ISD and
with graphene density nG at T=1.5K and B=0T. Figure (a), (b) and (c) are the raw signal
(Vraw) and the extracted non-flipping (VTE) and the flipping signals (VD) respectively.

effect from the raw signal, we adhere to the following method: VD → −VD, as ISD → −ISD
for drag signals, but the non-flipping part which originates from heating effect (∝ I2

SDR)
doesn’t change its sign. So, the raw signals can be written as:

V +
raw = VD + VTE

V −raw = −VD + VTE
(1)

where V +
raw and V −raw are the raw signals when ISD is positive and negative, respec-

tively. Combining these two equations, we get:

VTE =
1

2
(V +

raw + V −raw) (2)

We extracted the VTE and VD according to the above equations, which are plotted in
Figure S3 b and c for MLG and in S4 b and c for BLG device, respectively. We observe from
these plots that VTE � VD for both the cases.
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Figure S5 (Upper panel) Graphene 2-probe resistance RG versus VBG plot at T=1.5K.
(Lower panel) 2D colormap of RG versus VBG and the graphene gate VG measured at T=1.5K.
The black and the green dashed lines indicate the trajectories of the main Dirac point (VD1)
and the additional Dirac point (VD2) with gate voltages, respectively. Arrows in the upper
panel indicate that the two Dirac points in the 2D plot originate from VD1 and VD2.

SI 3. Uneven density profile along the graphene

channel

In this section, we discuss how the density profile (p−n−p) in the graphene channel has been
interpreted from the experimental data. Figure S5 (upper panel) shows graphene resistance
RG plotted with the VBG where an additional resistive peak appears at VD2 along with the
main Dirac point at VD1. The second resistance peak appears at a negative gate voltage
i.e., | VD2 |>| VD1 | which indicates that (a) the density profile across the full graphene
channel is not uniform, and (b) the region having different density compared to the rest of
the graphene channel is more n-type or electron type. This indicates that along the graphene
channel length, the effective density profile is p− n− p type.

To analyze the density profile further, we measure RG as a function of both VBG and
VG at T=1.5K as shown in the lower panel of Fig. S5. Here VG is the graphene gate
voltage, which is applied directly to the graphene to tune the NW density as shown in
the measurement schematic in Fig. S2. The black and green dashed lines indicate the
trajectories of VD1 and VD2 with changing gate voltages. The arrows in the upper panel
indicate that both VD1 and VD2 of the two plots are essentially the same. We observe that,
as VG increases, the Dirac point shifts towards positive values of VBG. This is obvious as
the graphene channel becomes less electron-doped as we apply + ve VG and less − ve VBG
gate is required to make the graphene charge neutral. From the 2D plot, we find the slope
of VD1 to be close to unity, which supports the above argument. In our measurement setup,
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Figure S6 Standard deviation (SD) of oscillations plotted versus temperature (purple solid
circles). SD has been calculated in the density range of ±0.25× 1011/cm−2 from Fig. 3c of
the main manuscript. The black dashed line is a guide to eye.

the graphene and NW are separated by a thin hBN (∼ 10nm) flake. So, applying VG in
graphene induces charge carriers in the NW as well as in the graphene region below the
NW. Since the electric field generated from the backgate is well-screened by the graphene,
NW density is mostly controlled by VG, whereas VBG controls the density of the rest of the
graphene channel. As a result, the graphene portion below NW acquires different doping
when graphene gate is applied, i.e., when VG 6= 0. Very interestingly, for all our samples, we
observe dual Dirac point even at VG = 0V (upper panel of Fig. S5), which indicates that
the density inhomogeneity of the graphene channel is intrinsically present; most likely due
to trap charge impurities at the NW-hBN-Graphene structure. As we observe from the 2D
plot, the VD2 changes faster than VD1 when VG is applied, which is evident from the above
discussion. We also calculate the slope of VD2 trajectory and find that the capacitance of
the graphene gate CG ∼ 20×CBG, where CBG is the capacitance of the backgate. From this
equation, we estimate the thickness of the top hBN to be ∼ 12− 15nm, which is very close
to the thickness of the hBN used (∼ 10nm). While calculating the CG, we have not included
the systems’ quantum capacitances.

SI 4. Modulation in density of states

According to the algorithm mentioned below, we generated the density of states (DOS) of
graphene using a MATLAB code. Let the dimensions of the graphene sheet be (LX , LY ), with
Area (A)=LX×LY . Then the spacing of wave vectors (KX , KY ) will be, ∆KX = 2π/LX and
∆KY = 2π/LY . At first, we construct a 2D KX-KY array, as shown in fig. S7 a. Then, we
calculate the energy corresponding to each K-point using the low energy dispersion relation,
E = h̄vF

√
(K2

X +K2
Y ). Finally, we count the number of K -points (δN(ε)) for a given energy

ε, which satisfies ε− δε < E(KX , KY ) < ε+ δε. Once we have all the above information, the
DOS(ε) is given by,

DOS(ε) = 4× δN(ε)

2δε
× 1

A
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Figure S7 (a) Reciprocal lattice distribution for samples having dimension LX ×LY having
equal length and for unequal length. (b) Fermi energy plot with density of states (DOS)
for graphene having dimension of 10µm ×10µm (black) and 10µm ×0.6 µm (red) with a
Gaussian broadening of δE = 1 meV.

Here, 4 factor in the numerator is the system’s degeneracy, i.e., the number of states that
can occupy the same K-point.

To incorporate the effect of disorder, we introduced a Gaussian broadening into the
system. For this, we average the original DOS with a weightage of Gaussian function, and
the resulting effective DOS (DOS ′) is given by,

DOS ′(ε) =

∫ δE

−δE
DOS(ε+ x)G(x)dx

Where, G(x) = 1√
2πδE2

F

e
−x2
2δE2

F is the Gaussian function and δEF is the Fermi energy broad-

ening of the system. Using the above algorithm, we estimate the DOS for two-dimensional
graphene with a dimension of 10µm × 10µm (black curve) as well as of 10 µm × 0.6 µm
(red curve) as shows in Fig. S7 b.

SI 5. Cavity strength and Length Scale calculations

Cavity strength: In this section, we discuss how the cavity strength has been cal-
culated. As discussed before, a cavity is created in graphene in the region beneath the
NW in the presence of NW’s one-dimensional electrostatic potential. From the backgate
response of graphene, we observe a second Dirac point VD2 appears at negative gate volt-
ages, suggesting more electron-like or ‘n’ type region in the graphene sheet and implicates
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uneven density profile across the graphene channel. As shown in Fig. 4a (lower panel) of
the main manuscript, the density mismatch across the graphene sheet leads to misaligned
Fermi energies, which creates an energy barrier or confinement for the charge carriers. We
have estimated the density mismatch from the backgate voltage difference between VD1 and
VD2. To estimate the strength of the energy barrier, we use the linear band dispersion of
monolayer graphene EF = h̄vF

√
πnG and parabolic band dispersion EF = πh̄2nG

2m∗ for bilayer
graphene with m∗ ∼ 0.03m0, where vF , m∗ and m0 are the Fermi velocity and the effective
mass of carriers in bilayer graphene and the mass of electron, respectively. For our devices,
∆VBG = VD2 − VD1 ∼ 16V and ∼ 23V for MLG and BLG respectively which is equivalent
to energy scale of ∼ 115meV and ∼ 45meV . The RG versus EF plots for MLG and BLG
devices are shown in Fig. S8 a and b, respectively. The smaller energy barrier in bilayer
graphene indicates shallow confinement of charge carriers, which explains the absence of
oscillations in BLG devices.

Length Scale calculations: We also estimate the approximate length scale corre-
sponding to the oscillations observed in MLG devices. As shown in Fig. 3a and 3c of
main manuscript, the average oscillation period in MLG are δn ∼ 1.08 × 1010/cm2 and
0.8 × 1010/cm2 respectively which is equivalent to the energy δE ∼ 13meV and ∼ 10meV
respectively. The cavity length for constructive interference is L = pλ, where λ is the elec-
tron wavelength, and p is any positive integer. This equation reduces to L = 2πh̄vF

δE
for MLG.

For our systems δE ∼ 7 − 13meV which is equivalent to length 0.6 − 0.35µm. This length
scale is very similar to the NW channel length in our devices, which shows that the con-
finement barrier is created underneath the NW contacts. To estimate the fluctuation period
corresponding to the other dimension (diameter) of the NW, we use L ∼ 50nm which is
equivalent to δn ∼ 1.25−5×1011cm−2. Since significant oscillations are not observed among
±0.5 × 1011cm−2, we can infer that the confinement or the cavity is formed only along the
length of the NW. The cavity is weaker along the diameter, which could be due to shallow
confinement arising from the NW’s cylindrical shape.

Effect of screening: Now, we will discuss the density dependence of VTE oscillations.
It can be seen in Fig. 3a and 3c of the manuscript that the oscillations in VTE get weaker as
nG is tuned away from the Dirac point. The Fermi energy increases along with nG. However,
the DOS oscillations as a function of energy do not show any decrease with increasing E in
Fig. 4c of the manuscript. The most probable cause for the decrease in oscillations with
increasing nG is the effect of screening. Note that for MLG, the DOS, in the absence of
confinement, goes as |E| and thus increases with increasing nG. The cavity potential itself
is affected by the ability of the layer to screen since it is induced by the NW on top. Thus,
as nG increases, so does the amount of screening effectively, resulting in a decrease in the
strength of the confining potential. Since the oscillations are caused due to the confinement,
they too decrease in magnitude with increasing nG. The DOS shown in Fig. 4c of the
manuscript, while correctly showing that oscillations in the DOS exist, does not take this
effect of screening at large nG into account since it is difficult to model it accurately. The
importance of screening can also be seen from the fact that the estimated cavity potential
for MLG is larger than for BLG. In the latter system, the DOS is more or less constant and
does not go to zero at the charge neutrality point. Screening in BLG is thus more effective
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Figure S8 (a) and (b) are plots of RG vs. Fermi energy EF for MLG and BLG, respectively.
The second peak of RG appears around 115 meV and 45 meV for MLG and BLG devices.

and the potential induced by the NW much weaker.

SI 6: Thermopower in BLG in presence of magnetic

field

Fig. S9 a and b show plots of VTE with nG for different magnetic fields for the MLG and
BLG devices, respectively. For MLG, the oscillation period increases as B is increased,
which indicates the formation of Landau levels (LL) for B> 0.1T (see Fig. 5a of the main
manuscript). At B=0T, VTE changes sign according to the Seebeck coefficient polarity for the
BLG device. However, in the presence of the magnetic field, the thermopower voltage starts
to show oscillations, indicating the formation of Landau levels in the BLG. The energy
equivalent to the oscillation frequency for BLG (inset Fig. 5c of the main manuscript)
matches with the expected energy gap between LLs for BLG.

SI 7: Theoretical Model

To calculate the temperature profile in the graphene layer, we solve the 3D Fourier heat diffu-
sion equation for the multilayer stack. The stack comprises, from top to bottom (thicknesses
in parentheses): hBN (10 nm), graphene (0.4 nm), hBN (25 nm), SiO2 (300 nm), Si (500
µm). The stack is heated by an InAs NW placed on top of the top hBN layer, represented
by a planar rectangular heat source. We consider three components of this heat source: (1)
the NW channel (length = 0.6 µm, width = 50 nm), (2) NW underneath the left contact
(length = 0.93 µm, width = 50 nm), (3) NW underneath the right contact (length = 0.93
µm, width = 50 nm). The power dissipated in part (1) is P, and in parts (2) and (3) is fLP
and fRP , respectively. We calculate the 3D temperature profile induced by each of these
heat sources separately, and obtain the total temperature profile by superposition.
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Figure S9 VTE plot with nG for different magnetic fields at T=1.5K for MLG (a) and BLG
(b) respectively . The vertical and horizontal dashed lines indicate Dirac point and the zero
thermopower respectively.

Figure S10 (Upper panel) Top view of the theoretical set up where the NW is represented by
the smaller rectangular region on top of the graphene channel (blue region) having dimension
of Lx×Ly. Here the yellow and the red portions represents the metal contacts and the channel
of the NW respectively. (Lower panel) The side view of the setup showing the multilayer
stacking.
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Numerical approach

To calculate the temperature profile created a rectangular surface heat source, we use a closed
form analytical solution [5] for the steady-state 3D Fourier diffusion equation: ∇2θ = 0,
where θ(x, y, z) = T (x, y, z)− T0 is the temperature rise above ambient. The simulation cell
has dimensions Lx and Ly (both taken to be 60 µm). The heat source, whose center is at
coordinates (X0,Y0), has dimensions Hx and Hy along the x and y directions, respectively.
We assume adiabatic boundary conditions on the top and lateral surfaces, and isothermal
conditions (θ = 0) at the bottom of the Si substrate. Key equations are reproduced below
from Bagnall et al. [5] to aid the reader.

The general solution for the temperature rise at a point located at a depth zj within the
j th layer is given by:

θj(x, y, zj) = A0j + B0jz +

∞∑

m=1

cos(λmx) [A1j cosh(λmzj) + B1j sinh(λmzj)]

+

∞∑

n=1

cos(δny) [A2j cosh(δnzj) + B2j sinh(δnzj)] +

∞∑

m=1

∞∑

n=1

cos(λmx) cos(δny) [A3j cosh(βmnzj) + B3j sinh(βmnzj)]

where λm = mπ/Lx, δn = nπ/Ly and βmn =
√
λm

2 + δn
2 are the eigenvalues, collectively

denoted γn. The Fourier coefficients Aij and Bij in the j th layer are related by the spreading
function, φj(γn) = −Bij/Aij. Assuming a high heat transfer coefficient at the bottommost
surface of the Si substrate (i.e. thermally grounded to ambient), and given that its large
thickness, φN(γn) = 1. The spreading functions in layers 1 to N-1 are found recursively:

φj(γn) =

κj
κj+1

tanh(γntj) + φj+1(γn) +
κj
Gj
γnφj+1(γn)tanh(γntj)

κj
κj+1

+ φj+1(γn) tanh(γntj) +
κj
Gj
γnφj+1(γn)

where κj and tj denote the thermal conductivity and thickness of layer j respectively, and
Gj the thermal boundary conductance between layers j and j+1. The zeroth order Fourier
coefficients A0j and B0j are given by:

A0j =
Q

LxLy




N∑

l=j

[
tl
κl

+
1

Gl

]


B0j = − Q

LxLyκj
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Figure S11 (a) The temperature rise ∆T plotted with position along the X direction.
(b) The absolute value of the temperature gradient | dT

dX
| plotted with position X. For

both the plots, the dashed blue, yellow, and red curves correspond to the individual heating
contributions from the NW channel, the left, and right contacts, respectively. The total
temperature rise and the temperature gradient are shown by the black curves respectively.

Higher order Fourier coefficients in the top layer, Ai1(i = 1, 2, 3) are given by:

A11 =
4P cos(λmX0) sin(1

2
λmHx)

LxLyHxκ1λ2
mφ1(λm)

A21 =
4P cos(δnY0) sin(1

2
δnHy)

LxLyHyκ1δ2
nφ1(δn)

A31 =
16P cos(λmX0) sin(1

2
λmHx) cos(δnY0) sin(1

2
δnHy)

LxLyHxHyκ1λmδnβmnφ1(βmn)

Finally, Fourier coefficients in the lower layers are defined using the recursive relation:

Aij = Ai,j−1

[
cosh(γntj−1)− φj−1(γn)sinh(γntj−1)

κj
Gj
γnφj(γn) + 1

]

Since some of the layers in the stack are thermally anisotropic, we account for this by
defining effective isotropic values for thickness and thermal conductivity: κj,iso =

√
(κj,zκj,xy)

and tj,iso = tj/
√
κj,z/κj,xy, where ‘xy’ and ‘z’ refer to in-plane and cross-plane components.



13

Thermal parameters

The inputs to this model are the thickness (t) and thermal conductivity (κ) of each layer,
and the thermal boundary conductance (G) between adjacent layers. Below we describe
how these properties are estimated at a base temperature of ∼ 5 to 10 K, based on prior
experiments and calculations. We emphasize that our goal is not to calculate the precise
temperature profile, but to obtain a first order estimate of the temperature gradients.

For κxy of hBN, we refer to previous low T measurements [6] of heat transport in crystal-
lites of diameter ∼ 1µm and thickness ∼ 50-100 nm. At low T, it is reasonable to assume that
phonon boundary scattering is specular, and therefore κxy is thickness-independent. Since
the lateral dimensions will limit phonon transport, we must scale κxy by 10× to account
for the distance between the metal contacts in our devices, viz. 10 µm; this gives κxy ≈ 30
Wm−1K−1 at 5 K. We assume that at low T, intrinsic cross-plane transport in hBN is not
limiting, but rather governed by interfaces (see below), and take a sufficiently large κz so
that it does not matter.

For graphene, we first estimate the electronic contribution to κxy using the Wiedemann
Franz law, which was previously shown [7] to be valid below 20 K. Based on the measured
electrical conductivity, we estimate this to be at most ≈ 2 Wm−1K−1 at highest doping. To
estimate the lattice contribution, we refer to first principles calculations [8] for polycrystalline
graphene of grain size ∼ 10 µm, which gave ∼ 100 Wm−1K−1 at 5 K. However, since these
calculations were for suspended graphene, we must account for phonon scattering with the
substrate. To first order, we assume the same suppression factor as at room temperature
[9] and estimate the lattice contribution to be ≈ 20 Wm−1K−1. For SiO2 and doped Si,
we refer to previous low T measurements and extrapolate where necessary [10, 11]; κSiO2 ≈
0.1Wm−1K−1, and κSi ≈ 1W m−1K−1.

Interfaces are known to limit heat transport in vdW heterostructures. For graphene/hBN,
we refer to calculations based on non-equilibrium Green’s function [12]; GhBN/graphene ≈ 1 M
Wm−2K−1 at 5 K. The same thermal conductance is assumed for the hBN/SiO2 and SiO2/Si
interfaces - they do not significantly affect the temperature profile in graphene.

For the calculations shown in the main text, we take P = 1 µW, and impose an asymmetry
in heating at the contacts by assuming fL = 0.15, fR = 0.1. The gradient of the temperature
profile is non-zero largely within ∼ ± 1 µm of the center as show in Fig. S11. Fig. S11
a shows the plot of calculated temperature rise ∆T versus position X whereas Fig. S11 b
shows the temperature gradient plot with X. Both the plots shows individual contribution
from the NW channel, left and right contacts towards the mentioned parameters.
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