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Abstract. We study quantum tunneling of a composite object, which has a dipole

or quadrupole moment coupled with quantized (photon or gravitational) radiation

field, through a δ potential barrier. The dipole or quadrupole moment is represented

by an oscillator in the relative coordinate of two constituent particles of the object.

The center of mass degrees of freedom of the object is not directly coupled with the

radiation field. However, we show that, for the object with the oscillator in the excited

state, dissipation caused by the radiation field can suppress its quantum tunneling

rate in the center of mass degrees of freedom. In addition, when the initial energy

of its center of mass motion is similar to that of the excited state of the oscillator,

a spatial superposition state of the object prepared by the barrier can decohere due

to the radiation field. The main purpose of this article is to investigate how two

different interplays (i) among the center of mass, the relative coordinate degrees of

freedom and the potential barrier, and (ii) between the relative coordinate degrees of

freedom and the radiation field, can affect the quantum tunneling and the creation

of the spatial superposition state of the object. Our toy model can give insight into

tests of quantum tunneling and quantum superposition of atoms or molecules with its

dipole or quadrupole moment coupled with the radiation field.

1. Introduction

The study of quantum phenomena of composite objects has various applications in

diverse fields, such as investigations into quantum-to-classical transition [1], in the study

of effects of gravity and relativity on quantum mechanics [2, 3], in quantum chemistry

[4] and in quantum computing [5].

Recently quantum tunneling of a composite object through a δ potential barrier has

been studied in continuous space [6] and on a lattice [7]. It was found that its internal
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structure can produce phenomena such as long-lived resonances and bound states in the

continuum that can not be seen in a single particle quantum tunneling.

In this article, we investigate a quantum tunneling of a composite object by using

the model which was introduced in [6], but now the object is coupled with quantized

radiation field due to radiation emission from its dipole or quadrupole moment. It

is then observed that although dissipation and decoherence due to the radiation field

act only on one degrees of freedom (i.e., relative coordinate degrees of freedom of the

constituent particles of the object), yet have observable consequences for the other

degrees of freedom (i.e., the center of mass (c.m.) degrees of freedom of the object)

when those two degrees of freedom are correlated by, e.g., propagation through the

potential barrier. This kind of effects can be seen in many situations in physics, though

their theoretical treatments have not been well investigated. Here we see the effect

occurring in a relatively simple model.

Decoherence due to dipole or quadrupole moment radiation has been studied in

the literature [8, 9, 10] in the context of quantum field theory. In the literature, dipole

moment or quadrupole moment of a composite system consisting of a particle and device

(e.g., slit, mirror) which recombines paths of a particle was considered. In such a

situation, cutoff of radiation spectrum and decoherence rate should be largely depend

on how the device recombines those paths and one needs to find relevant parameters of

devices to estimate actual decoherence rate. On the other hand, dipole or quadrupole

moments of atoms and molecules can be found easily. This is another reason why we

study a superposition state of the composite object consisting of two particles as a toy

model of atom or molecule.

The article is organized as follows. Firstly we introduce the Lagrangian for

the composite object whose dipole moment described by an oscillator in the relative

coordinate of two constituent particles is coupled with the photon radiation field.

Then we derive the master equation for the object by tracing out the radiation field

(section 2.1). In section 2.2, we use the master equation to study its quantum tunneling

through a δ potential barrier. When the object initially has the oscillator in the first

excited state, we find that dissipation caused by the radiation emission can suppress

its quantum tunneling rate in the c.m. degrees of freedom. Furthermore, when the

initial energy of the c.m. motion is similar to that of the excited states of the oscillator,

a spatial superposition state of the object created by the barrier (i.e., being reflected

or transmitted by the barrier in the c.m. degrees of freedom) can decohere by the

radiation emission (section 2.3). The c.m. degrees of freedom of the object is not

directly entangled with the radiation field. However the decoherence in the degrees of

freedom can happen due to the fact that the interaction with the potential barrier can

cause the entanglement between the c.m. and the relative coordinate degrees of freedom

which is entangled with the radiation field. Therefore, the main purpose of our study

is to investigate how two different interplays (i) among the c.m., the relative coordinate

degrees of freedom and the potential barrier, and (ii) between the relative coordinate

degrees of freedom and the radiation field, can affect the quantum tunneling rate and
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creation of the spatial superposition state of the composite object by the barrier.

This article deals largely with the photon radiation field. However, since the studies

of gravitational decoherence have attracted increasing interest recently [11, 12, 13, 14, 15]

and electromagnetism and linearized gravity can be treated similarly, we provide section

3.1 which addresses the case where the quadrupole moment of the object is coupled with

the quantized gravitational radiation field by emission of gravitational waves. Finally

we briefly discuss the case where one introduces the Lorenz gauge and the false loss

of coherence observed in the gauge, and the problem of quantum gravity which arises

when the field is replaced by gravity in section 3.2.

Units are chosen throughout such that c = ~ = 1.

2. Composite object coupled with the quantized photon field

In this section, we derive the master equation for the composite object whose dipole

moment is coupled with the photon radiation field. The c.m. degrees of freedom of

the object is not directly coupled to the radiation field, while it gets entangled with the

relative coordinate degrees of freedom of its constituent particles by propagation through

the barrier. Using the master equation, we find that dissipation and decoherence caused

by the radiation field affect the quantum behavior of the object in the c.m. degrees of

freedom.

2.1. The master equation

We derive the master equation for the composite object coupled with the photon

radiation field using the path integrals formalism. We consider the Lagrangian for

the object which consists of two particles interacting with each other by a harmonic

potential:

L0 =
1

2
MẊ2 +

1

2
µẋ2 − 1

2
µω2x2 (1)

where X is the position of c.m. for two particles at x1 and x2, x is the relative distance

between them, M is the sum of two masses M = m1 +m2 and µ is the reduced mass.

The dipole moment of the object is represented by an oscillator in the relative

coordinate x of the two constituent particles, and ω is the natural frequency of the

oscillator. In this article, the two particles bounded by the harmonic potential is a toy

model for “the composite object” and its position is given by the c.m. position X. We

study its quantum tunneling through the barrier V (x,X) while its dipole moment is

coupled with the quantized radiation field by emitting radiation.

Firstly we derive the influence functional for coupling to the photon radiation field.

Here we work in the Coulomb gauge, ∇ · A = 0 . We express the vector potential

A(r, t) and the current density j(r, t) in terms of the Fourier transform of the dynamical

variables

A(r, t) =
∑
k

ak(t)eik·r, j(r, t) =
∑
k

jk(t)eik·r. (2)
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Assuming two particles have the opposite charges q and −q, the action for the

object coupled to the radiation field can be written as [16]

S = SV + Sint + Srad (3)

where

SV =

∫
(L0 − V (x,X))dt,

Sint =

∫ ∫
d3rdtj(r, t) ·A(r, t) = q

∫ ∑
k,λ=1,2

ẋλaλ,ke
ik·xO(t)dt,

Srad = − 1

4

∫
d4rF µνFµν =

1

2

∫ ∑
k,λ=1,2

(ȧ∗λ,kȧλ,k − k2a∗λ,kaλ,k)dt. (4)

Here we used the fact that the current density of two charges j(r, t) = qẋ1δ(r −
x1(t)) − qẋ2δ(r − x2(t)) can be approximated as an oscillating dipole with origin at

the center of the charge distribution xO, j(r, t) = χ̇δ(r− xO(t)) and the corresponding

jk(t) = χ̇e−ik·xO(t) where χ(t) = qx(t) if we keep only the lowest-order term in a

Taylor series with xO [17]. λ = 1, 2 represents polarizations and a1,k and a2,k are

the components of ak in two directions perpendicular to k. Similarly x1 and x2 are

the components of x in the direction transverse to k. For each λ, we have Maxwell’s

equations, äλ,k + k2aλ,k = jλ,k [16].

Now the reduced density matrix ρ(X,X′,x,x′, t) for the object can be given by

tracing out the photon radiation field [18],

ρ(X,X′,x,x′, t) =

∫
dX0dX

′
0dx0dx

′
0

∫ ∫ ∫ ∫
DXDX′DxDx′F(j, j′)

× eiSV (X,x)−iSV (X′,x′)ρ(X0,X
′
0,x0,x

′
0, 0) (5)

where j and j′ represent current associated with x and x′ respectively. Since Srad + Sint

gives the action for the forced harmonic oscillator, we can derive the influence functional

F(j, j′) by assuming that the initial wavefunctional for the photon radiation field is in

the ground state:

F(j, j′) = exp iΘphoton

= exp

[
iq2
∑
k

∫ t

0

∫ s

0

dsds′(ẋi(s)e
ik·xO(s) − ẋ′i(s)eik·x

′
O(s))γij(s, s′)

×(ẋj(s
′)e−ik·xO(s′) + ẋ′j(s

′)e−ik·x
′
O(s′))

−q2
∑
k

∫ t

0

∫ s

0

dsds′(ẋi(s)e
ik·xO(s) − ẋ′i(s)eik·x

′
O(s))ηij(s, s′)

×(ẋj(s
′)e−ik·xO(s′) − ẋ′j(s′)e−ik·x

′
O(s′))

]
(6)

where the correlation functions are given by summing over photon polarizations,

γij(s, s′) = δij
1

2k
sin k(s− s′), ηij(s, s′) = δij

1

2k
cos k(s− s′) (7)

with i, j = 1, 2 associated to two directions transverse to k.
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We now derive the master equation. The relative coordinate degrees of freedom x of

the object follows an equation of motion for a harmonic oscillator L0 (1). For simplicity,

we assume that the object moves in a one-dimensional space. Ignoring damping of the

motion in the relative coordinate due to radiation, the classical path xc(s) with the

boundary condition x(0) = x0, x(t) = x can be written as

xc(s) = x0
sinω(t− s)

sinωt
+ x

sinωs

sinωt
. (8)

We substitute (8) into (6) to obtain

Re(Θphoton) ≈ q2ω

4π2

∫ t

0

(ẋ(s)2 − ẋ′(s)2)ds

+
q2ω2

8π

∫ t

0

(ẋ(s)− ẋ′(s))(x(s) + x′(s))ds,

Im(Θphoton) ≈ q2ω2

8π2

∫ t

0

(ẋ(s)− ẋ′(s))(x(s)− x′(s))ds

≈ q2ω2

16π2
(x(t)− x′(t))2 (9)

where it was estimated that a natural upper cutoff for the frequency spectrum of the

emitted radiation is the natural frequency ω of the oscillator and ωt � 1. We also

introduced the electric dipole approximation where e−ik·xO(s′) etc. can be approximated

by unity.

Then the density matrix for the object ρ(X,X ′, x, x′, t) at time t is given by

ρ(X,X ′, x, x′, t)

=

∫ ∫
dX0dX

′
0dx0dx

′
0W (X,X ′, x, x′, t;X0, X

′
0, x0, x

′
0, 0)

× ρ(X0, X
′
0, x0, x

′
0, 0) (10)

where the reduced density matrix propagator is

W (X,X ′, x, x′, t;X0, X
′
0, x0, x

′
0, 0)

=

∫ ∫ ∫ ∫
DXDX ′DxDx′ exp i

(
SV [x,X]− SV [x′, X ′]

+
q2ω

4π2

∫ t

0

(ẋ(s)2 − ẋ′(s)2)ds

+
q2ω2

8π

∫ t

0

(ẋ(s)− ẋ′(s))(x(s) + x′(s))ds

)
× exp

(
−q

2ω2

8π2

∫ t

0

(ẋ(s)− ẋ′(s))(x(s)− x′(s))ds
)

(11)

and

SV [x,X] =

∫ t

0

(
M

2
Ẋ(s)2 +

µ

2
ẋ(s)2 − V̂ ′(x,X)

)
ds.

(12)

Here we rewrote the potential term V ′(x,X) = 1
2
µω2x2 + V (x,X).
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Figure 1. The probability distribution ρ(X,X, x, x, t′) of the composite object after

tunneling through the barrier. m1 = m2 = 1, ωt′ = 11 × 109, (P 2
0 /2M)/V1 =

(P 2
0 /2M)/V2 = 1.2 and σ/xa,0 = 6.6. (a) The oscillator in the relative coordinate

is initially in the ground state (without dissipation). (b) The oscillator in the relative

coordinate is initially in the first excited state (without dissipation). (c) The oscillator

in the relative coordinate is initially in the first excited state (with dissipation).

Differentiating both sides of (10) with respect to t, we obtain the master equation

[19]:

∂ρ(X,X ′, x, x′, t)

∂t
≈
[
i

2M

(
∂2

∂X2
− ∂2

∂X ′2

)
+

i

2µ+ q2ω/π2

(
∂2

∂x2
− ∂2

∂x′2

)
−i(V ′(x,X)− V ′(x′, X ′)) +

q2ω2

8πµ+ 4q2ω/π
(x+ x′)

(
∂

∂x
+

∂

∂x′

)
− q2ω2

8π2µ+ 4q2ω
(x− x′)

(
−i ∂
∂x
− i ∂

∂x′

)]
ρ(X,X ′, x, x′, t).

(13)

We use the above master equation in the following sections.

2.2. Quantum tunneling and dissipation

Spontaneous emission from two-level atoms tunneling through a square potential and

a double-well potential has been studied in the literature [20, 21]. In some cases,

dissipation can enhance quantum tunneling effects due to increase of kinetic energy

[20] or mixing of excited states with ground states caused by coupling with environment

[22]. However it is known that dissipation generally suppresses quantum tunneling

effects [23]. Here we study a quantum tunnelling of the composite object through a

δ potential barrier, V (x,X) = V1δ(x1) + V2δ(x2) = V1δ(X + m2

M
x) + V2δ(X − m1

M
x),

while its dipole moment radiates photons. We assume m1 = m2 = 1, V1 = V2 and

q is equal to an elementary charge e. For simplicity, we introduce rescaling of the

coordinate X → 2X = x1 + x2, while x = x1 − x2. The two constituent particles of

the composite object move only in one dimension and the line joining them lies along

the dimension perpendicular to the plane of the barrier oriented along the other two

dimensions in three-dimensional space. We start with the initial wave packet of the
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form Ψ0(X, x) = f(X)φn(x) at t = 0:

f(X) =

(
2

πσ2

)1/4

exp

(
iP0X −

(X −XO)2

σ2

)
,

φn(x) =
1√
2nn!

(µω
π

)1/4
e−µωx

2/2Hn(
√
µωx) (14)

where P0 is the initial c.m. momentum, and σ is the width of the initial wave packet

with its center being XO.

Here XO = −10 so that it tunnels through the barrier located around X ∼ 0

from the left. We choose the ratio of kinetic energy of the c.m. motion divided

by the strength of the potential barrier (P 2
0 /2M)/V1 = (P 2

0 /2M)/V2 = 1.2, and

σ/xa,0 = 6.6 where xa,n is the oscillator amplitude given by xa,n =
√

2En/µω2 with

En = (n + 1/2)ω. We let the kinetic energy of the c.m. motion is much less than the

energy of the first excited state of the oscillator in the relative coordinate, 3ω/2

P 2
0 /2M

= 23.

We define the transmission probability T =
∫∞
X>0

dX
∫∞
−∞ dxρ(X,X, x, x, t′) and the

reflection+resonance probability R =
∫ X≤0
−∞ dX

∫∞
−∞ dxρ(X,X, x, x, t′) where t = t′ = 3

is the time when we stop the time evolution of the wave packet after it has been well-

separated into the transmitted, resonance and reflected parts by the interaction with

the barrier. Note that resonances at the barrier found in [6] are also observed and

their contributions are included in the reflection+resonance probability R here instead

of waiting for their complete decay after a long time evolution to reduce numerical

evaluations.

When the object is not coupled with the radiation field, it is found that T/R ≈ 1.0

(i.e., half of the wave packet is transmitted and half of it is reflected) if its oscillator is

initially in the ground state (Fugure 1 (a)), while T/R ≈ 2.2 if the oscillator is initially

in the first excited state (Figure 1 (b)). Here ωt′ = 11× 109 is chosen. This shows that

the transmission probability of the object with the excited oscillator is around twice

larger than that of the object whose oscillator is initially in the ground state. It is

because the wave packet is populated around x = 0 when the oscillator is in the ground

state and it feels V = (V1 + V2)δ(X) which is generally a higher potential barrier than

that at x 6= 0. This occurs when the barrier width is narrower than the width of the

ground state wave-function of the oscillator. Because the barrier here is a delta function

of infinitesimal width, it always occurs in this model.

Now we consider a situation where the object is coupled with the radiation field.

If there exist ambient photons, its quantum tunneling can be enhanced or assisted

since interactions with them can excite the oscillator. However if we have more photon

emissions from the oscillator, then generally dissipation caused by the process makes the

excited states of the oscillator decay into the ground state and suppresses the quantum

tunneling rate. Figure 1 (c) shows the quantum tunneling of the object coupled with the

radiation field following the master equation (13) with the same initial wave packet as

that of Figure 1 (b). We see that the first excited state of the oscillator decays into the

ground state and the tunnelling rate is suppressed as T/R ≈ 1.7. In Figure 2, T/R with
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Figure 2. T/R with different ωt′ where the oscillator is prepared initially in the first

excited state according to the master equation (13). t′ is fixed, and ω is increased.

different ωt′ is plotted by changing ω without changing t′ = 3 where the oscillator of the

object is prepared initially in the first excited state. The plot is obtained from the time

evolution of the wave packet according to the master equation (13). Without dissipation

due to the radiation field, it is observed that T/R changes only slightly with ωt′. Note

that T/R decreases even without dissipation since xa,1 becomes smaller as ω increases

and the wave packet becomes more populated around x = 0. However with dissipation,

we see that the tunneling rate gets more suppressed as ωt′ increases. This indicates that

the probability of the oscillator having decayed into the ground state increases with ωt′.

Then the tunneling rate in the c.m. degree of freedom becomes suppressed since the

wave packet sees a high potential barrier when its oscillator is in the ground state.

2.3. Decoherence

In addition to the dissipation effects discussed in the previous section, we also observe

decoherence effects. The effects can be observed when the oscillator is prepared in

a superposition state. As an example of preparation of such state, let us consider

the initial wave packet of the composite object of the form (14) whose oscillator is

initially in the ground state and let it tunnels through the δ potential barrier as before.

Similarly to the previous section, if we choose m1 = m2 = 1, ωt′ = 9 × 107 where

t′ = 0.03, (P 2
0 /2M)/V1 = (P 2

0 /2M)/V2 = 1.2, σ/xa,0 = 2, half of the wave packet

is transmitted and half of it is reflected by the barrier. In the previous section, we

had the energy of the c.m. motion was much less than the energy of the excited

oscillator. Here we let the energy of the c.m. motion is the same as the energy

of the forth excited state of the oscillator, 9ω/2

P 2
0 /2M

= 1. Then the energy transfer

from the c.m. motion to the oscillator occurs when the wave packet is reflected

by the barrier, and the oscillator gets excited partially in the reflected part, while

it is still in the ground state in the transmitted part as shown in Figure 3 (a).

In Figure 3 (b), we plot pn,T =
∫∞
X>0

dX
∫
dx
∫
dx′φ∗n(x)ρ(X,X, x, x′, t′)φn(x′) and

pn,R =
∫ X<0

−∞ dX
∫
dx
∫
dx′φ∗n(x)ρ(X,X, x, x′, t′)φn(x′) which are the probabilities to find
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Figure 3. (a) The probability distribution ρ(X,X, x, x, t′) after tunneling through the

barrier where the oscillator was initially prepared in the ground state. The oscillator

of the reflected part gets excited partially. (b) Probabilities to find the oscillator states

φn in the transmitted and in the reflected part. State number n = 0 corresponds to

the ground state, and n = 1 is for the first excited state etc.

the oscillator in the state φn in the transmitted and in the reflected part respectively.

Due to the symmetry of the barrier, the antisymmetric states are not occupied in the

reflected part as discussed in [6].

In Figure 3 (a), it can be seen that the transmitted part has the probability

distribution populated around x = 0 (i.e., the oscillator is in the ground state) with

ρ(X = 12, X ′ = 12, x = 0, x′ = 0, t′) ≈ 0.04 while ρ(X = 12, X ′ = 12, x =

±2, x′ = ±2, t′) ≈ 0. On the other hand, the reflected part has the probability

distribution populated more around x 6= 0 (i.e., the oscillator is partially in the

excited states) with ρ(X = −12, X ′ = −12, x = ±2, x′ = ±2, t′) ≈ 0.02 while

ρ(X = −12, X ′ = −12, x = 0, x′ = 0, t′) ≈ 0.008. Here we have xa,0 ≈ 1, while

xa,2 is slightly larger than 2 in the figure.

However, if we trace out the radiation field entangled with the oscillator, as was

done in the master equation (13), then the superposition state gets suppressed. For

example, ρ(X = 12, X ′ = −12, x = 0, x′ = ±2, t′) represents the superposition state of

the object being transmitted by the barrier (and arriving at X = 12) whose oscillator is

in the ground state and that being reflected by the barrier (and arriving at X = −12)

whose oscillator is excited.

Since the evolution of the c.m. degrees of freedom and that of the relative coordinate

degrees of freedom decouple from each other when the wave packet is far away from the

barrier, we freeze the wave packet evolution in the c.m. degrees of freedom at t = t′

by removing the first term i
2M

(
∂2

∂X2 − ∂2

∂X′2

)
of the right hand side of (13) to simplify

the numerical evaluation. Therefore the peak of the transmitted part and that of the

reflected part stay at X = 12 and X = −12 respectively in the discussion below.

According to the master equation (13) without the first term involving the evolution
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Figure 4. Cdec with different ωt′′ obtained using the method in (15).

of the c.m. degrees of freedom, we obtain

Cdec =
|ρ(X = 12, X ′ = −12, x = 0, x′ = ±2, t′ + t′′)|
|ρ(X = 12, X ′ = −12, x = 0, x′ = ±2, t′)|

≈ 0.8 (15)

when ωt′′ = 3 × 109 (i.e., t′/t′′ = 0.03). Here t′′ = 1 is the time measured from the

moment t = t′.

Then (15) shows that the superposition state of the composite object mentioned

above is suppressed ∼ 20% after time t′′.

Note that here we have the relatively simple entanglement between the c.m.

and the relative coordinate degrees of freedom in our example, i.e., the wave-

function of the composite object after the tunneling ≈ 1√
2
|c.m. transmitted〉|φ0〉 +

1√
2
|c.m. reflected〉( 1√

3
|φ0〉+ 1√

3
|φ2〉+ 1√

3
|φ4〉). Then the terms in its density matrix such as

1
2
√
3
|c.m. transmitted〉|φ0〉〈c.m. reflected|〈φ2| or 1

2
√
3
|c.m. transmitted〉|φ0〉〈c.m. reflected|〈φ4|

can be considered to represent the superposition state of the object. However if the

transmitted part also happens to have the oscillator in the excited states, then the no-

tion of the entanglement among the c.m., the relative coordinate degrees of freedom and

the radiation field, and the discussion of the superposition state of the object and its

decoherence can become more complicated.

Figure 4 shows the dependence of Cdec on ωt′′ obtained by changing ω without

changing t′′ by using the master equation (13) without the first term involving the c.m.

degrees of freedom as discussed above. Apart from ω, we chose same initial conditions

and parameters used in the example (15). The energy of the excited oscillator and the

oscillator amplitude xa,n depend on ω. Therefore the probabilities to find the oscillator

state φn in the transmitted and in the reflected part can become slightly different from

Figure 3 (b) as we change ω in Figure 4. However Cdec purely measures the decay of

the superposition state after time t′′. As it is expected, the decoherence rate increases

as ωt′′ gets larger.

In this section, we found that the interaction with the barrier can make the c.m. and

the relative coordinate degrees of freedom get entangled with each other when the initial

energy of the c.m. motion is similar to that of the excited states of the oscillator. As a
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Figure 5. The time evolution of the entanglement entropy S between the c.m. and

relative coordinate degrees of freedom during the tunnelling process. (a) is for the

tunnelling process in the Figure 3 (a), the object starts to tunnel the barrier around

t = 0.01. (b) is for the tunnelling process in the Figure 1 (a), the object starts to

tunnel the barrier around t = 1.

result, the spatial superposition state of the object gets suppressed when the radiation

field is traced out even if the c.m. degrees of freedom is not directly entangled with

it. On the other hand, one can avoid this decoherence effect by choosing the conditions

used for Figure 1 (a). In the previous section, the initial energy of the c.m. motion

was much smaller than that of the excited states of the oscillator. In Figure 1 (a),

the energy transferred from the c.m. motion to the oscillator during the interaction

with the barrier was not enough to excite the oscillators in the reflected part, and both

the reflected and transmitted parts had the same oscillator states that remained in the

ground state. One can look at the time evolution of the entanglement entropy which

measures the entanglement between c.m. and relative coordinate degrees of freedom,

S = −tr[ρc.m. log2 ρc.m.] where ρc.m. =
∫∞
−∞ ρ(X,X ′, x, x, t)dx (Figure 5). During the

tunnelling process of Figure 3 (a), the entanglement entropy increases rapidly and it

remains increased after the object tunnels through the barrier (Figure 5 (a)). Contrarily,

although the entropy changes slightly during the tunnelling process, it remains almost

zero in Figure 1 (a) (Figure 5 (b)). In such a situation, the decoherence effect discussed

in this section can not be observed.

3. The case for gravity

3.1. Composite object coupled with the quantized gravitational field

In the previous sections, we dealt with the photon radiation field. Because of similarity

between linearized gravity and electromagnetism, it is also possible to deal with the

gravitational radiation field using the methods presented in the previous sections.

Quantization of gravity by analogy with the quantization of the electromagnetic

field and the development of the path integral formalism in a curved space have been

long investigated in the literature [24]. Recently the studies of gravitational decoherence
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have attracted interest [2, 3, 11, 12, 13, 14, 15]. However, in many theoretical studies,

object concerned and its trajectories derived from its Hamiltonian are often not specified

in detail. On the other hand, decoherence, even though driven by interaction with an

environment, can depend on the details of the object concerned and its time evolution.

Here we derive the master equation of the composite object introduced in this article,

which is now coupled with the quantized gravitational radiation field by its energy-

momentum tensor (i.e., quadrupole moment) in the weak gravity regime. The master

equation can be derived by the similar method employed for the photon radiation field.

However here we need to introduce the strong assumptions that an observer is external,

is in the source-free region, and the energy-momentum tensor of the object and the

gravitational radiation field generated by it can be quantized. Then we show that

the spatial superposition state of the object prepared as in Figure 3 can decohere if

“quantized” gravitational waves can be traced out.

Let us consider the situation where two constituent particles of the composite object

do not have charges, however they are still coupled to the gravitational radiation field

hij by their energy-momentum tensor T ij. It is generally assumed that an observer in

quantum mechanics is always external and is located in the source-free region. With this

assumption, the transverse-traceless gauge, i.e., h0µ = hij,i = hi i = 0, can be introduced.

Then Sint and Srad in (4) are replaced by

Sint =

∫
d4rhij(r, t)T

ij(r, t),

Srad =
1

4πG

∫
d4rhµν,αh

µν,α =
1

4πG

∫
d4r(∂thij∂

thij − hij,khij,k) (16)

in the weak gravity regime [25]. Here Latin indices represent spatial dimensions, i.e.,

i, j, k = 1, 2, 3 and Greek indices represent spacetime dimensions, i.e., µ, ν, α, β =

0, 1, 2, 3.

As in the case of the photon radiation field, we introduce the Fourier expansion so

that the transverse-traceless parts hij of the gravitational field and T ij can be written

as

hij(r, t) =
∑

k,λ=1,2

h
(λ)
kije

ik·r, T ij(r, t) =
∑
k

T ij(k, t)eik·r (17)

where h
(λ)
kij = ε

(λ)
ij s

(λ)
k (t) with the transverse-traceless polarization tensors ε

(λ)
ij .

The influence functional for coupling to the gravitational radiation field can be

obtained similarly to the case of the photon radiation field [10, 26, 27]:

F(T ij, T ′ij) = exp iΘgrav

= exp

[
i
∑
k

∫ t

0

∫ s

0

dsds′(T ij(k, s)− T ′ij(k, s))γ(s,s
′)

ij,kl

×(T ∗kl(k, s′) + T ′∗kl(k, s′))

−
∑
k

∫ t

0

∫ s

0

dsds′(T ij(k, s)− T ′ij(k, s))η(s,s
′)

ij,kl
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×(T ∗kl(k, s′)− T ′∗kl(k, s′))
]

(18)

with the correlation functions

γ
(s,s′)
ij,kl = 2πG

Πij,kl

k
sin k(s− s′), η

(s,s′)
ij,kl = 2πG

Πij,kl

k
cos k(s− s′) (19)

where the sum over polarizations of two on-shell graviton states gives the polarization

tensor
2∑
λ

ελij(k)ε∗λkl (k) = Πij,kl =
1

2
(δikδjl + δilδjk − δijδkl).

Here T ij and T ′ij are associated with x and x′ respectively. If we introduce the

energy-momentum tensor,

T ij(k, s) = µẋi(s)ẋj(s)eik·x(s) (20)

where the relative coordinate degrees of freedom x obeys an equation of motion for a

harmonic oscillator (8) as before, then we can write

Re(Θgrav) ≈ Gµ2ω

2π

∫ t

0

ds(ẋ(s)4 − ẋ′(s)4)

+
Gµ2ω2

2

∫ t

0

ds(ẋ(s)2 − ẋ′(s)2)(ẋ(s)x(s) + ẋ′(s)x′(s)),

Im(Θgrav)

≈ 3Gµ2ω5t

16π
(x2 − x′2)2

+
Gµ2ω2

4π

∫ t

0

ds(ẋ(s)2 − ẋ′(s)2)(x(s)ẋ(s)− x′(s)ẋ′(s)) (21)

and the master equation can be obtained as

∂ρ(X,X ′, x, x′, t)

∂t
≈
[
i

2M

(
∂2

∂X2
− ∂2

∂X ′2

)
+

i

2µ

(
∂2

∂x2
− ∂2

∂x′2

)
−i(V ′(x,X)− V ′(x′, X ′))− 3Gωi

2µ2π

(
∂2

∂x2
− ∂2

∂x′2

)(
∂2

∂x2
+

∂2

∂x′2

)
+
Gω2

µ

(
x
∂

∂x
− x′ ∂

∂x′

)(
∂2

∂x2
− ∂2

∂x′2

)
− 3Gµ2ω5

16π
(x2 − x′2)2

−Gω
2i

4µπ

(
x
∂

∂x
+ x′

∂

∂x′

)(
∂2

∂x2
− ∂2

∂x′2

)]
ρ(X,X ′, x, x′, t) (22)

where V ′(x,X) = 1
2
µω2x2 + V (x,X) and V (x,X) is the potential barrier as before.

The effects of dissipation and decoherence caused by tracing out the gravitational

radiation field here are similar to those given by the photon radiation field discussed in

the previous sections. Emission of gravitational waves causes the decay of the quantum

tunneling rate when the relative coordinate degrees of freedom of the object is initially

prepared in the excited state. Decoherence of the spatial superposition state of the

object occurs if the relative coordinate degrees of freedom gets entangled with c.m.

degrees of freedom by propagation through the barrier. However the decay rates are

much smaller than those of the photon counterpart by a factor of Gµ2/q2 and therefore

unobservable on the time scales used in the previous sections.
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Nevertheless, the simple model discussed here can provide the spatial superposition

state of the c.m. degrees of freedom which is entangled with the quadrupole moment

represented by the oscillator in the relative coordinate of its constituent particles, and

therefore has a possibility to exhibit decoherence due to gravitational waves if they can

be quantized.

3.2. Lorenz gauge and false loss of coherence

So far we used the Coulomb gauge or the transverse-traceless gauge assuming that the

observer is in the source-free region. Of course one can also use the Lorenz gauge.

In the Lorenz gauge, in addition to the contribution of the radiation field (i.e., real

photons or gravitons), one may also write the contributions of virtual particles, i.e., the

self-interaction terms. Unlike real particles, those virtual particles do not decohere the

superposition of the excited states and the ground state of composite objects, rather

they can cause false loss of coherence due to their inability to detach themselves from

the object concerned that generates them [28]. As an example, it was discussed in [28]

that the spatial superposition state of an electron with its attached static Coulomb field

can decohere due to differences of the states of the field associated with two different

positions of the electron, however if these two positions are made come together by

the force field, it can be seen that coherence can be restored and therefore decoherence

caused by the static Coulomb field at the intermediate times is not real. This happens

because the static field mediated by virtual particles can not detach themselves from

the object concerned (i.e., electron), and can not carry away the information.

Similar processes that restore coherence can also occur even when real particles are

traced out if they are controlled in a particular manner. For example, let us consider

an electron which is in a spatial superposition state of being at x1 = d > 0 or x1 = −d
whose wave-function is written as

ψ(x1) =
1√
2

1

(2πσ2)1/4

(
e−

1
4σ2

(x1−d)2 + e−
1

4σ2
(x1+d)2

)
(23)

where the width σ of the Gaussian distribution is smaller than d so that two Gaussians

have essentially no overlap. Here we choose d/σ = 5.

Instead of the situation discussed above where we only had the electron and the

Coulomb field generated by it, we now add a second electron that interacts with the

first one through the Coulomb field. Then the Hamiltonian can be written as

Ĥ =
p̂21
2m

+
p̂22
2m

+
q2

4πε0|x̂1 − x̂2|
. (24)

We place the second electron at the origin x2 = 0 so that its wave-function can be

written as

φ(x2) =
1

(2πσ2)1/4
e−

1
4σ2

x22 . (25)

If we start with the initial wave-function which is in the pure state, ψ(x1)φ(x2), the

time evolution by the Hamiltonian (24) makes two electrons get entangled with each
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Figure 6. (a) The time evolution of the entanglement entropy which measures the

entanglement between x1 and x2 given by Ĥ and Ĥ ′ respectively. (b) Interference

pattern produced by the reduced density matrix in x1. The time evolution of the

density matrix is given by Ĥ (left) and Ĥ ′ (right) respectively.

other since if the second electron is repelled in the negative direction, we know that

the first one is at x1 = d, while it is at x1 = −d if the second one is repelled in the

positive direction. As a result, tracing out the position x2 of the second electron causes

the spatial superposition state (23) of the first electron to decohere. Indeed, it can be

seen that the entanglement entropy that measures the entanglement between x1 and

x2 increases with time when the whole system evolves according to Ĥ (Figure 6 (a))

and the interference pattern produced by the reduced density matrix in x1 (obtained by

tracing out x2) when two Gaussians of (23) overlap and interfere with each other after

the time evolution, is largely suppressed (Figure 6 (b, left)).

Now we attach the second electron to a spring:

Ĥ ′ = Ĥ +
1

2
cx22 (26)

so that the spring tries to pull it back toward the origin after some time. Then the second

electron becomes bounded in a limited region and one is able to restore coherence. In

Figure 6 (a), it can be seen that the entropy increases initially, but the spring tries to

pull the second electron back when it gets far away from the origin and the entropy

decreases again if the system evolves according to Ĥ ′ and the clear interference pattern

(Figure 6 (b, right)) can be observed. In the figures, cσ
q2/(4πε0σ2)

= 1/200 is chosen.

This type of behavior, which is often called a recurrence phenomenon, can be seen

when the system is bounded in a limited region of space [29, 30]. For example, if we

have real photons that are emitted and travel off to infinity so that they can not come

back into the system, then the information is carried away by them and coherence can
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not be restored. On the other hand, if we put mirrors that bounce the photons back

into the system, then the information and coherence can be restored.

False loss of coherence [28] caused by tracing out virtual particles and soft particles

that are tied to the system is the extreme case where the information can not even be

detached from the system by those particles traced out. Therefore, the Coulomb gauge

and the transverse-traceless gauge are generally useful when one is only interested in

the far field radiation problems and real loss of coherence.

The discussions above would be valid even if photons are replaced by gravitons, as

long as one introduces the strong assumptions as we have done in section 3.1. However,

in general relativity, the observer is normally considered as internal, and is affected by

spacetime structure made by the system concerned and himself and his backreaction on

it etc. Furthermore, matter causes the flow of time to vary. It was then suggested in

[11, 12] that the superposition of matter causes the superposition of time which may lead

to gravitational decoherence as the quantum gravity effect. It is still an open problem

how the quantum mechanics of an internal observer [31, 32] or quantum reference frame

[33, 34] can be related to those studies of gravitational decoherence, and the relations

between observables of the internal observer and those of external observer or those

evaluated by one coordinate/gauge fixing and by the other coordinate fixings [14] are

still unclear. Those questions are beyond the scope of section 3.1, and we performed all

calculations of section 3.1 with the assumption that the observer is external and is in

the source-free region in flat spacetime.

4. Conclusion

Unlike a single point particle coupled to the environment, a composite object coupled

to the environment can exhibit complicated quantum behavior. It is often the case

that the environment acts only on one degrees of freedom of the object, while it has

observable consequences for the other degrees of freedom of it, since these degrees of

freedom of the object can be entangled or correlated with each other. As a relatively

simple example, we studied quantum tunneling of a composite object, whose dipole or

quadrupole moment is coupled to the photon or gravitational radiation field, through a

δ potential barrier.

Many studies have been done on dissipation and decoherence effects in quantum

mechanics of a single particle coupled to the environment. Meanwhile, when one studies

decoherence caused by dipole and quadrupole moment radiation, normally decoherence

acts on superposition states involving two or more particles consisting the corresponding

dipole and quadrupole moment. In [8, 9, 10], dipole moment or quadrupole moment

of the composite system consisting of a particle and device of superposition experiment

(e.g., slit, mirror) was considered. In such a situation, not only a particle, but the device

is also considered to be in the superposition state, i.e., |particle passing through left

slit>|left slit kicks the particle to the right> +|particle passing through right slit>|right

slit kicks the particle to the left> where the kick gives the momentum transfer from
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the device (slit) to the particle so that superposed paths get recombined. In this

way, superposition of dipole moment or quadrupole moment of the composite system

(particle+device) was introduced in [8, 9, 10]. However, in a realistic situation, it

may be easier to access parameters involving superposition states of atom or molecule

with its dipole or quadrupole moment. This is another reason why we attempted to

study quantum mechanics of composite object (instead of a single particle) coupled

with quantized radiation field in this article.

Firstly, it was observed that although the c.m. degrees of freedom of the object does

not directly interact with the radiation field, dissipation caused by it can decrease the

quantum tunneling rate of the object in the c.m. degrees of freedom. This phenomenon

can be seen when the initial state of the oscillator in the relative coordinate is prepared

in the excited state. It is because the state can decay into the ground state due to the

photon emissions, and the object with its oscillator being in the ground state sees the

high potential barrier.

Secondly, we have seen that the spatial superposition state of the object created

by the tunnelling process can decohere by the coupling between its relative coordinate

degrees of freedom and the radiation field. We found that the propagation of the object

through the barrier can make its c.m. and its relative coordinate degrees of freedom

entangled with each other when the initial energy of the c.m. motion is similar to

that of the excited states of the oscillator. Consequently, tracing out the radiation

field results in suppression of the spatial superposition state of the object in the c.m.

degrees of freedom. On the other hand, this fact demonstrates that one is able to

avoid such decoherence by preventing the creation of the entanglement between the

c.m and the relative coordinate degrees of freedom while the object interacts with the

barrier, e.g., by decreasing the energy transfer between the two degrees of freedom.

Note that, in this article, we had the relatively simple entangled state created which

is similar to the GHZ state, ≈ |c.m. transmit〉|rel ground state〉|no photon emission〉+

|c.m. reflected〉|rel excited states〉|photon emissions〉 + · · · up to normalization. With

more complicated entangled states, the notion of the superposition state and

decoherence can become more involved.

The work shows that the study of quantum behavior of a composite object coupled

to the external environment requires careful handling of different types of interplays,

(i) among the c.m, the relative coordinate degrees of freedom and the potential barrier,

and (ii) between the relative coordinate degrees of freedom and the radiation field (i.e.,

environment), and it can provide rich complex phenomena which can not be seen in

quantum physics of a single point particle coupled to the environment.

Finally, due to the increasing interest in gravitational decoherence, we discussed

the situation in which the photon field is replaced by gravity. Since linearized gravity

is similar to electromagnetism, it is possible to derive the master equation in a similar

way to that for photons, but with the strong assumptions that that observer is external,

is in the source-free region, and the energy-momentum tensor of the object and the

gravitational radiation field generated by it can be quantized. We concluded that our
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simple model can be used to exhibit the decoherence due to gravitational waves if they

can be quantized since it provides the spatial superposition state of the object which is

entangled with the superposed quadrupole moment.
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