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Abstract

Recent advances in cooling, control, and measurement of mechanical systems in the
quantum regime have opened the possibility of the first direct observation of quantum
gravity, at scales achievable in experiments. This paper gives a broad overview of this
idea, using some matter-wave and optomechanical systems to illustrate the predictions
of a variety of models of low-energy quantum gravity. We first review the treatment of
perturbatively quantized general relativity as an effective quantum field theory, and
consider the particular challenges of observing quantum effects in this framework.
We then move on to a variety of alternative models, such as those in which gravity is
classical, emergent, or responsible for a breakdown of quantum mechanics.
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1. Introduction

The dream of measuring gravitational effects in the quantum regime dates to the
earliest days of general relativity [1-3]. Experiments have shown that classical grav-
itational fields, such as that of the Earth or a gravitational wave, act on quantum
systems in the same manner as other external potentials, allowing for neutron guiding,
cold atom trapping, and even displacement of interferometric mirrors [4-6]. However,
observation of the gravitational field produced by a mass prepared in a distinctly
quantum state has yet to be experimentally achieved. This concept has driven sig-
nificant physical and philosophical interest, and experimental proposals have begun
to appear [7,8] based on earlier suggestions [9-11].

Recent, rapid progress in the quantum control of meso-to-macroscopic mechanical
systems suggests that such experiments may be feasible in the near future. For ex-
ample, the development of long-lifetime mechanical systems has enabled a dramatic
push towards realization of the quantum ground state for the center-of-mass motion
of objects with masses ranging up to the kilogram scale [12-18]. Beyond preparing
the ground state, there are a variety of approaches for creating and monitoring non-
classical excited states of macroscopic mechanical oscillators. Most methods couple
the mechanical devices to electromagnetism in the optical and microwave domains,
and use squeezed light [19-23], photon number eigenstates [24-28], or more recently
the stabilization of Schrédinger-cat type states via measurement [29,30]. In a com-
plementary approach, matter-wave interferometry has already demonstrated coherent
spatial superpositions of masses around 10° amu with spatial separation on the or-
der of microns [31+33], and proposals up to the nanogram scale exist [34}35]. These



two types of systems could potentially be used as sources to prepare a measurable,
non-classical state of the gravitational field. The advent of this experimental situa-
tion demands precise thinking about these issues: we must take concrete models of
gravity and make definite predictions for these experiments.

Thus, in this paper, we give an overview of the basic mechanics and predictions of
a number of theories of low-energy gravity in some simple, paradigmatic thought ex-
periments. We focus our efforts on experiments involving two types of source masses:
freely moving massive test particles in superposition, corresponding to an idealized
interferometer, and mechanical resonators prepared in non-classical states. We study
three categories of gravitational models: gravity as a quantum interaction, as a classi-
cal interaction, and models in which gravity is somehow responsible for a breakdown
of quantum mechanics. We argue that a number of these models, including the sim-
plest model of quantum gravity, may be observable with near-future experimental
techniques.

We begin by explaining how to view perturbative general relativity as a quantum
theory. This has historically been viewed as problematic due to the non-renormalizable
nature of the theory, but in modern language, this simply means that we are dealing
with gravity as an effective quantum field theory. In this sense, we have a perfectly
good quantum theory of gravity, which gives precise predictions in the kind of ex-
perimental circumstances discussed in this paper. We argue that the most promising
avenue is to look for gravitationally-generated entanglement coming from the Newto-
nian interaction between two massive objects; we also study effects involving gravitons
and explain why these will be much harder to detect.

As a foil to the quantum model, we then study the idea that gravity could be
“fundamentally classical”. This could potentially mean a number of things, so we be-
gin by discussing the semiclassical or “Schrédinger-Newton” model in which quantum
matter is coupled to a classical gravitational field through expectation values. This
model is known to have fundamental theoretical inconsistences because it amounts to
a non-linear modification of the Schrodinger equation. In order to circumvent these
difficulties, we show how to obtain the semiclassical interaction from a self-consistent,
unitary quantum model based on measurement and feedback, and discuss how these
classical models differ in their predictions from the quantum model.

Beyond these models of the gravitational interaction, a number of authors have
suggested various ways in which quantum mechanics might suffer some kind of break-
down due to gravitational effects. We give particular attention to models like those of
Penrose and Diosi in which gravitational effects cause the collapse of wavefunctions
of macroscopic superpositions. These are non-relativistic models, and so we finish
with a discussion of a relativistic variant, “correlated worldline theory”, involving
the breakdown of the usual superposition principle via extra gravitationally-induced
correlations, which are capable of explaining the quantum-to-classical transition.

We have endeavored to give a representative selection of topics and references. In
particular, we are focusing here on explicit models of the gravitational interaction,
as opposed to more phenomenological effects sometimes posited as low-energy conse-
quences of quantum gravity, eg. [36]. Much work has been done on many aspects of
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Figure 1: A cartoon of our experimental paradigm. In the first step, a source mass M
is prepared in some initial state like the ground state |0) ,,, which produces a particular
gravitational field, here depicted as a small gravitational potential well, while a test
mass m is likewise prepared in some reference state |0), . We then prepare the source
into a non-classical state, here a cat state |L) + |R) of two locations, each branch
of which has its associated gravitational field. Finally, we let the test mass m freely
interact with the source mass, and perform a measurement on either one of the masses
or the joint source-test system.

what we will cover and while we have attempted to give a detailed list of citations in
the text, our primary goal is to collate a user-friendly overview. For more exhaustive
treatments of some background on topics influencing this work, we refer the inter-
ested reader to reviews of optomechanics [37.38], electromechanics [39], matter-wave
interferometry [40], quantum sensing [41},42], and gravitational decoherence [43].

This paper is organized as follows. In section [2| we give a brief overview of our
gedanken matter-wave and resonator systems, and provide a summary table of the
behavior and predictions of the models studied in the paper. We then move on
in section |3| to the study of general relativity as an effective quantum field theory.
Classical models of gravity are studied in section [ and models of gravitationally-
induced breakdown of quantum mechanics are discussed in section 5] We end with
our conclusions in section [6l

2. Some model systems and experiments

The essential style of experiment we imagine consists of preparing a massive object
in a non-classical state, such as a superposition of two locations. We then consider
different possible probes of the gravitational response to this source. Typically we
consider a nearby test mass responding to the resulting state-dependent force. See
figure [I] for a schematic of this process. As an intermediate experiment, we can simply
try to prepare the source mass in a non-classical state and measure its coherence time;
this can be used to rule out models of gravitational decoherence.

Consider first a matter-wave interferometry experiment. We prepare a cold, mas-
sive particle and send this through a beam-splitter, producing a state of the form



|L) +|R), corresponding to two distinct paths with spatial separation Ax. The parti-
cle is then allowed to freely propagate for some time At, before we recombine it with
an inverse beam splitter and projectively measure the resulting state; see figure [

The state of the mass as it propagates down the interferometer arms in superpo-
sition is an example of the kind of Schrodinger-cat type state we are interested in.
Simply observing the coherent interference of this beam after the free propagation
sets bounds on any model of gravitational decoherence. Furthermore, we could use
the superposed beam as a gravitational source mass, and try to observe its coupling
to some other nearby test mass system. For example, the usual quantum treatment of
the gravitational interaction (see section predicts entanglement generation between
the source and test mass; other models (sections , will predict other behaviors.

A complementary approach is to use a mechanical resonator system. Here, the
masses do not propagate freely but rather oscillate about fixed locations via a restor-
ing force from a spring or other harmonic confinement mechanism. A prototypical
example is a high-reflectivity mirror suspended in an optical cavity. The mirror’s
spatial position can be both controlled and measured by cavity photons. Other ex-
amples include optically trapped particles, mechanical cantilevers, and high-tension
membanes.

In analogy with the matter-wave experiment above, we might imagine cooling the
center-of-mass motion of the resonator to its ground state |0), and then preparing
some non-classical state, for example the cat-type superposition |a) +|—a) of two co-
herent states of the center-of-mass motion. Just like the interferometric cat state, this
superposition will be sensitive to any gravitational decoherence effects, and similarly,
could be used as a gravitational source.

We note that the roles of these two types of massive objects—and indeed other,
similar systems—can be mixed and matched. An experiment could use a resonator as
a source mass and an interferometer as a test mass, or vice versa. A key difference
between these two systems is the vastly different timescales probed: matter-wave
interferometers have bandwidths set by their time of flight, whereas resonator systems
oscillate with their mechanical frequency.

For ease of use, in figure [2| we provide a table summarizing the models studied
in the rest of this paper. We give a brief description of some basic properties of the
model, and give an example prediction for both a single-body coherence experiment
and two-body entanglement experiment of the type described above.
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Figure 2: Schematic of a (Mach-Zehnder) matter-wave interferometry experiment. A
beam of massive particles is sent from the source S through a beamsplitter, evolves
freely along the beam arms, and then recombined and counted in the detectors Dy, g.
The observation of this coherent superposition of the massive beam already probes
gravitationally-induced decoherence; one could further imagine looking for gravita-
tional interactions between this cat state and a nearby test particle.
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Figure 3: Schematic of a cavity optomechanics experiment involving two suspended
mirrors. Here, one mirror is depicted in a “cat” state, a superposition of two coherent
states, and viewed as a source mass. The other mirror is then prepared in its ground
state and used as a gravitational detector. The goal of an experiment with such a
setup would be to try to see the superposed source mass entangle with the test mass;
see section 3.1
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Figure 4: Summary of some properties and example predictions of models studied in this
work. See the relevant sections for details and references. Variables used, from left to right:
) = quadrupole moment, ¢, = initial position uncertainty in a wavepacket, T, = BEC critical
temperature, Ry = fundamental length scale in a model, m = single-particle mass. * “Pre-
dictions” here mean with naive interpretation of the Born rule, see section [5] for a discussion
of this point. ** Gravitational dynamics other than collapse mechanism unspecified in this

model.




3. General relativity as an effective quantum field theory

At the terrestrial energies we are concerned with in this paper, general relativity can
be treated quantum mechanically in a straightforward manner. It is sometimes said
that general relativity and quantum mechanics are mutually inconsistent, but this is
only really true at extremely high energies, where the non-renormalizable nature of
the theory becomes problematic; in this limit, untameable divergences arise. The key
is to realize that perturbatively quantized general relativity is an effective quantum
field theory (EFT), valid only below some very high energy scale, in this case the
Planck scale M,c* ~ 10" GeV [44}48].

In the kinds of low-energy settings we have in mind, the EFT of general relativity
is easy to summarize. The gravitational field g, is expanded around a fixed classical
background, say flat spacetime 7,,, as

G = N + hum (1)

and the small fluctuations h,, = h,,(x,t) are a quantized field. Note that h,, con-
tains both a longitudinal “Newtonian” component as well as dynamic “graviton”
fluctuations. In particular, the gravitational field can transmit quantum information
and generate entanglement. If one deals with large-amplitude deviations from the
reference classical field, the effective description breaks down, but the experiments
discussed in this paper are safely within the limits of the EFT treatment.

In the non-relativistic limit, massive objects interact via the usual 1/r Newton
potential, treated as a quantum operator on the Hilbert space of the masses. Super-
positions of states of massive objects lead to superpositions of the metric, which in
the non-relativistic limit means superpositions of the Newton potential, as depicted
in figure Additionally, the transverse, dynamical metric fluctuations themselves
are massless spin-2 particles, called gravitons, which couple to any source of energy
including rest mass. Structurally, the theory is very similar to quantum electrody-
namics with its Coulomb potential and photons, and one can typically import their
intuition from QED to gravity at these energies. The non-linearity of the gravita-
tional interaction is negligible, since gravity couples to energy and the energy stored
in the gravitational fields here is tiny.

The EFT paradigm organizes predictions as a Taylor series in some small dimen-
sionless parameters, for example the ratio

FE
€ =
M, c?

(2)

of the energy transfer E during a process in units of the Planck energy. Each term in
the Taylor series comes with a free, unknown coefficient which in principle needs to be
fixed by experiments. The non-renormalizability of the model means that whenever
we are dealing with processes where E/M,c* becomes a sizable fraction of unity, our
ability to make predictions breaks down, since all the terms in the series become
important. For processes where E/M,c? is small, on the other hand, we can ignore
these higher-order terms.



As a concrete example of this approach, one can explicitly compute the leading
quantum corrections to the Newtonian potential [48|49]. Feynman diagrams with a
single graviton loop give

Gymime

V(ir)=—-——— (1+A

+¢ (3)

r c2r c3r2

GN(m1+m2) GNh+>

where the Newton constant Gny ~ 6 x 107! Nm?kg~2, and the constants \, ¢ are
calculable, O(1) quantities whose precise values depend on exactly how one defines
the potential. The term proportional to A is the first “post-Newtonian” correction,
which is classical, while the term proportional to & is the first quantum correction.
The ellipses represent terms of higher order in the Newton constant. With very
conservative estimates of m ~ 1mg and r ~ 1pm, the displayed corrections are of
order 10728 and 1078, respectively, and are utterly negligible.

It should be emphasized that the effective field theory picture given here is the
universal low-energy limit of any theory which contains massless spin-2 excitations
and has an S-matrix [50-53|. For example, in string theory, each closed string has a
massless spin-2 state. Thus a detection of some violation from the EFT predictions
would give direct information about the ultraviolet nature of quantum gravity.

There is one important subtlety, which is how to properly treat the composite
objects used in these experiments as particles with rest mass approaching or greater
than the Planck mass M, ~ 107°g. One might worry about N-body effects; for
example, a relic graviton in the cosmic microwave background has temperature of
about 1K [54] and thus a wavelength of about a millimeter, so it could probe internal
structure of some of these objects. In a proper EFT treatment this will need to be
taken into account through form factors encoding the details of the massive objects.
One may also worry about the validity of a Taylor series like for objects with
M 2 M,. Although the description given above will provide the leading order effects,
a detailed treatment along the lines of heavy quark EFT [55,/56] or the chiral theory of
nucleons [44]—effective models involving rest masses significant larger than the QCD
scale-will be crucial for understanding subleading effects. See for example [57,/58| for
some classical EFT treatments in gravity along these lines.

3.1. Tests of the quantum Newtonian interaction

The most basic prediction of the EFT picture is that massive objects will source
Newtonian gravitational fields tied to their center-of-mass positions. If we prepare a
source mass in a non-classical state and bring in a test mass, gravity can entangle the
two masses, and it is this effect that we could like to witness. We begin by explaining
this idea using resonator systems, and then review the matter-wave variant proposed
in |7.[8].

Consider a pair of harmonic oscillators of equal mass m and frequency w. For
simplicity we will completely ignore any non-gravitational interaction between the ob-
jects. In practice, methods for distinguishing the gravitational from non-gravitational
interactions will be needed. We also ignore any mechanical dissipation here. We defer



these issues to more detailed work; the goal here is just to work through the simple
points of principle. Thus the Hamiltonian reads

GNm2

d — (x1 — x2)|

p; 1 2.2
H:Z%—I—§mwxi— (4)

i=1,2

Here d is the vector between the two equilibrium positions of the oscillators. Assuming
that |d| > |x; — Xa|, we can expand out the denominator in a multipole expansion.
The zeroth order term is an overall constant and may be dropped, the first order term
is proportional to x; — Xy and can thus be eliminated by re-definition (at order Gy) of
the equilibrium positions, and the second-order term contains both x? +x3 and x; - X».
The squared terms can similarly be eliminated by re-definition (at order G) of the
oscillator frequencies. The order Gy corrections are negligible and we drop them. For
further simplicity we will restrict to a single spatial dimension, by eg. appropriately
designing the oscillators or sharply trapping the particles in the transverse directions.
Finally, we take the rotating wave approximation, which here is excellent due to the
tiny coupling, allowing us to drop the interaction terms ajas + aia; In the end, we
obtain the Hamiltonian

H= Z hwala; — hdg(aral + alay) (5)

i=1,2
where the coupling constant is

_ GymPzLpp  Gym g m 1Hz\ (1pum)®
Ag = ™ = ~ 6 x 107" Hz x Ing - ¥ . (6)

Here zzpr = \/h/2mw is the ground-state uncertainty in the harmonic oscillator
position. Note that the ratio m/d® can be no larger than the material density of the
resonators.

The Hamiltonian manifestly generates entanglement between the oscillators.
As a simple example, consider preparing one oscillator in its ground state and the
other in its first excited Fock state, that is [¢)) = [10). Treating the gravitational
interaction as a perturbation, this state will evolve to

10) — [10) — iAAt|01) + O(X?) (7)

in a time At, up to an overall normalization. The state is entangled, in the sense
that it cannot be reduced to a product state of the two oscillators. The amount of
entanglement is small, since it is proportional to the product A;At, but it could in
principle be measured by a DLCZ-style scheme [59]. For example, if these oscillators
are mirrors in an optical cavity, we can apply a red-detuned optical pulse, destroying
the joint oscillator phonon state and mapping it onto a pair of optical photons, whose
interference visibility can be measured using standard optics techniques. This tech-
nique has been successfully used to demonstrate entanglement in a pair of oscillators
in the evenly-weighted state [10) 4-|01) generated using photon-phonon couplings [60].
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A more dramatic example would be to prepare the source oscillator not in a low-
lying Fock state like |1) but a highly non-classical state like a “cat code” |a) + |—a).
[29] Here |a) is a coherent state, which has average spatial displacement (x) = Re(«)
from the oscillator equilibrium. Consider preparing the first oscillator in this state
and the second oscillator in its ground state |0). We can easily find the exact time-
evolution of the joint state without resorting to perturbation theory. Defining as

usual the normal modes
I + )

the Hamiltonian can be written

H=w,dla, +wada, wi=w+), 9)
Using this transformation, it is straightforward to show that a coherent state times
the ground state evolves as

@), [0), = |/ V2), |=a/V2)
= e a/V2), [—eT v a/V2) (10)
R |y cos Agt) | |—ioy sin Agt).,, .
Here we defined oy = ae™™?, and approximated w; ~ w in the widths of the ground
states of the £ modes; this creates errors in the final answers only at second order in
Ag. Extending this calculation by linearity, we see that the initial cat-vacuum state

_ o)+ =a)
) = s & 10) (11)

will evolve to
[1h(t)) = (Joy cos Agt) | —icy sin Agt) + |—ay cos Agt) |icy sin \gt)) /v/2. (12)

This state is a highly non-classical entangled state; for large Re(«) the two branches
are essentially orthogonal. This also plainly demonstrates the transfer of quantum
information from one oscillator into the other: for example, at ¢t = /2, the initial
state of the first oscillator has been completely swapped (up to some phases) into the
second oscillator.

The above examples show how the Newtonian force in the EFT picture of gravity
acts as a “quantum” interaction. What this means precisely is that the interaction
is capable of transmitting quantum information: information about a superposition
of one system can be mapped into another system, and so forth. This is in stark
contrast to known models in which a classical gravitational field somehow couples to
quantum matter, as we will see in section dl More technically, this is the statement
that the Newtonian interaction V' = Gm?/|r; — ry| is an operator acting on the joint
Hilbert space of two masses. This is a simple consequence of two assumptions: that
we quantize matter, and that the gravitational field is treated as a quantum field
sourced by matter in accordance with Einsteins field equations and the principle of

10



equivalence. Because of the latter assumption, the gravitational field is constrained
to follow the matter field through the gravitational Gauss law, and so it must engage
in any superpositions the matter field happens to be involved inH

Having explained the basic idea of gravitational entanglement generation using
resonator systems, we now remark briefly on a recent, concrete proposal to study the
same phenomenon in a matter-wave system [7,8]. Consider a pair of matter-wave
interferometers placed next to each other as in figure [f] The matter waves consist
of massive objects which have a spin-1/2 degree of freedom which can be used to
both control and read out the spatial state of the masses; in the proposal [7] the
masses are nitrogen-vacancy diamonds (with the NV site providing the spin) and the
“beam splitting” action is accomplished by engineered magnetic fields coupling to the
spin [35]. We denote the beam arms |L) = [1),|R) = |}) in the notation of section
2l Neglecting all interactions except for the Newtonian interaction between the two
matter waves, the total time evolution produces a state of the form

|LL) — €% |LL) + """ |LR) + €"*R" |RL) + €""% |RR) (13)

with the phases ¢;; = Gym?At/hd;;, d;; the spatial distances between the various
pairs of beam arms. For simplicity consider a geometry for the interferometers such
that ¢r, = ¢rr = ¢rLr # ¢rr (for example, the geometry in figure , so that we
may write this as

|LL) — |LL) + |LR) + ¢*?|RL) + |RR) , (14)

up to an overall phase, with the differential phase of order

A¢:GNm2AxAt%60x<£)2(ﬂ> (g) <1mm)2‘ (15)
hd? Ing 1pm 1s d

Here d is the separation between the two interferometers, Ax the separation between
the beam arms in a single interferometer, At the time of flight, and we have taken the
approximation Az /d < 1 (in terms of the geometry in figure |5, we are approximating
ds ~ d,dy, ~ d+ Ax). This is manifestly an entangled state of the two masses: it is

not a product stateﬂ The entanglement can be verified by measuring the spin states,
for example by looking for violations of a Bell inequality: if the entanglement witness

W= (oko? ~alo?) < 1 (16)

then the state is provably entangled.

1One could in principle ask if there are any consistent theories in which the Newton interaction
can generate entanglement in this way, but in which there are no quantized graviton fluctuations;
under very simple assumptions, the answer appears to be no, see [61] and references therein.

2Note that this is not true if ¢;, g = ¢rr, +27n for any n. Thanks to Michael Graesser and Daniel
Oi for discussions on the particulars of the geometry needed for the experiment.

11
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Figure 5: Schematic of the proposal [7,8] for testing gravitationally-generated entan-
glement. A pair of matter-wave interferometers are placed next to each other. Here
we have picked a particular geometry in which the matter waves will be free falling,
and such that the R; — L, arms have a short separation dg while the other three
combinations have a long separation d; > dg.

3.2. Tests of graviton-induced decoherence channels

One of the most striking predictions about perturbatively quantized general relativity
is the existence of low-energy fluctuations in the field: gravitons. There are strong
arguments that it will be impossible to ever directly detect a single graviton, even in
principle-it would generally require a detector so large and massive that a black hole
would form [62-64]. However, there is an alternative: perhaps one could infer the ex-
istence of the graviton, or more precisely the ability of systems to spontaneously emit
gravitons, by observing decoherence consistent with information lost into graviton
states [65-67].

Unfortunately, as we review in this section, the rates of graviton-induced decoher-
ence are extraordinarily low compared to more pedestrian channels like electromag-
netic radiative damping, at least for small masses. Our primary purpose here is to
explain the nature of these effects “in principle”, and in particular to demonstrate
that standard, quantized gravitons can lead to decoherence in precise analogy with
photons. This decoherence must be distinguished from the ad hoc “gravitational
decoherence” mechanisms discussed in section 5, which generally speaking have enor-
mously higher rates than that coming from gravitons.

To get a feel for the relative size of photonic versus gravitonic effects, we can esti-
mate the rates of spontaneous emission of either a photon or a graviton. The rate for
spontaneous emission of photons should depend on the system’s electric dipole made
into a scalar d?, the speed of light ¢, Planck’s constant A, and the system’s frequency
of oscillation w; forming a rate from these quantities, on dimensional grounds, gives

12



the estimate P

For spontaneous emission of a graviton, since we are dealing with spin-2 emission
instead of spin-1, we should have a dependence on the quadrupole moment @2, and
furthermore we should expect a factor of G from the graviton coupling to matter.
Again dimensional analysis gives

G NQ2w5

hed
To get a concrete estimate, we can approximate the dipole as consisting of N el-
ementary dipoles, d> = N2ahcL?, with L the linear dimension of the object and

a = e?/hc = 1/137 the fine structure constant. Similarly we approximate the mass
quadrupole @ = mL?. Then we have

FEM ]\/v2(l/7:LC3
FGR GNm2L2w2‘

Tgr ~ (18)

(19)

To get a feel for this, consider an object with L ~ 1pm,w ~ 1 MHz, m ~ 1ng; this
gives T'par/Tar ~ N? x 10%. In other words, even for a fairly aggressive choice
of experimental parameters, the electromagnetic radiation absolutely swamps any
graviton-based effects. However, it should be noted that for very large masses the
gravitational rate can actually start to dominate [68]. Beyond this order-of-magnitude
estimate, we refer the reader to detailed calculations of spontaneous emission in a
neutron quantum bouncer [69], simple harmonic oscillator [67], and especially the
wonderful review of the 3d — 1s transition in hydrogen presented in [63,64].

Another possibility would be to look for thermalization due to an ambient gravi-
ton background. Indeed, little is known about the precise nature of the ambient
graviton background, and observing decoherence due to this background would be
remarkable, to put it mildly. A simple estimate suggests that, if the early universe
went through a period of inflation, a background of thermalized gravitons at T < 1K
should be universally present, if nothing else [54]. Stars, in particular the sun, also
emit gravitons at reasonable rates; a simple estimate leads to a flux of about 1074
gravitons per square centimeter per second on the Earth [62,70]. To estimate the
thermalization rate, we can again use dimensional analysis: the rate ['%¢ ~ CNgrav0,
where ng,q, is the number density of the graviton background, and o is an effective
graviton absorption cross-section. The cross section can be conservatively estimated
by o ~ 47?2[/}27 ~ 107% cm? with L, the Planck length [62], so for example solar
gravitons lead to a decoherence rate I'%¢ ~ 10~% Hz, which is utterly negligible.

One might also consider decoherence caused by the bremsstrahlung of gravitons
during the acceleration of a massive object. For example, imagine using a matter-
wave beam of particles of mass m and sending these through a beam-splitter. We
can think of the beam-splitter as the unitary which implements a simple 90-degree
rotation of the incoming momentum vector:

lpz) — |p2) + |py) (20)
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where the kets are momentum eigenstates with momenta p aligned along either the
x or y axis; see figure 2] The process pi — py involves acceleration of the beam, and
thus will generate bremsstrahlung in both gravitons and, if the beam is electrically
charged, photons. Thus in actuality, the beamsplitter acts as

p2,0) = [p2,0) + > ey lpd v, h) (21)

~,h

where the 0 indicates the vacuum state of the radiation field, v, h represent some
possible photon and graviton radiation, and the ¢, are the amplitudes for each of
these states.

The radiation spectrum has a divergent infrared tail: an arbitrarily small amount
of energy can be radiated out into an arbitrarily large number of very low-energy
bosons [70-72]. These in turn cannot be measured by a finite-energy detector, and
should be traced. This divergence is regulated by the temporal duration 7 of the
experiment, because a boson with wavelength A = ¢7 cannot be produced. One can
perform the trace to all orders in the number of photons and gravitons [73], and one
finds that the off-diagonal component of the density matrix decays like

pealr) ~ pral0) exp {— (£) () } . )

Here P, = M,c ~ 6kgms™' is the Planck momentum, and we have ignored the
photon contributions—this is the pure graviton decoherence rate. For a typical matter-
wave experiment we have m ~ 10°u,7 ~ 1s,v ~ 10ms™!, and so this exponential
is astronomically close to being equal to unity. In other words, the decoherence is
entirely negligible. To get a non-negligible contribution, one basically needs p/P, ~
O(1), i.e. momenta of order 1 kgms™', which seems rather difficult to achieve. One
can compare this with the electromagnetic version, in which we replace p/ P, — N2«
with « the fine structure constant and Ne is the charge of the beam particles; in
this case, it is easy to imagine an experiment with non-negligible decoherence from
photon bremsstrahlung.

Clearly, observing decoherence caused by gravitons will be quite challenging. Still,
there seems to be room for new ideas: although detecting a single graviton can be
fairly conclusively deemed impossible on simple grounds, here we have only sketched
some very rudimentary schemes for decoherence-based detection. One obvious avenue
may be to engineer a system with a particularly large mass quadrupole and minimal
electromagnetic couplings. Another could be to exploit a Dicke-superradiant state of
some system to enhance the spontaneous graviton emission rate [74]. We look forward
to the development of new ideas in this vein, but for the time being, now turn our
attention to gravitational models beyond the effective quantum field theory picture
of general relativity.
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4. Gravity as a fundamentally classical interaction

In the previous section, we studied the low-energy predictions for quantum general
relativity, considered as an effective quantum field theory. Broadly speaking, this
would be the standard picture in which gravity at low energies behaves quantum
mechanically. Standard quantum field theory is taken as axiomatic, and classical
gravity emerges as a limit of quantum gravity. In the classical limit, massive bodies
interact through a classical Newtonian force, and the metric fluctuations are classical
gravitational waves.

However, to date we have no direct evidence that gravity behaves quantum-
mechanically, and are thus obliged to consider alternatives. In this section, we con-
sider what it might mean for gravity to be “fundamentally classical”. This could
potentially mean a number of things, and here we will study two definite proposals.
We begin with a model which we will refer to as “traditional semiclassical gravity”,
emphasizing its theoretical inconsistencies. We then move on to a model of the grav-
itational interaction as a classical information channel, showing how this model can
reproduce the basic intuition of semiclassical gravity within a theoretically consistent
framework. In both cases, a key prediction is that the gravitational interaction is
incapable of transmitting any quantum information between masses, and in particu-
lar cannot generate entanglement, in stark contrast to the quantum EFT picture of
section [3

Suppose we want to treat gravity classically and couple it to the quantum state of
matter. The simplest way we could try to implement this is by sourcing the Einstein
equations with the expectation value of the matter stress energy tensor:

87TGN
cl

G = (L) - (23)
Here, (T),,) = (¢|T,,|1) is the expectation value of the quantum-mechanical stress
tensor for the matter, and this equation determines the dynamics of the spacetime
metric. The theoretical troubles begin when one attempts to self-consistently close
this system with a Schrodinger equation for the matter

iat |¢> = (Hmat + ngav) |77Z}> ) (24>

where Hg,q, is the gravitational potential encoded in the semiclassical Einstein equa-
tion . These equations are sometimes referred to as “semiclassical gravity”, and
sometimes as the “Schrodinger-Newton” model, especially in the case that H,,,; de-
scribes non-relativistic particles [75-83].

The term “semiclassical gravity” may cause confusion, because it can refer to two
rather different ideas. Typically one has a perfectly ordinary quantum system, and
a “semiclassical” treatment is one in which we have an expansion in powers of A,
i.e. an expansion in quantum fluctuations, around a classical limit. In this sense,
the semiclassical equations and are a perfectly valid limit of the full EFT
equations in the limit that the quantum stress tensor has only small fluctuations, but
this is precisely the opposite of the situation considered in this paper, in which the
matter is prepared in a highly quantum state.
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Conversely, here and throughout this section, we will take “semiclassical gravity”
(and its non-relativistic limit, the Schrodinger-Newton model) to mean something
radically different: we simply take equations , as fundamentally true. In this
sense we are studying a departure from the EFT picture. Although this may seem
like a plausible candidate for a theory of classical gravity coupled to quantum matter,
there are severe and fundamental problems with this idea. In particular, since the
gravitational potential depends on the matter state |¢), and this potential in
turns determines the evolution of the matter state in , this amounts to a non-
linear modification of the usual quantum time evolution. There are then two ways
to view the semiclassical model: as a fundamental modification to standard quantum
theory, or as a kind of flawed limit of some more reasonable theory of “classical”
gravity coupled to quantum matter. In section [5.1, we take the former view; in this
section, we instead show how to embed the semiclassical equations into a consistent
quantum model, in which the non-linearity arises in a controlled fashion.

Before giving the full construction, we can study the basic predictions of such a
semiclassical model, ignoring the theoretical inconsistencies for a moment. In section
5.1 we give a more extensive list of experimental proposals for testing the Schrodinger-
Newton equation; here we focus on a simple two-body entanglement experiment to
contrast the results with those for the EFT picture of section [3]

The point we would like to emphasize is that one consequence of equations
and is that the gravitational field cannot transmit quantum information between
matter. In particular, the gravitational field cannot cause entanglement. To see this,
we can look at the non-relativistic limit of these equations. The Einstein equations
reduce to the gravitational Poisson equation for the Newtonian potential ®,

V20 = 47Gy (M), (25)

where M = M (x) is the mass density operator of the matter (we use M instead of p to
avoid confusion with the quantum-mechanical density matrix). In the non-relativistic
limit with N particles, this operator can be written

M(x) = Z mid(x — X;) (26)

where for clarity we use a hat to denote an operator; the sum over ¢+ = 1,..., N is
a sum over the particles.ﬂ The gravitational interaction with matter in this limit is
given by Hyqy = [ d*xM (x)®(x), and so the Schrodinger equation reduces to

110) = (Hu+ [ 5 361209 ) 1), (1)

where the potential satisfies .

3To derive this expression, one can take a scalar field ¢ for the matter content, and study the
non-relativistic limit of Tyg in a single-particle state of ¢. The operator Tpo(x) ~ (9¢(x))? has an
ultraviolet divergence because it has two operator insertions at a single point . This divergence
must be regulated and renormalized, and so the parameters m; here are really the renormalized
masses of the particles.
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Figure 6: Circuit diagram for the classical channel model of gravitational interactions,
in a two-body example. The lines 57, S5 correspond to the two massive bodies and the
lines A, Ay are the ancillae used to measure the positions of the system. The unitaries
U.,: entangle the matter system with the ancillae; the caps represent measurement.
This is used to estimate (7},,), and this classical information is then fed back onto the
matter system with Urg. No quantum information flows between the matter systems.

Consider a pair of massive particles, for example the matter-wave beams in the
twin-interferometer experiment of figure [5} In section [3.1 we explained how the par-
ticles in the two interferometers will become entangled with each other through the
quantum Newton interaction, leading to the final state (13)). In the semiclassical
model presented here, the dynamics are quite different: each of the four interferom-
eter arms sees an effective classical potential sourced by all three of the other arms,
through the expectation value (p(x)). This can be computed as

(p(x)) = 5 [86x = x1.0) + 0(x = X1,0) + 0(x = Xz.0) + 3(x = x2)] ,  (28)
if we approximate the particles in the interferometer arms as position eigenstates
1X;.1/r), With i = 1,2 labeling the two interferometers. No entanglement is produced,
and a simple calculation shows that we obtain instead the final state

ILL) — (IL) + € |R)), @ (IL) + e "*?|R)), , (29)

where the relative phase A¢ is the same as given in , and we have again ignored
any changes in the kinetic energies of the masses. This is a product state and, in
particular, would never lead to a violation of a Bell inequality in a joint measurement
of the two particles. Nothing here is special to the interferometer case; we could just
as well try to look for entanglement generated between a pair of resonators. While
the EFT model of gravity predicts entanglement in both cases, the classical model
does not.

Although this model has some utility as a heuristic picture of classical gravity
coupled to quantum matter, one would prefer a more theoretically sound alternative.
All of the difficulties arise from non-linearity in the Schrodinger equation, which was
imposed as a fundamental property. Here we present an approach which evades these
problems by positing a mechanism for the non-linearity: we imagine some ancilla
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system which continuously monitors the matter stress-energy, using its measurements
to estimate (7,,). The ancilla then acts to classically feed this information back onto
the matter, such that a semiclassical gravitational interaction arises. In this sense the
gravitational interaction becomes a classical information channel, which is incapable
of transmitting quantum information. The price paid is an irreducible amount of noise
arising from the measurements, but since the entire model including the ancillae is
ultimately unitary and quantum, we evade the more serious theoretical consistency
issues [84-89]. The idea of using noise terms to self-consistently complete semiclassical
gravity goes back to Diosi [90]; here we are providing a manifestly unitary, microscopic
model of the origin of the noise.

Time evolution in this measurement-and-feedback model is most easily described
in terms of timesteps At; we will take the continuum limit at the end. For concrete-
ness, we will work in a non-relativistic limit, and assume each particle in the model has
the same mass m. Each timestep has two distinct processes; see figure [6] for a circuit
diagram in a simple two-body example. First, the matter system has its mass density
weakly (i.e. non-projectively) measured, for example by entangling the matter with
some ancilla system and projectively measuring the ancilla. According to the usual
von Neumann postulate, this causes a change in the matter state [¢)) — |1) + A [)),
which becomes conditioned on the outcome of the measurement:

A = | [ exseovaawe - [Exdyecyna ). @

Here, the parameter v controls the strength of the measurement; in line with the
usual continuous weak measurement paradigm [91H94], we take YAt < 1, and have
performed a Taylor expansion in this quantity. The measure AW (x) is a stochastic
random variable, which accounts for the measurement outcomes; in order to satisfy
the usual stochastic calculus it should be normalized to var AW = At. Finally, the
operator £(x) is

(31)

where M (x) is the mass density operator (26), so £(x) represents the deviation from
the average mass density, measured in units of the Planck mass M,. Note that the
operator M (x), which involves pointlike masses, can generally lead to divergences;
these should be regulated by introducing some fundamental ultraviolet regulator like
a lattice spacing Ry.

The evolution (30)) is non-linear in that it depends on expectation values taken
in |[¢). However, this non-linearity is now understood as arising from a series of
measurements done on some ancilla systems, and in this sense the complete matter
plus ancilla system is described within standard quantum mechanics, so there is no
fundamental modification of the basic quantum formalism.

The second part of the timestep is to use this measurement data to feed back
a classical gravitational force on the system. The measurement outcome is used
to estimate the mass density (M (x)), which in turn is used to find the Newtonian
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potential ® satisfying the Poisson equation V2® = 47Gy (M (x)). We then simply
act on the system with the unitary

A {—z’At / d3xM(x)<I>(X)} | (32)

Putting this together with the evolution from the measurement and taking the
continuum limit, we have a total change in the matter state given by

d ) = { i Hpaydt — i / A3 M (x)®(x)di
1 (53
| [ axetvaaw e - 5 [ axavesenal fio.

where H,,4; is the non-gravitational Hamiltonian. The terms in the first line generate
precisely the semiclassical gravitational evolution (24)), while the terms in the second
line represent an irreducible source of noise from the continuous measurement of the
matter system. In particular, averaging over the measurement histories dWW will lead
to dephasing, so this model essentially includes an extra decoherence channel from
these measurements.

The time-evolution has some important features. It reproduces the semiclas-
sical gravitational interaction of the Schrodinger-Newton model, without any basic
theoretical difficulties; in particular, there is no violation of the no-signalling condi-
tion. Like the SN equation, this evolution generates no entanglement between the
masses, so either model can be falsified by a two-body gravitational entanglement
measurement. The price we pay for self-consistency is the introduction of the noise
dW; averaging over this measurement noise will lead to dephasing of the matter.
Among other things, this will result in anomalous heating in any object. Observa-
tions of long-lived Bose-Einstein condensates, for example, have been used to place
numerical bounds on the parameter Ry in this model [86]. Similar bounds can be
placed using a long-lived resonator or matter-wave beam.

There is significant structural freedom in models of this type: one can choose
different ancillae, measurements, etc. For example, one could consider minimizing the
anomalous heating rate just mentioned [86], or alternatively minimizing decoherence
rates [95]. Certain highly-simplified versions of this proposal can already be subjected
to experimental test [96], but a detailed, relativistic, field theory-based model is
still lacking. Upgrading this model to a fully relativistic setting will be challenging:
how to treat the measurements in a manner consistent with coordinate invariance
and how to incorporate the gravitational effects of the ancillae themselves are topics
for future work. Nevertheless, as a concrete model for gravity as a fundamentally
classical interaction in the non-relativistic regime, this seems to be the most promising
candidate available.

Before moving on from the notion of classical gravity, we remark on one further,
highly interesting possibility. It has been suggested that classical or semiclassical
gravity could be “emergent”, in the sense that it is a long-wavelength limit of some
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underlying, unknown quantum degrees of freedom, not necessarily gravitons [97-102].
This should be viewed roughly in analogy with the hydrodynamic limit of fluid me-
chanics, in which the underlying quantum atoms lead to semiclassical hydrodynamics
at sufficiently long length scales. A variety of such models have been proposed; and
their predictions for experiments like those we are studying here are unclear, al-
though there are simple models demonstrating that, entropic forces cannot entangle
particles [103] and there has been some debate |[104,105] about whether or not these
models are consistent with experiments involving gravitationally-bound cold neutron
states |5]. We view the types of experiments discussed in this paper as a major op-
portunity to learn more about such emergent models. We leave this idea to future
work.

5. Low-energy gravity models violating quantum mechanics

So far, we have studied gravity as a perturbative quantum field theory treated much
the same as electrodynamics, and contrasted this with some models of gravity as
a purely classical interaction. We argued that one possibly consistent way to view
gravity as classical is as a kind of limit of a perfectly unitary quantum model, in
which some ancillary system is used to enact semiclassical gravitational interactions.

In this section, we turn instead to some models built out of the notion that gravity
and quantum mechanics are fundamentally incompatible in some way. This is a point
of view that goes back to Einstein [106], and which has been steadily refined since the
late 1950’s. To date, gravitational effects are negligible at the microscopic scales where
all entanglement and Bell inequality experiments have been done; even experiments
in which “macroscopic state superpositions” of flux [107] are createdﬁ do not involve
any significant mass displacements, and so no gravitational effects are involved there
either. Thus, for various reasons to be described below, one can entertain the idea
that quantum mechanics may break down at large scales, and that gravitation may
be involved.

There are various such theories: some involve semiclassical approaches in which
gravity is sourced by expectation values of the stress-energy tensor as described above,
and others invoke other ways of violating the superposition principle. All of them go
outside the EFT framework discussed above. Instead one is now looking for violations
of quantum mechanics, taking place when one tries to superpose or entangle states
which are macroscopically different in their gravitational properties.

The key challenges are then to find consistent alternative theories which mimic
quantum theory at small scales, but violate it at large scales, because of gravitational
effects; and to find experimentally accessible phenomena in which the difference be-
tween these theories and standard quantum mechanics will show up. For theories of
this kind to be convincing, they need to be predictive, and this means they need to
involve a clear physical mechanism. In what follows we focus on theories which may
lead to experimental tests.

4Although there is considerable debate [108-113] about how macroscopic these superpositions
are.
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5.1. Early lessons from non-linear theories

The first attempts to grapple with the challenges noted above were in early remarks by
Feynman [9,]10], and in an analysis of uncertainty relations involving masses coupled
to gravity by Karolyhazy [114]. However, no attempt was made in this early work
to provide any kind of alternative theory. The first serious attempt at such a theory
was made by Kibble et al. in [77,[78]. Quite apart from the details, three key points
were made by Kibble et al., which have just as much force today. These were:

(i) Any semiclassical theory of gravity (in which the matter fields are all quantized,
but the metric is taken to be classical in a sense to be specified) will differ in its
predictions from a fully quantized theory in which both the matter fields and the
metric are quantized together.

In the literature, a semiclassical theory is, as before, typically taken to mean one
for which the relation between the Einstein tensor and the stress-energy tensor is
given by o

T
G#V = C—4N <Tuu> : (34>
in which (7},,) is the expectation value of the quantum-mechanical 7},,. A simple
example of the predictions for such a model were given in the previous section; let
us put this in more general terms. Consider a two-slit experiment, in which the two
paths for a mass M are significantly separated in space. In a theory with a quantized

metric, such a superposition would take the form
V) = a|®159)) + an|®rigy)) (35)

with L, R denoting the two paths. In this superposition, those gravitational degrees
of freedom that are tied to matter in the gravitational part |g,,) of the state vector
are then completely entangled with the matter state |®). If M is small enough to
treat these metrics as perturbations around flat spacetime, then this description is
just what was given in the EFT picture above.

Suppose we try to measure which path the mass M has followed using, for example,
another mass m to measure the metric perturbation associated with the mass M. It
is immediately obvious that in a fully quantized theory, the secondary “apparatus”
mass m will be deflected differently depending on which path the mass M follows:
we will end up with a superposition

W) = ar |®r; gy X)) + ar |Pr; 9(r); X(R)) (36)

where the apparatus mass states |x(r)), |X(r)) have the mass m deflected in different
directions by the fields g(1), gr). A standard projective measurement done jointly
on the two masses would then see the apparatus deflected one way or the other in
correlation with the source, with probabilities |az|* and |ag|* respectively.

On the other hand in a semiclassical theory where is satisfied, we get a quite
different result. The expectation value of the source mass’s stress tensor is a classical
sum of two locations. For example, suppose that a; = agr = 1/ V2 in and the
apparatus is placed directly between the two source paths L, R. Then the apparatus
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mass will be pulled equally toward each path, and will remain undeflected. In par-
ticular, absolutely no entanglement is generated between the source and apparatus,
as discussed above.

Other writers have commented on this point of Kibble’s [11,/115], and it was even
claimed [11] that measurements have already decided in favour of the superposition
(35). This claim is controversial for several reasons [116/[118]; from our point of view
the chief problem is that no sources of environmental decoherence sensitive to the
path of the mass M are considered in any of the above, and such decoherence (which
can come from many sources, including photons, phonons, and gas atoms) is likely to
be large in any experiment where M is large enough to have appreciable gravitational
effects.

(ii) Any semiclassical theory of gravity must necessarily involve non-linear time
evolution in the matter fields, and hence break the superposition principle. This
means, for example, that in the non-relativistic limit we will be dealing with a gen-
eralized, non-linear Schrédinger equation of form

(F — ihd,)e(r,t) = f(¥(r, 1), (r,1)) (37)

where f(¢(r,t),7'(r,t)) is some arbitrary function of the matter wave-function and
its conjugate, whose origin is supposed to be gravitational (and so negligible for
microscopic masses). Equations like this can be readily generalized to relativistic fields
(see [77,78] for details), where the non-linear term now depends on the expectation
value of the field.

However, irrespective of the theory involved, equations like these run into severe
difficulties. It was noted early on [119] that the rescaling of the wave-function during
measurements required a specific logarithmic form for the potential, and it is hard
to make theories of this kind consistent if one also assumes conventional ideas about
quantum measurements. Further investigations of non-linear Schrodinger equations
by Weinberg [120},121] uncovered similar problems. The work of Weinberg, although
it had nothing to do with gravitation, had two great virtues: it encapsulated many
rather general features that such non-linear generalizations of Schrodinger’s equation
should possess, and at the same time produced a specific theory for non-linearities at
the microscopic scale which was experimentally testable (and indeed it was falsified
within a year [122-124]).

Further difficulties afflicting any non-linear quantum theory were also found by
Polchinski and others [125H128]; these included non-violation of Bell inequalities,
and superluminal signal propagation. In particular, the Schrédinger-Newton model
admits an explicit protocol for superluminal signalling [83]. We note, however, that
such effects would be quite invisible in experiments done so far, if the source of the
non-linearity is assumed to be gravitational.

(iii) It seems very difficult to derive a consistent theory including gravity, whether
it be semiclassical or fully quantized, if one also tries to use the traditional quantum-
mechanical framework of measurements, operators, observables, and states in Hilbert
space. As noted already, this problem arises clearly in the non-linear Schrodinger
treatments, where normalization problems occur when measurement operations oc-

22



cur, and the usual Born rule is violated. It is certainly generic to any semiclassical
treatment, which is inconsistent with the conventional wave function collapse - our
example above showed this. Note that this problem is not obviated by assuming an
“epistemic” interpretation for the wave-function, according to which 1 only repre-
sents an observer’s information about the world, rather than any “real” state it may
have. This is because the non-linearity of the time evolution of 1 is sourced by (7},.),
which cannot be observer dependent or undergo sudden “wave function collapse”; for
more discussion of this point, see remarks by Unruh [115] and Kibble [129).

In spite of all these problems, the semiclassical model can serve as a useful heuristic
picture, and one can imagine attempting to test it in some limited sense, in which
we simply accept the interpretation of [i) as a wavefunction and blindly apply the
Born rule. A basic prediction of this type is the lack of entanglement production
in the matter wave experiment as discussed in section [4] Another early proposal,
described by Carlip and Salzmann in 2006, was to look for a loss of coherence in
matter-wave Talbot-Lau interferometry [80}(81,|130], and more recently there have
been proposals to look for distortions in the energy spectrum of optically trapped
nanoparticles [131-133].

5.2. Collapse models

The initial formulation of quantum mechanics involved a fundamental split between
the classical and quantum worlds, with the associated “Copenhagen interpretation”
providing the glue between the two. In an attempt to make sense of this, von Neumann
in 1932 proposed the idea of a succession of entanglements between ever larger objects
(the “von Neumann chain”) truncated by a probabilistic “wave function collapse” into
one particular state [134]. The state in is a typical von Neumann state, and one
supposes that one has the transition

(Win) = 1Po) > e |dr) = > x| bl (38)

k

where the initial “system” state ), [¢x) couples to the initial “apparatus” state |®,)
in such a way that these two systems entangle with a perfect correlation between
the initial system states |¢x) and the apparatus states |®;), where we allow the final
system states |@)) to be different from the initial ones. This perfect correlation is
the defining property of a perfect measurement operation (in the basis frame of the
{¢r}). However, to then engineer a definite final state with probability P, = |cx|?,
we require a “collapse” of the superposition into just one of its branches, the k-th
component. The lack of any theory whatsoever for how this collapse occurs is the
famous measurement problem.

In what follows we only discuss ideas that have attempted to get around this
problem using a gravitational mechanism. There are basically two of these, stochas-
tic collapse models invoking a gravitational noise source, and Penrose’s gravitational
collapse model. In their simplest forms, these models also lead to a kind of semiclas-
sical model of gravitationally-induced wavefunction collapse [135,(136]. Because this
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leads to non-linearity in the Schrodinger equation, it is then clear that this idea will
have problems of the kind just discussed [83]. Thus any theory of this kind has to
address problems of internal consistency.

5.2.1.  Stochastic collapse models

Stochastic models of quantum mechanics have been advanced for a variety of reasons
over a long period of time. In the non-relativistic limit these models have an equation
of motion of general form

(F — ihd ) (x, t) = E((W[F(O;(t))|¥) , 1) (39)

where F' is some arbitrary function, and the argument of the “noise” term &((F))
involves a set of operators Oj (t) acting in the Hilbert space of the system. Work
of this kind [137], motivated by the quantum measurement problem, almost always
deals with non-relativistic QM, and assumes the usual QM structure of state vectors,
Hilbert space, and projective quantum measurements. The noise term may depend
on [1), making non-linear. Note that in contrast to any uncertainty principle
arguments [114], this approach definitely leads to decoherence, and “wave-function
collapse” caused precisely by the stochastic noise field.

Diosi [90], Ghirardi et al. |[138] and Pearle [139] have discussed the possibility of a
gravitational origin for this noise (here we will follow the treatment of Diosi). In their
models, the state of the matter system is taken to evolve according to a Schrodinger

equation with a “noise” potential, superficially similar to the starting point of the
Schrodinger-Newton equation . One has

016 = (How+ [ 5 260209 ) 10 (10)

where M (x) is a mass density operator for the system, similarly to the mass density
operator in section [l In the SN model, the potential ® is a semiclassical quantity
sourced by the state [¢) itself. In the noise model, on the other hand, this potential
is a stochastic quantity independent of |¢), whose statistical correlations involve the
gravitational propagator:

3ty — ta)
x—y|’

where (---) represents an average over realizations of the noise. Performing this
average, we obtain an evolution equation for the system density matrix:

dp = —%[Hmat, pl - % / Pxdy M <X’);( [ﬂ‘y)’ Al (42)

(@(x,1)) =0, (@(t1,x)®(ts,¥)) = Gn (41)

This equation leads to decoherence in position space, i.e. decay of the off-diagonal
density matrix elements. Our definition of the mass density operator in section
involves pointlike mass distributions. This causes the integral in to diverge! To
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remove this divergence, the massive objects were taken to have a uniform density. For
the case of a spherically symmetric, uniform sphere of radius Ry, one gets a “smeared”
mass density operator

m

M(x) = 4T R3/3

/dSXIG(Ro —|x = x'|)d(x — 1), (43)

where T means the usual single-particle position operator, and 6 is a step function.
Then a position eigenstate |xg) of the particle is an eigenstate of this mass operator,
with eigenvalue M (x|xq) given by

M(x) [x0) = M (x[x0) [x0) = (Ro — [x —%ol) [x0) - (44)

_m g
ATR3/3

With these assumptions in hand, one finds that the off-diagonal position-space
density matrix elements decay exponentially in time

pxy(t> = (x|p(t)]y) ~ pxy(o)eirpD(xy)t (45)
with rate
Frnte) = S [ ity WO - MO D0 =)

We see that superpositions between different positions x # y will be damped in time
at a rate proportional to the Newton constant.

The decoherence rate has some simple features that can be read off directly.
For one thing, if there is no superposition—-i.e. x = y—we clearly have no decoherence,
that is I' = 0. Another feature is the behavior in the limit of a “wide” superposition
|x—y| — oo. In ({40)), there are two types of terms, self-interactions involving only one
branch of the wavefunction M (x'|x)M (y’|x), similarly for y, and cross-interactions
between the x and y branches M (x'|x) M (x'|y), similarly for y’. The self-interaction
terms comes with a positive sign while the cross-terms come with a minus and thus
actually supress the decoherence. As we take the two branches to be well separated
|x—y| — 00, these cross-terms vanish, and so the decoherence rate is maximized. This
is quite reasonable; two widely-separated states are much easier for the background
“noise” to distinguish, and thus this state should decohere faster, much as it would due
to decoherence from random interactions with a thermal background (see eg. [140]).
Indeed, precisely as in that case, the maximal decoherence rate limits to a constant—it
does not grow indefinitely with the spatial separation of the wave function.

For example, consider our matter-wave experiment in figure 2 Assuming that
the particles are well-separated with respect to our cutoff scale Ax/Ry > 1, the
decoherence rate can be easily estimated. The cross-terms simply vanish, and
we are left with only the self-interaction terms, leaving

r— i_;iv //dsxldgy,M(X’IX)M(yWX) + M y)M(y'ly)  Gym? (47)

~
~
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where the approximation holds up to some dimensionless geometric factor of order
one. Note that, by the argument in the previous paragraph, the dependence on the
spatial separation Ax between the beam arms has dropped out-the dominant part
of the integral is the self-interaction terms. Observation of coherent oscillations in a
matter-wave interferometry experiment then give lower bounds on this decay rate, in
turn giving a bound on the free parameter Ry; for example, experiments using large
organic molecules [32] with m ~ 10°u and At ~ 1s give Ry = 1072 m. One can do
better with different types of interferometry; we refer the interested reader to [43] for
the state of the art.

Clearly there are several problems with such stochastic theories. A simple objec-
tion is that they are entirely non-relativistic. Worse, the prescription in for the
mass operator is highly arbitrary; by varying the mass distribution one can vary the
quantitative predictions of the theory over a very wide range. Finally, these models
are ad hoc. They address a single problem, the measurement problem, in isolation;
no general reason is given for introducing the stochastic fields, whose physical nature
is not clarified, and whose effect on other physical phenomena is hardly discussed.
Extra fields introduced in this way will likely conflict with other parts of physics;
even if this is not the case, they will have testable effects on many other physical
phenomena.

5.2.2.  Penrose collapse model

A quite different line of thought which leads in the simplest approximation to a very
similar result to that above, was given by Penrose. The reasoning behind Penrose’s
approach can be seen by going back to the state |¥) in , in which the gravitational
field is entangled with the matter field. Now let us consider what happens when we
take the inner product (V|W¥), in which there will be interference terms between the
two branches of the wavefunction. Since the state includes the quantum state of the
gravitational field, we are faced with interference terms of the form

(Pr;9'0) 1P R; g\ (48)

between the two states of the matter and metric. How are we to evaluate this ex-
pression? In particular, the two metrics ¢/ and g have in general different causal
structures, and matter fields propagating on these background metrics would have
different vacua, so it is not clear how to assign a meaning to this interference term.
Penrose has proposed that, in fact, there is an inherent difficulty in this problem
precisely because of the differing causal structures related to the two metrics. He
considered a special case where the two interfering states are stationary states, and
found the difference in Newtonian gravitational potentials between the two metrics

to be
AEY, = 4nG / dr / 8, AMLR(r) AMp(r') o)

v — |

where AMpg(r) = Mp(r) — Mg(r), and the M; are the mass density distributions
associated with each component of the wave function.
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We notice the similarity in form of this result to that found for the stochastic
decoherence rate, and we may analyze it in the same way as we did equation (46]).
However, as it stands AEY, is an energy uncertainty, related to a time uncertainty
At = h/AE] . Penrose then makes the key step of identifying At . as a deco-
herence time, to be viewed as an intrinsic decoherence existing in nature, implying a
breakdown of quantum mechanics.

Given the radical difference between the underlying physical arguments leading
to and those leading to (46]), we feel that it is a mistake to treat the Penrose
result as equivalent to the stochastic result, as is sometimes done. In particular,
while Penrose’s model is limited to the collapse of a massive superposition, the noise-
based models are more general; it seems implausible that the noise would only lead to
collapse of massive superpositions. Nevertheless, at the level of the simple decoherence
experiments considered in this paper, both models seem to give the same predictions.

Both collapse models suffer from the same imprecision in the definition of the
mass density M(r). This point was made very clearly by Kleckner et al. [141], who
compared the results for Atf , obtained by either (a) using the a Gaussian form for
M (r) representing the ground state wave-packet, or (b) a density profile concentrated
in a lattice of atomic nuclei, each of radius 10* m; in the first case one finds At , ~
1 sec, and in the second, Aty , ~ 1072 sec.

Testing either type of collapse theory proceeds most easily by preparing a single
object in some kind of superposition state, and looking for it to decohere with the
rates determined here. Experimental tests of the Penrose theory have been discussed,
notably by Marshall et al. [142] (see also |[141]). They propose an interesting design
in which a photon exists in a superposition of states located in two different optical
cavities; in one of these cavities, the mirror is on an elastic spring, and is displaced
when the photon is in the cavity, thereby entangling photon and mirror, and putting
the mirror in a superposition of states at different locations. Original estimates for
a mirror mass of 5 x 10712 kg and oscillation frequency 500 Hz (giving a zero point
spreading ~ 107! m), show that experiments to look for gravitational decoherence
here would be feasible - they have not yet been done.

5.3. Correlated Worldline Theory

In sections [5.1] and we studied models in which gravity has been invoked as a
source of non-linear quantum evolution. These models have been formulated in the
language of canonical quantization and in a non-relativistic limit. In the Schrodinger-
Newton approach, the gravitational field is treated as a fundamentally classical degree
of freedom; in the collapse models of Penrose, Diosi, et al., the actual dynamics of
the gravitational field are left unspecified. In neither case was any attempt made
to set up a real theory - the goal was to investigate the putative collapse process in
isolation.

The difficulties of setting up a new theory have already been highlighted in our
discussion of the efforts of Kibble and Weinberg, from which we learned that any
semiclassical treatment (in which the gravitational field is not quantized like the other
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fields) leads to apparently insuperable problems, and that these are compounded if we
try to keep the usual theoretical superstructure of measurements, observers, operators,
etc., that characterize conventional quantum mechanics and quantum field theory.

Thus it seems reasonable to attempt a new theory involving wholesale reconstruc-
tion, rather than just tinkering with isolated bits of the theory, while at the same
time keeping essential elements of quantum mechanics and general relativity. And - a
key point - the new theory has to be internally consistent as well as being consistent
with general physical principles and existing experiments.

An attempt at such a theory has recently been outlined in several papers [143-145],
and given the name “Correlated Worldline” (CWL) theory. Although the formalism
is rather complex in parts, the basic ideas are simple enough that we can give a brief
outline here. A more detailed introduction to the rationale and assumptions behind
the theory is also available [144]. From a purely theoretical point of view, one of
the main attractions of the CWL theory is that it shows that a consistent theory
of quantum gravity in which quantum mechanics is non-linearly modified is actually
possible. However it also has experimentally testable implications, as we shall see.

The CWL theory is formulated in the language of path integrals, as this affords a
very direct route to one thing we want to keep in the theory, which is the connection
between action and quantum phase. To explain CWL theory in outline we first recall
the standard path integral representation for the dynamics of a single particle, which
propagates from position x at time ¢ to position x’ at time ¢’ with amplitude

!4l . alt’)=x —iS[q]
U, t;x,t)= Dq e : (50)

q(t)=x

Here S[q] is the action functional and the integral is a sum over all paths q(t) with
the specified boundary conditions. We note that this is just a linear sum, with one
term for each path; this linear summation expresses the superposition principle in the
path integral, and it makes U(x',t’;x,t) unitary.

If we include the gravitational field dynamics into the theory, and look at a matter
field with action S); instead of just a particle, this generalizes to

&' o , .
U(x/,t’,gg,,;x,taﬁuu) — / Dgq Dy, e~ iOmlaguv]=iSclgu] (51)

Juv

where we now also have a path integral over all configurations of the metric g, (z)
between metric configurations g,,(r) and g, (z). The action Sg is the Einstein-
Hilbert action; and again we note that this expression is still just a linear sum over
configurations of the particle and metric. This action is the one from which we would
ordinarily derive the effective field theory studied in section [3} it is the standard
action for conventional quantum gravity. We note that there is, implicit in this path
integral, some sort of UV cutoff to deal with UV divergences.

The proposal in [143}[144] is to now enlarge the theory by allowing for correlations
between various paths ¢,¢ in the path integral. This automatically violates the
superposition principle. It is then further argued that these correlations originate in
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gravity. This gives a special place to gravity in the theory, but we note that g"(z) is
still treated as a quantum field. By fairly lengthy arguments [144] one can start with
the most general possible way of correlating the different paths, and then arrive at
a specific form for gravitational correlations, using physical arguments based on the
equivalence principle. Crucially, it turns out there are two different possible CWL
theories [145], but one of them fails certain consistency tests. In what follows we
explain the basic idea, and discuss how the CWL predictions for experiment can be
made, and how they differ from conventional quantum mechanics. These formulations
are:

(i) Summation form: In this form, we sum over all possible correlations between
different paths in the propagator - see ref. [144] for a derivation. The CWL propagator
is then an infinite sum K =), K,,, of form

m :L‘/ n g/ . .
KCWL(X/; t/,g’;x,t,g) _ Z/ H in/ Dy eilzi SJ\/I[(]ivg]*ZSG[g]‘ (52)
n=17% =1 9

Note that K is not in general unitary. The key point here is that the path integral
over the metric configurations correlates all the paths. The n = 1 term is equivalent
to ; it is just standard quantum gravity, and so reproduces the predictions of the
effective field theory picture in section [3] The next n = 2 term is

z’ g . .
Kol t.gfixtg) = | DaDue [ Dy emiSowdmal-Sadmalisiala, (53
T g

in which each path ¢; in the path integral couples to every other path ¢, via the
gravitational interaction. The higher order terms n = 3,4, ... allow more complex
correlations to develop. Figure[7]shows a diagrammatic representation of calculations
of the propagator in an expansion in gravitons.

As long as we are working with weak gravitational sources, for example particles
in a laboratory, we can ignore CWL correlations beyond n = 2, since these will be
suppressed by powers of the Planck mass. The n = 2 term comes in at the same
order in perturbation theory in the Planck mass as the n = 1 term: both terms
come from single-graviton exchange diagrams (see fig. , in the n = 1 term from
graviton exchange between two different particles, whereas in the n = 2 term from
graviton exchange between different copies of the same particle. This then leads to an
interesting pattern of correlations, in which we begin with the standard correlations
from the n = 1 term and progressively destroy them through the n > 2 terms.

There is a very concise way of formulating the summed CWL theory, which is
to write a generating functional (the analogue of the partition function in statistical
mechanics) from which all propagators, correlation functions, etc., can be derived.
For the summed CWL theory, this takes the form [144]

Q[J] = %Dg e Zni nlg, J]  (summed) (54)



Figure 7: Diagrammatic representation of the correlated worldline theory for a single-
particle propagator. The solid black lines represent particle paths ¢(t) between space-
time points x and 2’. The n = 1 terms include the usual kinds of graviton loops.
The n = 2 terms, which correlate a pair of particle paths ¢;(t), ¢2(¢), have both the
usual kinds of graviton loops (first diagram) as well as path-path correlations induced
by gravity (second diagram). Ellipses represent higher-order terms in the graviton
expansion and in CWL level n > 3.

in which @, [g, J] is that contribution to the sum coming from an n-tuple of paths, and
J(z) is an external "source” current coupled to the matter field. One then obtains
propagators and correlators automatically, just by functionally differentiating Q|J]
with respect to J(z); for details see refs. [144,/145].

However, it turns out there is a fly in the ointment - a recent more detailed investi-
gation [145] has found that the summed version of CWL theory has an inconsistency
in the semiclassical limit - thus it has to be discounted, although many useful lessons
can be learnt from it.

(ii) Product form: It turns out that one can derive a CWL theory which passes
all consistency tests: it has sensible semiclassical and perturbative expansions, and
satisfies all Ward and Noether identities. We can compare this with summed CWL
very simply by writing a new generating functional

QU] = [[GulJ]  (product) (55)
QulJ] = ]4 Dy e+l (2[g, Jc,))" (56)

where Z is just the particle generating functional in conventional field theory (with a
regulator ¢, that we do not discuss here); we are now summing over logarithms, and
In Q[J] is now used to generate correlation functions.

At first glance all one seems to have done here is substitute a logarithm of a
product in place of a sum - why is there any difference? But it turns out that the
correlations between paths that are generated come with a different weighting, and
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Figure 8: The effect of path bunching on a double-slit experiment. In (a) we see
typical paths contributing to the amplitude for a microscopic particle to pass from
a source, through a pair of slits S; and S5, to a point P on a screen - conventional
quantum mechanics is obeyed. In (b) we see one class of paths contributing to the
same amplitude when the particle mass exceeds meyw; the paths are all strongly
attracted to each other, and all the paths pass through slit S;. There is another
disjoint class of paths passing through S;, which do not interfere with those passing
through Sj.

this cures the problems in the original summation form. We still have correlations
between paths and so the superposition principle is still violated. To see how this
works in the same kind of perturbative expansion that we just described for summed
CWL theory is a little more difficult in the product version. If one evaluates the
lowest order graphs, one still sees that correlations develop between different paths.
However they now appear as a kind of gravitational attraction of the different graphs
towards the vacuum energy generated by each graph. See [145] for more on the
technical details.

The principal change in the physics caused by the correlations in CWL theory is
what is called ”path bunching”; the attractive gravitational interaction between the
paths causes them to start clustering together once the mass of the propagating object
is large enough [144//145]. This is quite different from standard quantum mechanics,
where one sums over independent paths, with the differences between the phases of
the different paths giving the usual interference phenomena. In CWL theory, path
bunching prevents paths from separating widely once the mass exceeds mewy, at
which point double-slit interference no longer becomes possible - the paths cannot
separate to encompass both slits, and the mass starts to behave classically.

The physics of path bunching is illustrated in figure [8, which contrasts the kinds
of path contributing in a double-slit experiment to the amplitude to propagate to a
given point on a screen in conventional quantum mechanics, with that prevailing in
CWL theory for a sufficiently large mass. In the latter case, a set of paths passing
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through one slit cannot be accompanied by paths traveling through the other, since
the latter paths are too strongly attracted by the former.

Note there is no decoherence involved here in the “quantum-classical transition”
between purely quantum behavour and the classical behavior for large masses; no ex-
ternal environments or noise are involved. Another key feature of the theory is that
if a microscopic system interacts with a massive measuring system, so that they be-
come entangled, then path bunching occurs for the “combined system + apparatus”,
and the pair of them now show classical behavior. As a general result the crossover
between quantum and classical dynamics happens very quickly as one increases the
mass of the objects involved |145]; unless the mass happens to be very close to mewy,
one sees either quantum dynamics or classical dynamics.

Experiments: The CWL theory has no adjustable parameters, and so testable
predictions can in principle be made. However we emphasize that to date there is
still no reliable result for the crossover mass mcw, in the product version of CWL
theory. From calculations in summed CWL theory, it is known that the crossover
mass depends on the detailed composition of the object - its shape and density, and
even its phonon spectrum - but these are all readily determined in advance. It is
expected to be rather large for typical solid bodies. In the summed CWL theory
one finds that the crossover mass is typically about 107 kg, not much less than the
Planck scale of 2.2 x 1078 kg. The crossover mass in the product CWL theory is likely
to be somewhat larger - a detailed evaluation has yet to be given.

One class of experiments involves Talbot-Lau interferometry, where we only have
one particle to deal with. In this case, the prediction would be a disappearance of the
interference pattern above a certain mass scale. We refer the reader to [143}144] for
some more detailed discussion of this type of experiment. Another experiment may be
more likely to succeed in the near term. The set-up of Marshall et al. [142] mentioned
earlier (or some variant of it), involving superpositions of mirrors on springs, should
allow spatial superpositions of much more massive objects than a Talbot-Lau set-up.
If superpositions involving masses ~ 10~ kg can be formed, this would offer an ideal
route towards testing CWL theory.

6. Conclusions

Rapid advances in the quantum control of the state of meso-to-macroscopic systems,
combined with advances in quantum sensing of tiny forces, have opened the possibility
of the first direct observation of quantum aspects of the gravitational interaction.
We have emphasized that the usual tenets of quantum field theory are in perfect
harmony with general relativity at the terrestrial scales of interest here. Gravity
can be viewed as an effective quantum field theory, which breaks down at extremely
high energies but is perfectly capable of making predictions for tabletop experiments.
On the other hand, the experimental situation is still wide open: gravity may well
be quantum, and we have endeavored to provide a representative set of models of
“classical” gravity, and their predictions in some prototypical low-energy experiments.
In this paper, we have emphasized that a number of these models-including the
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quantum field theory picture-will be testable with near-future technology.

This line of thinking presents many opportunities for both experimentalists and
theorists. Experimentally, it goes without saying that control over larger masses, su-
perposed on larger spatial scales, and with longer coherence times will be invaluable.
More detailed characterizations of non-gravitational decoherence channels are criti-
cally needed: distinguishing the tiny gravitational signatures of interest from other,
non-gravitational backgrounds will be crucial. On the theoretical side, further gen-
eration and characterization of models of low-energy gravity would be of significant
interest and utility. In particular, the precise behavior of “emergent” gravity models
in the kinds of scenarios envisioned here is an area ripe for exploration.

After nearly a century, it appears that the dream of observing the quantum nature
of gravity may finally be near at hand. That this may occur on a tabletop rather than
near a black hole or in a high-energy collider is unexpected and deeply exciting. We
have endeavored here to help set the stage for this exciting and emerging paradigm,
and look forward to rapid development of these ideas in the near future.
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