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Abstract

A map between string junctions in the affine 7-brane backgrounds and vector bun-
dles on del Pezzo surfaces is constructed using mirror symmetry. It is shown that the
lattice of string junctions with support on an affine 7-brane configuration is isomor-
phic to the K-theory group of the corresponding del Pezzo surface. This isomorphism
allows us to construct a map between the states of the N = 2, D=4 theories with EN

global symmetry realized in two different ways in Type IIB and Type IIA string theory.
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Fourier-Mukai transform acting on the D-brane configurations realizing vector bundles
on elliptically fibered B9.
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1 Introduction

The study of D-branes has provided important insights into non-perturbative aspects of

string theory as well as supersymmetric gauge theories. Supersymmetric field theories are

realized in string theory either as the effective world-volume theory of a configuration of D-

branes or as the theory on the transverse space after compactification on some appropriate

manifold. In the later case D-branes wrapped on various cycles of the compactification

manifold give rise to particles and non-critical strings in the gauge theory. Thus D-branes

provide a geometrical description of states in the supersymmetric gauge theories.

Along the process of realizing QFT’s as effective models in string theory, previously unknown

exotic SUSY theories have also been found. An example is the N = 1 six dimensional E8

theory [1, 2, 3, 4, 5, 6, 7] whose compactification on a torus leads to N = 2 theories with EN

global symmetry [8]. These four dimensional theories and their spectra are the focus of our

paper. Since there are different ways of obtaining effective field theories in string theory, some

models can be realized in different ways. Our aim is to compare two different realizations

of the same theory, namely d = 4, N = 2 SYM theory with EN global symmetry which

arises both as the worldvolume theory of a threebrane in IIB (or F-theory) [9, 10, 11, 12]

near a particular set of 7-branes, and as the compactification of IIA on a CY threefold

[12, 13, 14, 7, 15] with a shrinking del Pezzo surface in it. In this paper we will construct

the precise map between the spectra of the two different realizations of the theory.

We will first review both constructions. The states in the IIA theory on the transverse space

are obtained by wrapping D-branes on various cycles in the del Pezzo and the description of

the spectrum consists of the classification of sheaves on the surface. On the Type IIB side

the states of the D3-brane world-volume theory are (p, q) strings and string junctions with

support on 7-branes and the D3-brane. In the next section we explain that both the image

of the sheaves in the K-theory group and the junctions form a lattice. In the third section an

isomorphism between these two lattices is established and in the last section an application

of this isomorphism is given which identifies the Fourier-Mukai transform [16] of sheaves on

B9 with the SL(2,ZZ) symmetry of the dual brane configuration in IIB.

2 N = 2 theories with EN global symmetry

2.1 Compactification of IIA

We begin by reviewing how d = 4, N = 2 field theories with exceptional global symmetry

can be be realized in IIA string theory. Of the several ways involving the low energy limit
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of D-brane configurations or compactifications we use the approach commonly referred to

as geometric engineering. Compactification of IIA string theory on a non-compact CY

threefold with a shrinking 4-cycle X gives rise to a low energy theory with 8 supercharges on

the transverse space, whose spectrum is determined by the homology of that 4-cycle. When

the shrinking manifold is a del Pezzo surface, the low energy theory acquires exceptional

global symmetry because the lattice of 2-cycles contains the root lattice of an exceptional

algebra and thus admits the action of the corresponding Weyl group.

The states of the field theory are obtained from IIA D-branes wrapping various submanifolds

of X : D0’s on points, D2’s wrapping 2-cycles and D4’s on X itself. A configuration of Q D4-

branes is a U(Q)-bundle on X with instanton number given by the number of D0’s and first

Chern class being the Poincare dual to the homology class wrapped by D2-branes [17, 18].

Proper description of these D-brane configurations requires the more sophisticated notion of

sheaves on X [19, 20]. This becomes essential if configurations with and without D4-branes

are to be dealt with on equal footing. BPS states arise from supersymmetric configurations of

D-branes. Wrapped D4-branes with immersed lower dimensional branes correspond to semi-

stable torsion-free sheaves on X [19]1 while a generic configuration is described by a coherent

sheaf which is reducible to torsion and semi-stable torsion-free components corresponding to

non-immersed branes.

A del Pezzo surface X is a two complex dimensional manifold constructed by blowing up N

points on IP2 or N − 1 points on IP1 × IP1, where N ≤ 8. We denote these two families as

B̃N and BN , respectively; moreover B̃N = BN for N > 1, and thus it is sufficient to consider

B1 = IP1 × IP1 and B̃N for N = 0 . . . 8. The almost del Pezzo B̃9 is also known as 1
2
K3 [21]

since it is an elliptically fibered manifold with a base B ∼= IP1 and twelve degenerate elliptic

fibers.

2.1.1 The homology of B̃N and the EN root lattice

B̃N≤8: The 2nd homology group H2(B̃N) is N + 1 dimensional and is generated by the

elements {l, e1, . . . , eN}, where l is the generator of H2(IP
2) and ei (i = 1 . . .N) are the

exceptional curves. The intersection numbers are

#(l · l) = 1, #(ei · ej) = −δij ,
#(l · ei) = 0. (1)

The canonical class is K
B̃N

= −3l +
∑N

i=1 ei, it is used to define the degree of a 2-cycle Σ as

dΣ ≡ −#(K
B̃N

· Σ), Σ ∈ H2(B̃N ). (2)

1In this case the sheaf is constructed from the sections of the holomorphic bundle.
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The homology lattice H2(B̃N) contains the root lattice ΓN of the EN algebra. To see this,

identify the set of roots as ∆N = {C ∈ H2(B̃N ,ZZ)|#(C · C) = −2, dC = 0}, and choose the

simple roots of EN , {3 ≤ N ≤ 9} as

Ci ≡ ei − ei+1, i = 1 . . .N − 1 and CN ≡ l − e1 − e2 − e3, (3)

their intersection numbers yield the EN Cartan matrix. Using Ci as basis elements, we can

define the weight vector {ωi|i = 1 . . .N} and associate Dynkin labels λi with each curve:

#(ωi · Cj) = −δij , λi ≡ −#(C · Ci), i = 1 . . . N, (4)

such that the curve and the self-intersection is given in terms of the corresponding weight

vector:

Σ =
∑N

i=1 λiω
i − dΣ

9−N
K

B̃N

#(Σ · Σ) = −~λ · ~λ+ d2

Σ

9−N
, Σ ∈ H2(B̃N≤8,ZZ).

(5)

B̃9 : Blowing up one more point we arrive at the final case we consider:B̃9 = 1
2
K3 which is

not strictly speaking del Pezzo. It is however often referred to as almost del Pezzo having a

nef (but not ample) anticanonical class. Since B̃9 is elliptically fibered we will use a different

basis for H2(B̃9). We denote the homology class of the base and the fiber by B and F

respectively. With the choice of basis {C1 · · ·C8, B + F,B}, H2(B̃9) = ΓE8
⊕
(

1 0
0 −1

)
. In

terms of the degree dΣ and c = #(B ·Σ) the curve Σ and its self-intersection number is given

by

Σ =
∑8

i=1 λiω
i + dΣ(B + F ) + cF

#(Σ · Σ) = −~λ · ~λ+ d2
Σ + 2cdΣ, Σ ∈ H2(B̃9,ZZ).

(6)

Since H2(B̃9) contains the affine E8 root lattice, it admits the action of the affine E8 Weyl

group and all curves fall into representations of affine E8 such that dΣ and c are the level

and the grade of the representation respectively.

2.1.2 The K-theory group of del Pezzo surfaces

The K-theory group of B̃N and B1 are given as [22]:

K(B̃N) = ZZ⊕ · · · ⊕ ZZ︸ ︷︷ ︸
N+3

, K(B1) = ZZ⊕ ZZ⊕ ZZ⊕ ZZ . (7)

The K-theory group K0 of B̃N (B1) is generated by N + 3 (4) elements and being torsion

free it is isomorphic to the even-degree integral cohomology group H∗(B̃N) (H
∗(B1)). The

map is given by

K(X ) ∋ E −→ ch(E) ∈ H∗(X ). (8)
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There is a natural bilinear form on K(X ) [22]: let E1,2 ∈ K(X ) then

〈E1, E2〉 ≡
∫

X
ch(E1 ⊗ E∗

2 ) ∧ Td(X )

=
∫

X
ch(E1) ∧ ch(E∗

2 ) ∧ Td(X ) ≡
∫

X
ch(E1) ∧ ch(E2)

∨ ∧ Td(X ), (9)

where E∗ is the dual bundle, Td(X ) = 1+ 1
2
c1(X )+ 1

12
(c1(X )2+c2(X )) and if v =

∑2
i=0 vi, vi ∈

H2i(X ) then v∨ ≡
∑2

i=0(−1)ivi. Let us write
2 the Chern classes of E1,2 ∈ K(X ) as ch(Ea) =

(ra,Σa, ch2(Ea)); then we obtain3

〈E1, E2〉 = r1r2 −
#(Σ1 · Σ2) + r1ch2(E2) + r2ch2(E1) +

1

2
(r2dΣ1

− r1dΣ2
). (10)

An element (r, Σ, ch2) ∈ H∗(X ) represents an equivalence class E of sheaves on X such that

ch(E)=(r, Σ, ch2(E)) where ch2(E) =
1
2
#(Σ · Σ)−

∫
X c2(E).

Note that this bilinear form is not symmetric, the antisymmetric part is given by the deter-

minant

〈E1, E2〉 − 〈E2, E1〉 = −

∣∣∣∣∣
r1 r2
dΣ1

dΣ2

∣∣∣∣∣ . (11)

With this bilinear form K(B̃N ) has signature (N + 1, 2). This scalar product was also

considered in [23] where it was shown that for certain manifolds the matrix of scalar products

of exceptional sheaves is the same as the soliton counting matrix [24] of the corresponding

Landau-Ginzburg theory. We plan to explore the relation between the exceptional sheaves

on del Pezzos, solitons of the corresponding N = 2 Landau-Ginzburg theories and string

junctions living on affine 7-brane backgrounds further in the future.

2.2 Probe theory in IIB

Four-dimensional N = 2 theories can be realized as the world-volume theory of a D3-brane

probe in the vicinity of some 7-branes of IIB string theory. The algebra of the 7-branes

appears as the global symmetry in the 4d field theory. The states arise from strings and string

junctions[25] stretched between the D3 and (some of) the 7-branes and are characterized by

the charges of each 7-brane. Viewing the setup as an F-theory compactification on K3, these

states have the following geometrical interpretation. The position of the D3-brane singles

out a fixed elliptic fiber E∗ and the strings/junctions with a (p
q
) string segment ending on

the D3-brane can be viewed as curves in the K3 whose boundary wraps the (p, q)-cycle of

2We will use the same symbol for the 2-form and its dual 2-cycle. Thus #(Σa · Σb) ≡
∫
X
Σa ∧ Σb.

3
∫
X
c1(X ) ∧ c1(X ) = 9−N and

∫
X
c2(X ) = N + 3 for X = B̃N .
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E∗. In the dual M-theory picture the selected elliptic fiber is wrapped by an M5-brane and

the states arise from M2 branes wrapping the curves in K3 which end on the M5-brane [26].

The low energy field theory on the D3-brane in the vicinity of certain configurations of m

7-branes is insensitive to the remaining 24−m 7-branes 4. For the sake of simplicity we might

replace the K3 in our arguments by an elliptically fibered noncompact Ricci-flat manifold

Mm containing these m singular fibers only. Then the spectrum of the four dimensional

probe theory is characterized by the curves of (the elliptically fibered) Mm with boundary

on the selected elliptic fiber E∗, or the relative homology H2(Mm, E∗). The natural norm

on this lattice is given by the self-intersection of the homology elements. The BPS states

correspond to the holomorphic curves, which satisfy

#(C · C) = 2g − 2 + b, (12)

b and g being the number of boundary components on the E∗ and the genus of the curve

respectively.

Let us now specify the particular 7-brane backgrounds of our interest. The well-known EN

Kodaira singularities (N < 9) can be understood in terms of N + 2 7-branes, of which at

most N may be mutually local. A string (junction) state can be identified by specifying its

charge with respect to each 7-brane (linking number [27] or invariant charge [28]) and thus

is an element of an N + 2 dimensional lattice. To find the theories which are dual to the

ones presented in the previous section, we need a lattice of one more dimension. As it was

pointed out in [29], the relevant 7-brane background is obtained by adding an extra 7-brane

to the EN configuration so that it becomes ÊN, which was studied in detail in [31, 32, 33]

and is summarized in the following subsections. The junction lattice of ÊN, J 2,N+1, is N +3

dimensional and is of signature (2, N + 1).

2.2.1 ÊN<9

We consider the type IIB background with N + 3 non-local 7-branes of the configuration

ÊN<9. The elliptic fibration of the corresponding F-theory manifold, ÊN is characterized

by the monodromy around the singular fibers which is encoded in the 7-brane charges [34].

Denote a [p, q] 7-brane asX[p,q], with corresponding inverse monodromy5 Kp,q =
(

1+pq −p2

q2 1−pq

)
.

Then ÊN is defined in terms of the following 7-brane configuration6:

(X[1,0])
N X[6,−1]X[−3,1] X[0,1] K(ÊN) =

(
1 9−N
0 1

)
, (13)

4It was shown in [30] that the only 7-brane backgrounds which allow such a decoupling are the ones with
elliptic or parabolic monodromy.

5 Kp,q is the SL(2,ZZ) action felt by a string as it crosses the branch cut of the 7-brane.
6This configuration is identical to

̂̃
EN of [33] up to an overall transformation with T 4 ∈ SL(2,ZZ).
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K(ÊN) being the overall monodromy. If we remove the X[0,1]-brane, the remaining N+2

7-branes can be collapsed to the EN Kodaira-singularity with overall monodromy and asso-

ciated binary quadratic form [32]:

K(EN) =
(

1 9−N

−1 N − 8

)
fEN

(p, q) =
p2

9−N
+ pq + q2. (14)

Let us consider EN first. In a suitable basis [28] a junction can be written as J =
∑N

i=1 λiω
i+

pωp+ qωq, and the self-intersection form on the homology lattice H2(EN , E∗) factorizes such

that the curve J with boundary wrapping the (p, q)-cycle of the E∗ has norm

(J,J) = −λ2
EN

+ fEN
(p, q), (15)

where λ is a vector of the EN weight lattice. Back to ÊN , the addition of the “affining” X[0,1]

7-brane gives rise to one more basis element, which we call δ(−1,0) and choose to be a closed

(−1
0
) string (oriented counterclockwise) encircling all of the 7-branes:

J =
N∑

i=1

λiω
i + pωp + qωq + nδ(−1,0), (16)

(J,J) = −λ2
EN

+ 2nq + fEN
(p, q). (17)

In this case the norm does not factorize as in (15); the first two terms, however, can be

regarded as the norm of a weight vector in the affine lattice ÊN .

Eqns. (15) (17) determine the self-intersection number of a curve in ÊN with boundary on

the selected fiber. There is some ambiguity in extending this formula to mutual intersection

between curves whose boundary wraps different cycles of the torus, which is resolved by

specifying the contribution of the intersecting boundaries of two curves depicted in Fig. 1.

Linearity of the intersection number requires that if J1 and J2 wrap the (p1, q1) and (p2, q2)

p
q( )1

1 p
q( )2

2

p
q( )1

1
p
q( )2

2

. . .

Figure 1: Two curves (junctions) whose boundary wraps intersecting cycles of the selected elliptic
fiber.

cycle of the T 2 respectively, then the contribution from the boundary is

(J1,J2)boundary = α
∣∣∣p1 p2
q1 q2

∣∣∣ (J2,J1)boundary = (1− α)
∣∣∣p1 p2
q1 q2

∣∣∣ . (18)
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In [28] the contribution was postulated to be symmetric (α = 1
2
), which led to fractional

intersection numbers in general. This is not suitable for us because the metric on the lattice

of the dual theory is manifestly integral. We shall utilize the simplest integral choice: α = 1,

so that (J1,J2)boundary = p1q2−q1p2 and (J2,J1)boundary = 0. Together with (17) this uniquely

fixes the intersection matrix on the junction lattice which is straightforward to determine.

Summary: A 3-brane parallel to the singular fibers of an F-theory compactification on a

ÊN manifold realizes a d = 4, N = 2 theory whose states are characterized by an N + 3

dimensional charge lattice equipped with following intersection bilinear form in the basis

{αi|i = 1, ..., N ;ωp , ωq , δ(−1,0)}:




−EN
1

9−N
1 0

0 1 1
0 1 0


 , (19)

where EN is the Cartan matrix of the corresponding Lie algebra.

2.2.2 Ê9

Going beyond N = 8 in the series of the 7-brane configurations of (13) we encounter Ê9 which

is special from numerous aspects. The overall monodromy is trivial and as a consequence,

it admits two linearly independent closed strings encircling the 7-branes. It is useful to

visualize the configuration in the following way:

X[1,0]

(
(X[1,0])

8 X[6,−1]X[−3,1]

)
X[0,1] = X[1,0] (E8) X[0,1], (20)

and think about it as being “doubly affined” [33]. One possible basis for the lattice of

junctions being supported on this configuration is

J =
8∑

i=1

λiω
i + pωp + qωq + n1 δ

(−1,0) + n2 δ
(0,1) (21)

(J,J) = −λ2
E8

+ 2n1q + 2n2p+ fE8
(p, q) =

= −λ2
E8

+ 2n1q + 2n2p+ p2 + pq + q2, (22)

with intersection matrix in the basis {αi|i = 1, .., 8 ; ωp , ωq , δ(−1,0) , δ(0,1)} is



E8

1 1 0 1
0 1 1 0
0 1 0 0
1 0 0 0



. (23)
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2.3 3-cycles and string junctions

Mirror symmetry relates type IIA string theory compactified on a Calabi-Yau threefold M

to type IIB on the mirror manifold W [35]. It follows from the interpretation of mirror

symmetry as T-duality [36, 37] that the even cohomology classes of M are mapped to the

odd cohomology classes of W and therefore the complexified Kähler structure parameters

of M are exchanged with the complex structure parameters of W [38]. Vector bundles with

characteristic classes represented by the even cohomology classes map to 3-cycles dual to the

odd cohomology classes [39].

2.3.1 The mirror of a Calabi-Yau threefold containing B9

A Calabi-Yau threefold, M , containing B9 can be described as a double elliptic fibration over

IP1 [21],

y2i = x3
i + f4,i(z) xi + g6,i(z), i = 1, 2, (24)

where z is the coordinate on the IP1. The total space of each fibration over the sphere

defines a B9 surface. As shown in [21], this CY threefold can also be obtained by resolving

the singularities of a ZZ2 × ZZ2 orbifold of T 2 × T 2 × T 2. If ξ1,2,3 are the complex coordinates

on the three tori then the orbifold action is given by [21]

(ξ1, ξ2, ξ3) → (ξ1 +
1
2
, ξ2,−ξ3) and (ξ1, ξ2, ξ3) → (ξ1, ξ2 +

1
2
,−ξ3), (25)

and the third torus becomes the IP1 after the identification. The holomorphic 3-form is

Ω(3) = dz dx1

y1

dx2

y2
with z being the coordinate on the IP1. To obtain the non-compact CY-

threefold containing B9, we decompactify the fiber of one of the elliptic fibrations by tak-

ing its area to infinity i.e. we consider the limit of the complexified Kähler parameter

B + iA ≡ ρ → i∞.

The mirror threefold W is obtained by performing T-duality on one of the cycles of each

torus. The decompactification limit of M then maps to the limit of W when the complex

structure parameter τ of the elliptic fibration goes to i∞ which in effect decompactifies one

of the cycles of the torus. The local model for this is given by

y22 − x2
2 = (z − z∗). (26)

Since we want the degenerate complex structure limit for the entire elliptic fibration, we

adopt the above model globally over IP1. The structure of W then is that of a T 2 × S1
c × IR

fibration over a IP1 and the holomorphic 3-form becomes

Ω(3) = dz
dx1

y1

dx2

x2

=
dx2

x2

Ω(2), (27)

9



where Ω(2) is the holomorphic 2-form on B9. Since the canonical bundle of B9 is non-trivial

this holomorphic two form has zeros or poles at the 2-cycle dual to the first Chern class of

the canonical bundle. The total space can be visualized as a double fibration over IP1: the

T 2 fibration constitutes a B9 surface and a cylinder is also fibered over its base. At one point

z∗ ∈ IP1 the nontrivial cycle of the S1
c × IR shrinks to zero size. We denote the elliptic fiber

of B9 above this point by E∗.

P 1I

E*
z12

z1

z*

z i
z

Figure 2: The non-compact mirror Calabi-Yau W , as an S1
c × IR fibration over the base of the

elliptically fibered B9. At the points zi different cycles of the elliptic fiber of B9 are shrinking while
at z∗ the S1

c shrinks.

2.3.2 3-Cycles in W

Mirror symmetry maps the even homology of M to the odd homology of W . Since W is

simply connected the only odd homology elements of W are the 3-cycles of the following

type [21]:

• S1
c × S2: Here S2 = C is a curve in B9 and S1

c is the non-trivial cycle of the S1 × IR

fibration. There are eight such cycles on which the holomorphic 3-form Ω(3) is non-

zero: S1
c × Ci, i = 1 . . . 8 with Ci given in (3) corresponding to the roots of the E8 root

lattice embedded in H2(B9).

• S3: There are two such (linearly independent) cycles. They are formed by S1
c × S1

fibered over intervals I1,2 such that S1 shrinks on one end of the interval and S1
c shrinks

at the other side.

• T 3: There are again two (linearly independent) cycles of this type. These are formed

by S1
c in the S1

c ×IR fibration and a torus in the B9. The torus in the B9 is formed from

the circle surrounding the position of the degenerate fibers on the base and a 1-cycle

of the elliptic fiber.
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2.3.3 String junctions from 3-cycles

Let π : B9 = X → IP1 be an elliptic fibration. We denote by E∗ = π−1(z∗), as discussed

before, a fixed non-degenerate elliptic fiber. The section e : IP1 → X is such that e(IP1) = B

with B2 = −1. The three-cycles in the non-compact Calabi-Yau threefold W are of the form

C × S1
c , where C is a curve in B9 with a boundary such that C ∩E∗ = ∂C ∈ H1(E∗,ZZ). With

any such curve C ∈ X we can associate a junction JC living on the base B,

JC = e(π(C)). (28)

If ∂C = 0, the corresponding junction has no asymptotic charge and has support only on

the 7-branes, the positions of the degenerate fibers. When ∂C = (p, q) ∈ H1(E∗,ZZ) the

corresponding junction has asymptotic charge (p, q) on the D3-brane, the position of E∗ on

the base.

We summarize the mirror symmetry map between the homology of B9 and the 3-cycles of

the mirror Calabi-Yau W in the following table. I1 and I2 represent curves on the base from

z1 and z12 to z∗ respectively. δ is the path encircling the 7-branes. S1 and S1
D are the two

basis 1-cycles of the elliptic fiber.

H∗(B9) H3(W) J 2,10 A(Σ) =
∫
ΣΩ(2)

Ci, i = 1 . . . 8 S2 × S1
c = Ci × S1

c Ci mi =
∫
Ci
dz dx

y

B S3 = I1 × (S1 × S1
c ) a1 = x[1,0] φ =

∫ z∗
z1

dz
∮
[1,0]

dx
y

F T 3 = δ × S1 × S1
c δ(0,1) τ =

∮
δ dz

∮
[0,1]

dx
y

B9 S3 = I2 × (S1
D × S1

c ) x[0,1] φD =
∫ z∗
z12

dz
∮
[0,1]

dx
y

0–cycle T 3 = δ × S1
D × S1

c δ(−1,0) τD =
∮
δ dz

∮
[−1,0]

dx
y

The following table shows the del Pezzo surfaces and the corresponding dual 7-brane config-

urations:

Complex surface Brane Configuration Algebra

B̃0 = IP2 X[6,−1]X[−3,1]X[0,1] Ê0

B̃1 = IP2#ĪP
2

X[6,−1]X[−3,1]X[0,1]
̂̃
E1 = û(1)

B1 = IP1 × IP1 X[1,−1]X[1,1]X[1,−1]X[1,−1] Ê1 =
̂su(2)

B̃N>1 =





IP2# ĪP
2
# . . .#ĪP

2

︸ ︷︷ ︸
N

(IP1 × IP1)# ĪP
2
# . . .#ĪP

2

︸ ︷︷ ︸
N−1





ANX[6,−1]X[−3,1]X[0,1]

AN−1(X[1,−1]X[1,1])
2

ÊN
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3 String junctions and Vector bundles

3.1 B9 and Ê9

We map the equivalence classes of sheaves on B9 to string junctions with support on the Ê9

7-brane configuration. Recall that in [29] the map between curves and junctions of zero q

charge living on E9 7-brane configuration was given. According to that map a curve

Σ =
8∑

i=1

λiω
i + dΣ(B + F ) + cF ∈ H2(B9,ZZ), (29)

corresponds to a family of junctions

JΣ(m) ≡
8∑

i=1

λiω
i + dΣω

p + cδ(0,1) +mδ(−1,0) , m ∈ ZZ . (30)

Different values of m correspond to different bundles on Σ. We denote by OΣ(m) a (torsion

sheaf whose restriction to its support is a) bundle on Sigma with ch(OΣ(m)) = (0 , Σ , m+
1
2
dΣ). A D2-brane wrapped on B maps to a D4-brane wrapped on B9 after T-duality, which

we will interpret as an SL(2,ZZ) transformation by S. Therefore we require that the map

between the junctions and bundles should satisfy the following conditions:

• The rank of the bundle F is the q-charge of the corresponding junction.

• The degree dΣ of the first Chern class Σ of the bundle, is the p-charge of the junction.

• 〈F ,F〉 = −#(JF · JF).

By equating the two scalar products and requiring that they be equal for all (r, dΣ) = (q, p)

we get a unique map between the bundle data and the junction data. It follows that a bundle

F with

ch(F) = (r ,Σ , k) , Σ =
8∑

i=1

λiω
i + dΣ(B + F ) + cF, (31)

corresponds to the junction

JF =
∑8

i=1 λiω
i + dΣω

p + cδ(0,1) + rωq − (r + k + 1
2
dΣ)δ

(−1,0). (32)

3.2 BN and ÊN

The map between K(BN ) and ÊN for N < 9 follows from the above map. Blowing down an

exceptional curve corresponds to removing a X[1,0] 7-brane of the Ê9 7-brane configuration.

12



By this process we not only decouple the string junction with support on that brane but we

also lose the δ(0,1) string junction. It then follows from (32) that a class F ∈ K(BN) such

that

ch(F) = (r ,Σ , k) , Σ =
N∑

i=1

λiω
i −

dΣ

9−N
KBN

∈ H2(BN ,ZZ), (33)

corresponds to

JF =
N∑

i=1

λiω
i + dΣω

p + rωq − {r + k +
1

2
dΣ}δ

(−1,0) . (34)

where r + k + 1
2
dΣ ≡ χ(F) is the Euler-Poincare characteristic of F . K(BN) is an abelian

group, the inverse of F is −F and the associated junction is −JF . With this identification

we get

〈F1,F2〉 = −#(JF1
· JF2

). (35)

3.3 Genus of the junction and dimension of the moduli space

Let F be a stable holomorphic vector bundle on B9 with ch(F) = (r,Σ, k) such that

gcd(r, dΣ) = 1. We denote the corresponding special Lagrangian 3-cycle in the mirror Calabi-

Yau and the BPS junction by CF and JF respectively. The dimension of the moduli space

M(r,Σ, k) of the vector bundle is −〈F ,F〉+1 while the moduli space is empty if 〈F ,F〉 > 1

[41, 40]. From the correspondence with junctions we see that [42]

dim M(r,Σ, k) = #(JF · JF ) + 1
= 2g − 2 + gcd(r, dΣ) + 1 = 2g,

(36)

where g is the genus of the curve associated with the junction. This is in agreement with

Vafa’s conjecture [39] that the map between the 3-cycles and the vector bundles should be

such that

H i(End F) = H i(CF ,W ). (37)

It follows from the above identification that

〈F ,F〉 ≡
∑2

i=0(−1)idim Exti(F ,F) ≡
∑2

i=0(−1)idim H i(End F)
=

∑2
i=0(−1)idim H i(CF ,W ) =

∑2
i=0(−1)ibi

= χ(CF) + 1
(38)

and therefore

dim M(r,Σ, k) = −〈F ,F〉+ 1
= −χ(CF) = 2g.

(39)
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We summarize the results of this section in the following table. OX is the structure sheaf of

the manifold X and is the trivial rank one bundle corresponding to a D4-brane wrapped on

X . OΣ(m) and Ox are the torsion sheaf and the skyscraper sheaf respectively.

D-branes F ch(F) string junction

D4-brane O
B̃N

(1, 0, 0) ω
q − δ(−1,0)

D2-brane +mD0-branes OΣ(−m), m ∈ ZZ≥0 (0,Σ, 1
2
dΣ −m) JΣ(m− dΣ)

D0-brane Ox, x ∈ BN (0, 0,−1) δ(−1,0)

3.4 Fourier-Mukai transform and SL(2,ZZ)

In this section we will show that a Fourier-Mukai transformation [16] on B9 = X can be

identified with an SL(2,ZZ) transformation by S =
(

0 −1
1 0

)
on the dual 7-brane background

Ê9.

Let F be a complex of sheaves 7 on π : X → IP1 such that ch(F) = (r,Σ, k). The Fourier-

Mukai transform S maps this to a complex of sheaves S(F) on X̂, where π̂ : X̂ → IP1 is the

dual elliptic fibration. Let Ŝ be the Fourier-Mukai transform which maps Ĝ, a complex of

sheaves on X̂ with ch(Ĝ) = (r̂, Σ̂, k̂), to Ŝ(Ĝ), a complex of sheaves on X . The Chern classes

of these complexes are given by [16]

ch0(S(F)) ≡ r̂′ = dΣ,

ch1(S(F)) ≡ Σ̂′ = −w(Σ) + (dΣ − r)B + {k + #(Σ · B) + 1
2
dΣ}F,

ch2(S(F)) ≡ k̂
′
= −dΣ − #(Σ · B) + 1

2
r,

(40)

and

ch0(Ŝ(Ĝ)) ≡ r′ = d
Σ̂
,

ch1(Ŝ(Ĝ)) ≡ Σ′ = w−1(Σ̂)− (d
Σ̂
+ r̂)B + {k̂− #(Σ̂ ·B)− 1

2
d
Σ̂
}F,

ch2(Ŝ(Ĝ)) ≡ k′ = −d
Σ̂
− #(Σ̂ · B)− 1

2
r̂, ,

(41)

where w : H2(X,ZZ) → H2(X̂,ZZ) is an automorphism induced by isomorphism between X

and X̂ . This automorphism is such that w(B) = B and w(F ) = F , therefore it corresponds

to a Weyl transformation on the E8 root lattice, ΓE8
⊂ H2(X,ZZ).

7String junctions related by branch cut moves are physically equivalent. To a given (r,Σ, k) there corre-
sponds a family of string junctions related to each other by branch cut moves. Since as shown in [44] only
the image of the complex in the K-theory group is physically relevant, this image is sufficient to construct a
member of the corresponding family of string junctions. These aspects of string junctions and their relation
with derived categories is under investigation.
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Thus we see that
(
d
Σ̂′

r̂′

)
=
(
0 −1
1 0

)(
dΣ

r

)
,

(
dΣ′

r′

)
=
(
0 −1
1 0

)(
d
Σ̂

r̂

)
, (42)

and

ch(Ŝ(S(F))) = −ch(F) (43)

〈 Ŝ(Ĝ), Ŝ(Ĝ) 〉 = 〈S(F),S(F) 〉 = 〈F ,F〉. (44)

If we denote the junction corresponding to F by JF , then
8

JF =
∑8

i=1λ
Σ
i ω

i + dΣω
p + rωq + #(Σ · B)δ(0,1) − (r + k + 1

2
dΣ)δ

(−1,0),

JS(F) = −
∑8

i=1w(λ
Σ
i )ω

i − rωp + dΣω
q + {r + k− 1

2
dΣ}δ

(0,1) + #(Σ ·B)δ(−1,0),

and

J
Ĝ

=
∑8

i=1λ
Σ̂
i ω

i + d
Σ̂
ωp + r̂ωq + #(Σ̂ · B)δ(0,1) − (r̂ + k̂ + 1

2
d
Σ̂
)δ(−1,0), (45)

J
Ŝ(Ĝ)

=
∑8

i=1w
−1(λΣ̂

i )ω
i − r̂ωp + d

Σ̂
ωq + {r̂ + k̂ + 1

2
d
Σ̂
}δ(0,1) + {#(Σ̂ ·B) + r̂}δ(−1,0).

It is straightforward to show that JS(F) and J
Ŝ(Ĝ)

are obtained from JF and J
Ĝ
respectively

by a global SL(2,ZZ) transformation by S =
(

0 −1
1 0

)
and branch cut moves inducing the E8

Weyl transformation w. The branch cut moves, however, are different for JS(F) and J
Ŝ(Ĝ)

and correspond to different Weyl transformations of affine E8 [43]. Therefore we see that the

Fourier-Mukai transform is the S-duality transformation of the type IIB 7-brane background

Ê9, and the sign ambiguity referred to in [44, 45] is required for the proper identification

between junctions and vector bundles.
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