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The measurements of size distribution of small particles (e.g. dusts, droplets, bubbles, etc.) are 
critical for a broad range of applications in environmental science, public health, industrial 
manufacturing, etc.  Laser diffraction (LD), a widely used method for such applications, depends 
on model-based inversion with underlying assumptions on particle properties. Furthermore, the 
presence of sampling biases such as velocity differentials are often overlooked in simple ex-situ 
calibrations, which introduces as an additional source of error. In contrast, digital inline 
holography (DIH), a single camera coherent imaging technique, can both measure particle size 
distributions without the need for a model-based inversion and can directly provide information 
on the shape characteristics of the particles. In this study, we evaluate the performance of an LD 
system in characterizing polydisperse droplets produced in a flat fan spray using in-situ DIH based 
imaging as a reference. The systematic differences in the two techniques are examined. A droplet-
trajectory-based correction for the LD-inferred size distributions is proposed to compensate for the 
observed differences. We validate the correction using NIST standard polydisperse particles 
undergoing differential settling, and then apply the correction to polydisperse spray droplet 
measurements. The correction improves agreement between LD and DIH size distributions for 
droplets over two orders of magnitude, but with LD still underestimating the fraction of droplets 
at sizes above ~1 mm. This underestimation is possibly linked to the complex oscillatory and 
rotational motion of droplets which cannot be faithfully captured by measurement or modelled by 
the correction algorithm without additional information. 
Keywords: Digital inline holography, Laser diffraction, Particle sizing 
 
1. Introduction 

The measurement of particle size distributions (e.g., bubbles, droplet, sediments, etc.) is critical 
in characterizing and predicting the behavior of many natural and industrial processes. For 
example, assessing the impact of atmospheric aerosol particles from sources including sea spray, 
volcanic activity, and dust, on climate, requires careful analysis of particle size distributions [1]. 
In industrial practices including but not limited to the spray drying of food products [2], spray-
based application of crop protectants [3], direct fuel injection for combustion [4], drug 
manufacturing [5,6], and multiphase chemical reactors [7], the size distribution of particles is often 
a critical process control parameter that requires careful and continuous monitoring.  

Laser diffraction (LD) has been established as a standard technique for particle size distribution 
measurement, namely because it utilizes a relatively large sampling volume, has a high sampling 
rate, and with implementation of automation, has a straightforward operation procedure [8,9]. LD 
employs a collimated laser beam to illuminate a group of particles. Each particle within the group 
produces a characteristic angular intensity pattern through forward scattering, the ensemble of 
which is captured on a radial sensor. Once captured, the intensity can be numerically inverted to 
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obtain the size distribution for the group of particles. Inference of the particle size distribution from 
the radial scattering distribution function requires use of an ill-posed inversion, in which it is 
commonplace to assumes particles are spherical, with light scattering following either Fraunhofer 
or Mie theory, the latter of which requires the refractive index of the sample to be known a priori 
[10]. LD has been successfully applied in measuring size distribution of various types of particles 
in a wide range of industries, including food processing [11], agriculture [12], paints & coatings 
[13], manufacturing [14], oil & gas [15] and pharmaceuticals [16]. 

Despite its widespread use for size distribution measurement, LD suffers from several 
limitations. First, the assumption of spherical shape and refractive index (for Mie theory) can act 
as a significant source of error for the measurements of non-spherical or irregular particles. For 
instance, Agimelen et al. (2017) found that the presence of needle shaped particles introduces 
multimodal populations in inverted results with modes arising which are smaller than the actual 
size of particles [17], while Andrews et al. (2010) showed that measurements of a mixture of 
organic and inorganic particles with different refractive indices yielded poorer agreement with true 
distributions than measurement of either sample independently [10]. Second, the use of a fixed-
geometry radial sensor results in poor resolution, limiting the ability of the technique to 
differentiate narrow size distributions [18]. Such a limit in resolution is more apparent for particles 
of larger sizes as their forward scattering energy is restricted to regions of smaller angles [19]. 
Beyond these potential issues, for particles in motion, preferential weighting of slower velocity 
samples (over-counting) relative to faster ones can lead to a size-dependent sampling bias if 
particle velocity is a function of size [20–22]. Such biases can be more apparent in spray 
measurements, where the nozzle is often vertically traversed for an ensemble measurement across 
the spray width [12] and where droplet inertia can strongly affect its velocity. Furthermore, the 
presence of spatial variations due to differences in spray breakup mechanisms along and away 
from the centerline [23,24], as well as droplet oscillations, can act as additional sources of error 
when interpreting LD results. 

Several studies present correction strategies for mitigating the above limitations of LD based 
measurements. Heffels et al. (1995) introduced a modified inversion algorithm for non-spherical 
particles, but its implementation requires knowledge on the particle aspect ratio [25]. To overcome 
the spatial sampling bias, Fritz et al. (2014) proposed to increase background wind speed as a 
method to diminish the impact of differential velocities, which is largely limited to controlled 
laboratory environments [21]. There is, however, limited applicability to these correction 
strategies. Furthermore, the calibration of LD systems traditionally utilizes either a direct 
measurement with spherical particle or reticle standards [26,27], or comparison to secondary 
measurements such as sieving [11,28], coulter counters [29,30], sedimentation [31], or 
optical/electron microscopy [32], all of which are performed under ex-situ conditions. To date, an 
in-situ calibration approach has not been established for LD, though this would be extremely 
beneficial as the application of spherical particle/reticle standards fails to capture the complexity 
seen in measurements e.g., droplet oscillations in sprays causing asphericity [33], and the use of 
secondary measurements may introduce modification of the particles under examination (through 
aggregation or dispersion). 

In contrast to the noted techniques, imaging-based approaches enable high resolution model-
free direct sizing of arbitrary shaped particles located in a large sampling volume with single object 
sensitivity and can further eliminate the spatial sampling bias with an appropriate choice of frame 
rate. In particular, digital inline holography (DIH) has recently emerged as a versatile tool for 
characterizing samples in-situ at high spatial resolution and an extended depth of field (typically 
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more than 3 orders higher than conventional imaging) using a single camera [34]. DIH captures 
the interference pattern (i.e., hologram) between the laser light scattered by the particles and the 
unscattered portion of the beam, which encode the 3D position and shapes of the detected object. 
Once recorded, the hologram can be numerically reconstructed based on different diffraction 
formulations (e.g. Rayleigh-Sommerfeld or Kirchhoff-Fresnel formulations), providing the 
complete 3D optical field containing the particles. Evolution of the size, shape and position of the 
particles can be subsequently extracted and tracked over time using standard image processing 
algorithms [35]. Furthermore, as an imaging-based measurement, DIH only requires calibration of 
the pixel resolution using precision target with known dimension, without any other secondary 
measurements or standardized particle samples. The high level of accuracy and sensitivity 
provided by DIH has enabled multiple applications, including measurement of snowflakes [36] 
and droplets [37] in the atmosphere, sediments [38] and oil droplets [39] in oceans, coal particles 
in flames [40] and bubbles in the wake of a ventilated supercavity [41]. More recently, Kumar et 
al. (2019) demonstrated the versatility of DIH to fully resolve monodisperse droplets generated 
from a vibrating orifice aerosol generator as well as from polydisperse flat fan sprays [33]. Along 
with the standard size distribution, the study also quantified the particle shape characteristics using 
a volumetric size-eccentricity joint probability density function (PDF), a quantity that is typically 
challenging to obtain through LD measurements.  

Given the widespread reliance of LD on ex-situ calibration, there still exists a clear need to fully 
assess its accuracy with an in-situ calibration approach, in order to identify potential sources of 
error and the corresponding mitigation strategies. In this study, we perform a systematic evaluation 
of LD in characterizing the droplet size distribution of a polydisperse flat fan agricultural spray 
using an in-situ high-fidelity DIH based imaging approach as a reference, with both measurements 
performed at identical experimental conditions. A detailed description of the experimental setups 
and measurement conditions are presented in Section 2. In Section 3, we present a comparison of 
the two measurements, a proposed trajectory-based correction, validated using polydisperse NIST 
standard beads, and a comparison of the corrected LD distribution with the DIH data. Finally, we 
conclude with a summary and discussion in Section 4. 

 
2. Experimental Methods 

In this section we provide a detailed description of the experimental setup used to generate the 
spray test cases, the LD and DIH systems deployed to characterize the size distributions of spray 
droplets. All of our experiments are conducted in a low speed recirculating wind tunnel 
(Hambleton Instruments, Hudson WI) with a 3.20 m long, 0.91 m wide, 1.83 m tall test section, 
capable of achieving wind speeds up to 8 m/s. The test section (Fig. 1a) has clear glass walls 
providing optical access from the sides. A water spray (tap water at 19 ºC) from a TP6515 flat fan 
nozzle (65° fan angle; major axis diameter DN ~ 4.1 mm, TeeJet Technologies) at a pressure of 
152 kPa (measured across the nozzle) is introduced in the tunnel, oriented along the centerline and 
parallel to the flow direction, under an air speed of 4 m/s. The measured liquid feed rate (using a 
Coriolis Mass Flowmeter, RCT1000, Badger Meter Inc.) under these conditions is 4.08 liters per 
minute, in good agreement with ASABE S572.2 standards [42]. The nozzle is attached to a vertical 
translation system (similar to [12]) that permits measurements across the entire span of the spray 
fan. The tunnel is equipped with a mist eliminator downstream of the test section to prevent 
droplets from recirculating in the tunnel. The temperature and humidity inside the test section are 
continuously monitored during measurements at 30 °C and ~80%, respectively, to ensure identical 
experimental conditions across all measurements. The spray droplet size measurements are 
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conducted in four individual sampling locations within the spray fan as shown in Figure 1b with 
detailed locations and dimensions summarized in Table 1. The sample locations are selected 
considering the droplet concentration range in which both LD and DIH can operate and the need 
to evaluate the spatial variation of droplet size distribution and its impact on the LD measurements. 

  
Figure 1. (a) A schematic diagram of the test section indicating the laser diffraction (LD) system 
on the left and the digital inline holography (DIH) system on the right . (b) A Schematic of the 
spray fan from a TP6515 flat fan nozzle with the four sampling locations marked, with an inset 
illustrating the field of view for laser diffraction (LD) and digital inline holography (DIH). The 
arrow at the top indicates the direction of flow in the wind tunnel from left to right and DN and 
y1/2(x) are the diameter of the nozzle and the jet half-width respectively.  

The DIH system (Fig. 1a) consists of a 12 mW helium-neon laser (REO Inc.), a neutral density 
(ND) filter to control the laser intensity, a spatial filter (Newport Inc.) to increase laser spatial 
coherence, a collimation lens with 75 mm focal length (Thorlabs Inc.) and a high speed camera 
(Phantom v710) with an imaging lens (Nikon 105 mm f/2.8), all mounted on either side of the test 
section. The optical components together produce a 50 mm collimated gaussian beam which is 
captured on a 512x512 pixel image at a resolution of 18.2 µm/pixels by the camera. The calibration 
involves capturing an in-focus image of a precision microruler with 10 µm spacing over a 1 mm 
range (Thorlabs Inc.; R1L3S2P) as described in [33]. A frame rate of 500 frames/s ensures that no 
droplets are sampled more than once, avoiding the spatial sampling bias of slower droplets on the 
distribution. Images are recorded for a duration of 1.6 minutes, yielding ~49000 holograms in total 
at each individual sampling location. The collected holograms are processed using an automated 
reconstruction and sizing routine to extract the size distributions as well as the size-eccentricity 
joint PDF, the complete details for which can be found in [33]. The study includes the validation 
of the imaging accuracy, by calibration with a precision microruler (Thorlabs Inc.; 10 µm line 
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spacing), and the measurement precision, defined by the peak to width ratio of 14.2, measured 
with monodisperse droplets produced by a vibrating orifice aerosol generator. 
Table 1. Position of the sampling locations on the TP6515 nozzle generated flat fan spray along 
with their corresponding symbols used in the size distribution plots, with DN and y1/2(x) 
representing the nozzle diameter and the half width of the jet respectively.  

Streamwise Position Spanwise Position Symbol 
Position 1 74DN 0 ○ 
Position 2 111DN 0 □ 
Position 3 111DN 0.5y1/2(x) △ 
Position 4 111DN -0.5y1/2(x) ◊ 

The LD system (Fig. 1a) employed in our experiment is a Helos/KR-VARIO laser diffraction 
system (Sympatec) with a 2000 mm focal length lens, placed across the glass windows of the test 
section, for measurements in the 18-3750 µm size range. The software suite captures and analyzes 
the data for all our experimental cases from a sampling window of ~26 mm and includes an 
independent referencing step, without the spray, before each measurement. The total sampling 
duration for each measurement is 20 s with a signal integration time of 5.8 ms. We further perform 
10 replicates for each sample to ensure size distributions are stable and converged. The DIH and 
LD systems are mounted together on a traverse, with a constant lateral offset between them, which 
enables us to move the sampling locations for both in the downstream direction. In combination 
with the vertical nozzle translation, this lateral motion enabled measurements at any arbitrary 
location within the entire spray fan.  
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3. Results & Discussion 
3.1 Droplet size distribution comparison: laser diffraction vs digital inline holography  

  
Figure 2. Volume-based size distributions for spray droplets generated by a TP6515 flat fan nozzle 
measured by digital inline holography (DIH, open symbols) and laser diffraction (LD, closed 
symbols) on a log-log plot. Comparisons between the two techniques are performed at (a) 74DN 
(position 1) and (b) 111DN (position 2) downstream of the nozzle along the centerline and at 111DN 
downstream and (c) 0.5y1/2(x) above (position 3), (d) 0.5y1/2(x) below (position 4) the centerline, 
where DN and y1/2(x) are the nozzle diameter and half width of the jet at the measurement location, 
respectively.  

Figures 2 presents a comparison of the droplet size distributions on a volume basis for both 
laser diffraction (LD) and digital inline holography (DIH) at the four sampling locations, with 
identical logarithmically spaced bins. The distributions have been normalized resulting in the 
integral area under the PDF of unity. The distribution at position 1 (Figure 2a) is monomodal with 
similar polydisperse shapes resulting from both LD and DIH measurements. However, the LD 
distribution shows a clear mismatch with the DIH result for all sizes. Despite a larger sampling 
window for LD compared to DIH, it fails to capture any droplets in the largest diameter sizes due 
to the limited spatial resolution of a radial LD detector as reported by [18]. Furthermore, a larger 
FOV often associated with a loss of resolution actually measures an increase at smaller sizes 
compared to DIH possibly due to oversampling those droplets which tend to move slowly. 
Although the measurement window sizes are different, their size relative to the spray fan (~1-6 % 
of the spray fan width) is significantly smaller and thus would not capture any spatial variation in 
droplet size within them. In addition, the geometric mean diameter obtained through a lognormal 
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fit of the LD distribution is ~200 µm smaller than that from DIH (see Table 2 and supplementary 
information), further illustrating the difference between the two more clearly. For measurements 
downstream at position 2, the shapes of the individual distributions, presented in Figure 2b, remain 
the same as in position 1, but with a decrease of ~90 µm and ~13 µm in the corresponding 
geometric mean diameters for DIH and LD, respectively. The observed decrease may be caused 
by droplet breakup and evaporation as droplets migrate downstream, a trend which was observed 
and reported on for similar measurement conditions by [33]. The differences between LD and DIH 
results are suppressed across all sizes at position 2, with the variation of geometric mean diameter 
between the two reducing to ~130 µm. Likewise, the trend in underestimation of larger sizes, the 
failure to capture any droplets in the largest diameter bin and the overestimation of smaller sizes 
by LD continues to hold at this position. 

As the sampling location shifts spanwise above the centerline to position 3, the distributions for 
LD and DIH continue to be monomodal and highly polydisperse (figure 2c), but with further 
reduction in geometric mean diameters by ~40 µm and ~75 µm for the LD and DIH results relative 
to position 2, respectively. The sharp decline in the relative concentration of smaller diameters and 
the decrease in the geometric mean diameter are due to the variation in the break up mechanism 
away from the centerline [24]. Apart from the loss of the largest diameter droplets in LD, caused 
by dynamic range limits, the lower concentration of small droplets below ~80 µm leads to no 
perceptible signal in the detector due to the weak scattering strength not surpassing the minimum 
optical concentration required [43]. Such a limitation however does not exist for image-based DIH 
measurement, which is characterized by high measurement sensitivity and particle sizing 
resolution [33]. The match between the LD and DIH size distributions is improved between ~200 
µm and ~800 µm, but underestimation in LD above the modal peak results in a geometric mean 
diameter difference of ~90 µm, with LD still less than DIH.  

Finally, at position 4, LD and DIH distributions (figure 2d) show an increase of ~10 µm and 
~20 µm respectively, in the geometric mean diameter relative to position 3. Although noteworthy, 
the increase in the geometric mean diameter is still leads to smaller values than are measured at 
position 2, ensuring a consistent trend at both off-center positions compared to the centerline. We 
believe this increase is caused by effect of gravity introducing additional variations in breakup at 
the bottom of the spray relative to the top, and is reliably captured by both LD and DIH 
measurements. This effect further increases the deviation between LD and DIH for diameters 
between ~90 µm to ~250 µm with the difference in geometric mean diameter between LD and 
DIH increasing to ~110 µm from, as compared to ~90 µm at position 3. The failure of LD in 
capturing droplets in the largest size bins, droplets smaller than ~80 µm, and the underestimation 
of the PDF above the modal peak also persist at this measurement location.  
Table 2. Comparison of geometric mean and geometric standard deviation for lognormal fits of 
the laser diffraction (LD) and digital inline holography (DIH) based size distributions. 

 LD DIH 
Geometric mean (µm) Geometric std. Geometric mean (µm) Geometric std. 

Position 1 617.5 1.66 821.9 1.76 
Position 2 603.7 1.78 732.3 1.80 
Position 3 561.5 1.56 658.2 1.75 
Position 4 570.9 1.64 680.1 1.73 

In total, measurements at all four locations consistently show that the droplet size distribution from 
LD is peaked at smaller sizes than that directly determined from DIH, irrespective of variations in 
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the droplet size distribution at the various positions [23]. The difference in LD may be attributed 
to the presence of a size-dependent sampling bias as well as ambiguity introduced by non-spherical 
droplets in the sample. As the droplets move through the sampling location, size-dependent 
differences in the speeds, caused by different drag behaviors, would lead to overcounting of the 
slower moving droplets [21,22], while the presence of non-spherical droplets can introduce an 
error in model inversion of LD which assume a spherical shape. In order to better characterize the 
level of asphericity in the sample, we investigate the size-eccentricity joint PDF obtained from 
DIH measurements in the following section. 
 
3.2 Size-eccentricity joint PDF from digital inline holography 

 
Figure 3. The volumetric size-eccentricity joint PDF for TP6515 flat fan spray generated droplets 
measured at the four sampling locations. The two position along the centerline at (a) 74DN 
(position 1) and (b) 111DN (position 2) downstream of nozzle. The two off-center spanwise 
positions at 111DN downstream and (c) 0.5y1/2(x) above (position 3) and (d) 0.5y1/2(x) below 
(position 4) the centerline where DN and y1/2(x) are the nozzle diameter and half width of the jet at 
the measurement location, respectively.  

The volumetric size-eccentricity joint PDF of the flat fan spray at the four positions obtained 
through DIH measurement is presented in Figure 3. The eccentricity is defined by �(1 − (𝑎𝑎2/𝑏𝑏2)) 
with a and b as the semi-minor and semi-major axes of the ellipse, respectively.  They are fit to 
the cross section of the droplets captured by DIH. In addition, the calculated eccentricities are 
weighted by volume so that an integration over all eccentricities will recover the volumetric size 
distribution presented earlier (see [33] for more information). The contours of the PDF reveal a 
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strong semilogarithmic scaling between eccentricity and diameter at all positions. Such a scaling 
can be rationalized by the presence of droplet oscillations and rotations, which are illustrated by 
snapshots of high speed shadowgraphy shown in Figure 4, the videos and the experimental details 
for which are included in the supplementary information. Note that the PDF’s are a statistical 
measurement of all droplets that cross the sampling window rather than an instantaneous 
eccentricity. Thus, an apparent drop in the eccentricity joint PDF above ~1 mm, seen in Figure 3b, 
c and d, do not indicate that larger droplets are more spherical, but rather are indicative of the lack 
of such large droplets at these locations. Specifically, the pinch off of droplets from the liquid 
lamella initiates oscillations along the direction of motion (Figure 4a) which are driven by surface 
tension effects, while rotations (Figure 4b) are caused by the moments associated with wind-
induced drag on the droplet. Once initiated, the oscillations decay due to viscous dissipation, the 
time scale of which scale inversely with diameter causing smaller droplets to relax faster than 
larger ones. On the other hand, rotational motion leads to instabilities of droplet shape resulting in 
further breakup of the droplet [44]. The PDF at position 1 (Figure 3a) indicates a strong peak 
around ~2 mm and 0.9 eccentricity which shifts to a smaller diameter (~0.9 mm) and eccentricity 
(~0.7) at position 2 (Figure 3b). Such a peak reduction is caused by the relaxation of droplet 
oscillations as well as breakup of droplets undergoing rotation as they travel downstream, the latter 
of which is evidenced by the size distributions presented in Section 3.1, and previously reported 
under similar experimental conditions in [33]. 

At both the off-center positions (Figure 3c and 3d), the PDF envelope retains the same shape 
as previous locations, but with a significantly broader peak spread spanning a diameter between 
0.4 mm to 1 mm and eccentricities between 0.5 to 0.7. Apart from a similar range of rotational and 
oscillatory motion exhibited by droplets along the centerline, the angular difference between the 
direction of wind and droplet motion in the off-center position leads to oscillations along multiple 
directions, oriented with the major and minor axes of the droplet, as it moves (Figure 4c). The 
presence of such three dimensional oscillations increases the effective oscillation frequency of the 
droplet [45], reducing the total relaxation time required for droplets to reach equilibrium. As a 
consequence, both off-center positions have larger fraction of droplets exhibiting smaller 
asphericities relative to the centerline, broadening the measured PDF along eccentricity. 
Furthermore, the complex three-dimensional oscillations also result in breakup of larger droplets, 
as described in Section 3.1.  This causes the observed PDF spread along diameter. Finally, because 
of gravitational settling, there is a slight shift in the peak towards larger diameters and eccentricities 
at the bottom of the spray fan (position 4) relative to the top (position 3).  
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Figure 4. Snapshot montage from high speed shadowgraphy of complex droplet dynamics within 
the spray exhibiting (a) oscillations along direction of motion (b) counterclockwise rotation with 
axis perpendicular to image plane and (c) three dimensional oscillations along the major and minor 
axes of the droplet. The time interval between snapshots are 0.12 ms. The images are presented in 
a Lagrangian frame of reference centered on each droplet 
3.3 Trajectory-based correction of LD results 

In order to compensate for the observed differences between the LD and DIH measurements, 
we propose a correction based on the transit time of droplets crossing the measurement sampling 
volume. The liquid velocity at the nozzle exit is significantly higher than the wind velocity, and 
droplets initiated by liquid jet breakup tend to move at this velocity. However, the difference 
between the wind speed and droplet velocity results in a net drag force acting to slow down droplet 
velocities. The smaller droplets, of lower inertia, tend to reach terminal velocity quicker than larger 
droplets, resulting in a differential velocity based on size and position. As the droplets cross the 
laser beam of the LD system, the slow-moving smaller diameter droplets are counted more often 
than the faster moving larger droplets, leading to a sampling bias as described in Section 1. In 
contrast, DIH data, which is sampled at a suitable rate to ensure each droplet is imaged only once, 
avoids this problem. A simple approach to correct this bias involves the application of the Verlet 
Algorithm [46], to estimate the transit time of a droplet as it crosses the LD sampling region, which 
can then be used to adjust the droplet count to limit the effect of the bias. The algorithm, given by 
the equation motion for a droplet in air (equation 1) can be used to estimate the time spent by it 
when crossing the laser beam as a function of diameter: 

𝐹⃑𝐹 = 𝑚𝑚𝑎𝑎𝑛𝑛����⃑ = −
1
2𝐶𝐶𝑑𝑑𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋𝑑𝑑𝑝𝑝

2

4
|(𝑣𝑣𝑛𝑛����⃗ − 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎�������⃗ )|(𝑣𝑣𝑛𝑛����⃗ − 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎�������⃗ ) + 𝑚𝑚𝑔⃗𝑔    (1) 
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𝑣𝑣𝑛𝑛����⃗ , 𝑎𝑎𝑛𝑛����⃑  are the velocity and acceleration of the droplet at time n, m the mass, 𝐶𝐶𝑑𝑑 the drag coefficient, 
𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 the density of air, dp the diameter of the droplet, 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎�������⃗  the wind velocity and 𝑔⃗𝑔 the acceleration 
due to gravity. In order to incorporate the effect of droplet rotation and oscillations, we model 
droplets as ellipses with the aspect ratio obtained from the ridge lines of the size-shape joint PDF 
(Figure 3). Next we combine the drag model proposed by [47] for non-spherical inertial solid 
particles moving with random orientation with a correction for liquid deformation proposed by 
[45]. The combination of both models in our understanding is unique and has not been reported 
before. The complete equations for the drag model can be found in the supplementary information. 
The wind velocity is approximated as a uniform flow in the x-direction at 4 m/s; we note that this 
approximation does not enable considering of vertical, shear-induced, aerodynamic focusing. 

The model is initialized by assuming the initial droplet velocity (𝑣𝑣𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤��������⃗ ) to be uniform at the exit 
of the nozzle and given by the ratio of the flow rate to nozzle area, ignoring any interaction between 
droplets and spans the entire angular spread of the jet i.e., 65°. Next the droplets are stepped in 
time with no external forces, up to a minimum distance of ~40DN to simulate the formation and 
breakup of the liquid sheet. Once outside the sheet, the droplets are stepped in time with a step size 
of 10-4 s, sufficient to fully resolve the motion of all diameters. We count the time each droplet 
resides within the measurement window of the LD system (a circle of 32 mm diameter) placed at 
each corresponding sampling locations. The correction factor C (equation 2) is defined as the 
inverse ratio of total transit time divided by the time for the largest (quickest) droplet to cross the 
laser as a function of droplet size (dp). 

𝐶𝐶(𝑑𝑑𝑝𝑝) = 𝑡𝑡(𝑑𝑑𝑝𝑝)𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡(𝑑𝑑𝑝𝑝)
       (2) 

Once calculated, we multiply this monotonically increasing non-dimensional function, with a 
value of one at the largest size, to the measured LD size distribution and renormalize it to eliminate 
the sampling bias present in the data. Normalization of the PDF involves dividing the number of 
samples in each bin by the logarithmic bin width which results in the integral area under the curve 
to be unity. 
 
3.4 Validation of trajectory-based correction 
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Figure 5. Comparison of cumulative distribution functions (CDF) of NIST polydisperse particles 
measured with laser diffraction (LD) compared to the corrected laser diffraction (LD w/ corr) and 
the NIST standard results with error bars indicating measurement uncertainty.  

We validate our correction algorithm by measurements of NIST standard spherical polydisperse 
beads (soda lime glass) in the 50-350 µm range, from Whitehouse Scientific, using the laser 
diffraction (LD) system [48]. The particles are collectively dropped from above the LD sampling 
volume through the laser and collected on the bottom resulting in a differential settling velocity 
based on size. The measured volumetric cumulative distribution function (CDF) shown in Figure 
5 (resulting from integration over the entire drop-time) clearly illustrates this sampling bias as an 
underestimation relative to the NIST standard, with an error of ~30 µm at 50% volume. On 
application of the trajectory-based correction, we eliminate the effect of settling velocity on the 
distribution and obtain a closer agreement to the NIST standard distribution over the entire size 
range of the measurement. With the approach validated, we will next apply the algorithm to correct 
LD measurements of the TP6515 flat fan spray generated droplets. 
 
3.5 Droplet size distribution comparison: corrected laser diffraction vs digital inline holography 

 

Figure 6. Volume-based size distributions functions for spray droplets generated by a TP6515 flat 
fan nozzle measured by digital inline holography (DIH, open symbols) and corrected laser 
diffraction (LD w/ corr, closed symbols) on a log-log plot. Comparisons between the two 
techniques are performed at (a) 74DN (position 1) and (b) 111DN (position 2) downstream of the 
nozzle along the centerline and at 111DN downstream, (c) 0.5y1/2(x) above (position 3), and (d) 
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0.5y1/2(x) below (position 4) the centerline, where DN and y1/2(x) are the nozzle diameter and half 
width of the jet at the measurement location, respectively. 

We apply the validated trajectory-based correction to the laser diffraction (LD) data and 
compare the volumetric size distributions obtained to corresponding values from digital inline 
holography (DIH) which are presented in Figures 6. The corrections result in the reduction of the 
LD distribution values across all diameters, similar to the NIST calibration; hence LD-based size 
distributions are renormalized following application of the correction factor. After correction 
application, at position 1 (Figure 7a), the discrepancy between the LD and DIH decreases for all 
sizes below ~800 µm, but an underestimation at larger sizes still persists, and the correction only 
results in a marginal drop in the geometric mean diameter difference to ~170 µm. At position 2 
(Figures 6b), the agreement between the two measurements show significant improvement 
compared to position 1, with a near perfect overlap across all sizes below the peak of the PDF. 
Interestingly, the mismatch at the larger diameters show no significant change, owing to the fact 
that the correction factor is close to unity at these sizes. The geometric mean diameter difference 
between the two techniques also drops to ~100 µm from ~130 µm measured before the correction. 
We suggest the improved performance of the correction can be linked with a decrease in 
asphericity of droplets at position 2 represented by the peak shift in the size-shape joint PDF 
(Figure 4b).  

Moving to the off-center location above the centerline at position 3 (Figure 6c), correction 
application only leads to a marginal change. In addition, apart from the loss in smaller diameter 
particles which cannot be recovered using a multiplicative correction, the under-counting at larger 
sizes also remains, leading to a geometric mean diameter difference of ~80 µm being retained. 
Finally, at position 4 the two distributions continue the trend seen at other positions. Along with 
the increased range of agreement between LD and DIH after correction, the mismatch observed 
between ~90 µm and ~250 µm is also suppressed. While correction application certainly improves 
agreement between LD and DIH-inferred size distributions, across all positions, we observe the 
correction fail to eliminate the underestimation in the droplet counts at diameters above the mode 
diameter. We suggest this is attributable to the complex morphology of droplets present at sizes 
approaching and exceeding 1 mm, as these droplets undergo three dimensional oscillations and 
rotations, as illustrated in Figure 4, which the proposed drag model does not account for precisely, 
as it only relies on a planar elliptical description of the droplets. Unfortunately, even with the 3D 
imaging capabilities of DIH, we are still unable to measure deformation perpendicular to the image 
plane, which can be obtained by employing two orthogonal DIH systems imaging the same field 
of view. We hence suggest judicious interpretation of LD measurements in the millimeter size 
range for deformable objects, such as liquid droplets. 
Table 3. Comparison of geometric mean and standard deviation for log-normal fits of the corrected 
LD and DIH size distributions 

 LD (Corrected) DIH 
Geometric mean (µm) Geometric std. Geometric mean (µm) Geometric std. 

Position 1 630.3 1.62 821.9 1.76 
Position 2 638.0 1.70 732.3 1.80 
Position 3 578.6 1.53 658.2 1.75 
Position 4 592.0 1.59 680.1 1.73 

 
3.6 Effectiveness of physics-based correction 
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Figure 7 Relative error between corrected and original laser diffraction (LD) measurements with 
respect to digital inline holography (DIH) based size distribution for TP6515 flat fan nozzle spray 
droplets at distances of 74DN and 111DN downstream of the nozzle corresponding to (a) position 
1 and (b) position 2. The corresponding values for measurements at 111DN downstream of the 
nozzle and 0.2y1/2(x) above and below the centerline corresponding to (c) position 3; and (d) 
position 4, where DN and y1/2(x) are the nozzle diameter and half width of the jet, respectively.  
 

The effectiveness of our physics-based correction is characterized by evaluating the relative 
error between the original and corrected laser diffraction (LD) size distributions compared to the 
digital inline holography (DIH) based size distribution (Figure 4). Although the average error 
varies from a maximum of ~70% at position 1 to ~10 % position 3, the values show significant 
variations with droplet size. For instance, at position 1 (Figure 4a) we see the curve monotonically 
decreasing from ~270% at the smallest size to nearly zero above ~250 μm. The trend in relative 
error continues to hold at position 2 as well, but with a reduction in the peak value to ~160% 
(Figure 4b). The absence of any observable LD signal in the first several bins in the off-axis 
positions as described earlier lead to the zero relative errors measured (Figure 4c & d).  
 
4. Summary & Conclusions  

In this study, we evaluate the performance of laser diffraction (LD) particle sizing of a spray 
from a TP6515 flat fan nozzle using a high-resolution image-based in-situ digital inline holography 
(DIH) measurement at four sampling regions. Apart from the direct calibration of DIH using a 
microruler, obviating the need for ex-situ calibration, the sampling rate used for DIH also ensures 
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droplets are imaged only once in each image. The sampling regions on the flat fan spray were 
specifically chosen to highlight limitations inherent to LD due to presence of spatial variations 
within the spray, non-spherical droplets, and size dependent droplet velocity. The measured 
distributions using both techniques are clearly monomodal and highly polydisperse. However, the 
LD measurements and inversion led to a clear overestimation of droplet relative size distribution 
in the sub millimeter size range as well as an underestimation above it. This observation is 
quantified by variations in the geometric mean diameters of LD and DIH-inferred distributions, 
which are obtained by lognormal fits to results. Spatial variations in size distributions indicate that 
as droplet migrate downstream in a spray, the decrease in size due to breakup and evaporation, 
lead to a decrease in the geometric mean diameters for distributions as reported in [33] for both 
LD and DIH. The effect of finite liquid sheet width, as discussed in [24], leads to the decrease in 
the relative concentration of smaller droplets at both off-center positions and a proportionally 
higher reduction in droplet concentration compared to the centerline measurements.  

Apart from the volumetric size distribution, DIH also enables quantification of the asphericity 
in the sample using the size-eccentricity joint PDF. The contours of the PDF at all four positions 
indicate a strong semilogarithmic scaling between diameter and eccentricity, similar to that 
observed in earlier measurements [33]. The observed scaling is due to the presence of droplet 
oscillations and rotations shown through high speed shadowgraph snapshots. Apart from a peak 
shift in the PDF towards smaller eccentricities with downstream distance, we also capture the 
broadening of the joint PDF along off-center locations. The primary cause of such a broadening is 
the presence of three dimensional oscillations due to oblique angles of trajectories to the wind 
which result in smaller relaxation time for droplets [45].  

Differences in the droplet velocity with size leads to overcounting of slow-moving smaller 
droplets relative to larger droplets, which in part explains the observed shifts in the LD 
distributions. We proposed a trajectory-based correction which helps rescale the size distributions 
using the relative size-dependent transit time for droplets crossing the laser beam. The correction 
is first validated by successfully eliminating the sampling bias observed when NIST standard 
polydisperse beads of 50–350 µm are dropped through the LD sampling window which introduces 
a size-dependent sampling bias caused by the differences in settling velocities. The uncorrected 
measured cumulative distribution shows differences of ~30 µm at 0.50 point relative to the 
calibration standard. Upon application of the correction algorithm, this difference is completely 
removed. When the correction is extended to the spray droplets, we combine the drag model 
proposed for non-spherical inertial particles by [47] with the correction for liquid droplet 
oscillations [45]. Such a combination is new to our knowledge and has not been applied previously 
to correct LD measurements. We assumed droplets to be planar ellipses with the aspect ratio 
obtained from the ridge lines of the size-eccentricity joint PDFs. While the correction does not 
fully remove discrepancies between LD and DIH measurements, agreement is certainly improved 
especially along the centerline positions, with ~270% change in values at the smallest diameters 
in position 1 between the two LD measurements compared to DIH. We believe such large relative 
errors especially at the smaller sizes need to be carefully considered, especially for laser diffraction 
measurements in agricultural spray diagnostics aiming to study drift of small diameter droplets. 
The applied correction reduces the differences between the LD and DIH distributions over 
approximately two orders of magnitude but with limited effects at sizes beyond ~1 mm. Using the 
correction algorithm trajectory calculations, we also estimate the minimum wind speed up to which 
such size dependent droplet velocity will exist and beyond which the correction factor will be unity 
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at sizes between ~40 µm and ~3500 µm at the two centerline positions examined. The estimated 
wind speed is ~15 m/s, a value that matches prior experimental reports by [21] 

One of the reasons for the failure of the correction at larger diameters might be the limited 
resolution of LD; detection of larger droplets requires extremely small angle detectors, and the 
resolution in angle leads to an upper limit of the dynamic range. In addition, the presence of 
complex three dimensional oscillations (Figure 4c) cannot be fully characterized by our DIH 
measurement, due to our inability to make accurate measurements in the direction perpendicular 
to the image plane. However, such limitations can be overcome through the use of a secondary 
DIH imaging system placed on an orthogonal plane possibly from the top or bottom of the test 
section to accurately capture such complex droplet deformations. With such measurements, more 
accurate models for the droplet motion can be developed which may result in non-monotonic 
corrections. 

Finally, we hypothesize that the error observed in the LD measurements originates from the 
previously mentioned bias toward slower moving particles. A high sample rate for laser diffraction, 
typically a fraction of a second [49], limits measurement independence by counting the slower 
moving small droplets at a greater rate than the faster moving larger droplets. The physics-based 
correction presented herein provides a method for correcting this bias for measurements of samples 
containing diameter resolved velocity gradients. 
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Supplementary Figure 1 Lognormal fit to the digital inline holography (DIH) based size 
distribution for TP6515 flat fan nozzle spray droplets at distances of 74DN and 111DN downstream 
of the nozzle corresponding to (a) position 1 and (b) position 2. The corresponding values for 
measurements at 111DN downstream of the nozzle and 0.2y1/2(x) above and below the centerline 
corresponding to (c) position 3; and (d) position 4, where DN and y1/2(x) are the nozzle diameter 
and half width of the jet, respectively.   

 



 

Supplementary Figure 2 Lognormal fit to the corrected laser diffraction (LD) based size 
distribution for TP6515 flat fan nozzle spray droplets at distances of 74DN and 111DN downstream 
of the nozzle corresponding to (a) position 1 and (b) position 2. The corresponding values for 
measurements at 111DN downstream of the nozzle and 0.2y1/2(x) above and below the centerline 
corresponding to (c) position 3; and (d) position 4, where DN and y1/2(x) are the nozzle diameter 
and half width of the jet, respectively.   

 



 

Supplementary Figure 3 Lognormal fit to the corrected laser diffraction (LD) based size 
distribution for TP6515 flat fan nozzle spray droplets at distances of 74DN and 111DN downstream 
of the nozzle corresponding to (a) position 1 and (b) position 2. The corresponding values for 
measurements at 111DN downstream of the nozzle and 0.2y1/2(x) above and below the centerline 
corresponding to (c) position 3; and (d) position 4, where DN and y1/2(x) are the nozzle diameter 
and half width of the jet, respectively.   

High speed shadowgraphy: 

To visualize the complex oscillatory motion of droplets in the spray, requires a sufficiently large 
field of view (FOV), typically two orders larger than droplet diameter, to allow us to capture 
multiple cycles of oscillation from the fast moving droplet. Such a large FOV is challenging to 
achieve using DIH for our current experiment due to limitations in space (for optics) and laser 
power, but is possible with high speed shadowgraphy instead. A high intensity arc lamp is 
positioned on the rear window of the test section (on the side with the helium neon laser in the 
DIH system) and the same high speed camera and lens combination is used to capture a field of 
view of 76.8 mm (~18DN) over 512x512 pixels (at 150 μm/pixel), recording at 25000 frames/s. 
Note that this field of view is still smaller than the displacement in the spanwise direction (~70DN). 
The sampling windows are centered at the same location as position 2, 3 and 4 i.e., 111DN 

downstream along the centerline, 0.5y1/2(x) above and below the centerline in the spanwise 
directions, where DN is the nozzle diameter and y1/2(x) is the width of the spray fan,  respectively 
(Supp. Fig. 4).   



 

 

Supplementary Figure 4 Streak images of high speed shadowgraphs after background subtraction 
recorded at 111DN downstream, (a) along the centerline (position 2), (b) 0.5y1/2(x) above (position 
3) and (c) below (position 4) the centerline where DN is the nozzle diameter and y1/2(x) is the width 
of the spray fan,  respectively. Time step between each exposure is 0.28 ms.   

Figure 4 presents the temporal evolution of three specific droplets in a Lagrangian frame of 
reference centered on each droplet, obtained by manually tracking them over their motion across 
the larger field of view of the shadowgraph. As the objective of shadowgraphy was to visualize 
the complex oscillatory motions of predominantly larger droplets, the reduction in resolution is 
still capable of fully resolving these droplets. 

 

Supplementary video 1 High speed shadowgraphy illustrating a droplet undergoing oscillatory 
motion. The time separation between frames is 40 µs with scale bar of 1 mm. 

Supplementary video 2 High speed shadowgraphy illustrating a droplet undergoing rotational 
motion. The time separation between frames is 40 µs with scale bar of 1 mm. 

Supplementary video 1 High speed shadowgraphy illustrating a droplet undergoing three 
dimensional oscillatory motion. The time separation between frames is 40 µs with scale bar of 1 
mm. 

 

 

 

 

 



Drag model for liquid droplets: 

Where dp is the droplet diameter and e(dp) is the eccentricity of the droplet from the size-shape 
joint PDF. The equations describing Cd,solid is from Bagheri & Bonnadonna [1], and applies for 
solid non-spherical inertial particles. The correction factor for the liquid droplet 𝐶!,#$%&$! is given 
by Mashayek & Ashgriz [2]. We combine both equations to obtain a model that describes the 
drag behavior for a non-spherical inertial liquid droplet as it moves through air. 
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