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1. Holographic Principle

1.1 The holographic principle for general spacetimes

In ref. [1] a covariant entropy bound was conjectured to hold in general space-times.

The bound can be saturated, but not exceeded, in cosmology and in collapsing re-

gions. Applied to finite systems of limited self-gravity, it reduces to Bekenstein’s

bound [2]. For a D-dimensional Lorentzian space-time, the covariant bound can be

stated as follows:

Covariant entropy conjecture Let A be the area of a connected (D− 2)-dimen-
sional spatial surface B. Let L be a hypersurface bounded by B and generated by one
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of the four null congruences orthogonal to B. Let S be the total entropy contained

on L. If the expansion of the congruence is non-positive (measured in the direction

away from B) at every point on L, then S ≤ A/4.
The conjecture can be viewed as a generalization of an entropy bound proposed by

Fischler and Susskind [3]. It differs in that it considers all four light-like directions

and selects some of them by the criterion of non-positive expansion. Several concepts

crucial to a light-like formulation were recognized earlier by Corley and Jacobson [20],

who distinguished between “past and future screen maps” and drew attention to the

role of the expansion. We should also point out a number of recent proposals for

entropy bounds in cosmology [4, 5, 6, 7, 8] (see sec. 3.4).

The covariant entropy bound is manifestly invariant under time reversal. This

property cannot be understood if the bound applies only to thermodynamic entropy.

One is thus forced to interpret the bound as a limit on the number of degrees of

freedom (Ndof) that constitute the statistical origin of any thermodynamic entropy

that may be present on L. Since no assumptions about the microscopic properties of

matter were made, the limit is fundamental [1]. There simply cannot be more inde-

pendent degrees of freedom on L than A/4, in Planck units. This conclusion compels

us to embrace the holographic conjecture of ’t Hooft [9] and Susskind [10], and it

motivates the following background-independent formulation of their hypothesis:

Holographic principle Let A be the area of a connected (D − 2)-dimensional
spatial surface B. Let L be a hypersurface bounded by B and generated by one of

the four null congruences orthogonal to B. Let N be the number of elements of an
orthonormal basis of the quantum Hilbert space that fully describes all physics on L.

If the expansion of the congruence is non-positive (measured in the direction away

from B) at every point on L, then N ≤ eA/4.
Simplifying slightly,1 one could state that Ndof ≤ A/4, where Ndof is the total

number of independent quantum degrees of freedom present on L.

The holographic principle thus assigns at least two light-like hypersurfaces to

any given spatial surface B and bounds Ndof on those hypersurfaces. The relevant

hypersurfaces can be constructed as follows (see ref. [1] for a more detailed discus-

sion). There will be four families of light-rays orthogonal to B: a past-directed and a

future-directed family on each side of B. Consider only the families with non-positive

expansion away from B. Generically there will be two such families, but if the ex-

pansion is zero in some directions, there may be as many as three or four. Pick one of

the allowed families and follow each light-ray until the expansion becomes positive or

a boundary of space-time is reached. The null hypersurface thus generated is called

a light-sheet. Ndof on a light-sheet of B will not exceed a quarter of the area of B.

1We thank Gerard ’t Hooft for suggesting a formulation in terms of Hilbert space.
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In general, the holographic principle associates the area of a surface B with Ndof
on null hypersurfaces, not spatial regions, bounded by B. Under certain conditions,

however, the bound does apply to space-like hypersurfaces as well. This was shown in

ref. [1] for the covariant entropy bound. For the holographic principle, the derivation

can be repeated, with “entropy” replaced by “Ndof .” It yields the following theorem:

Spacelike projection theorem Let A be the area of a closed surface B possessing

a future-directed light-sheet L with no boundary other than B. Let the spatial region

V be contained in the intersection of the causal past of L with any spacelike hyper-

surface containing B. Let Ndof be the total number of independent quantum degrees

of freedom present on V . Then Ndof ≤ A/4.
The theorem can be widely applied and easily understood. Under the stated con-

ditions, none of the degrees of freedom on V can escape through holes in L or be

destroyed on a singularity. Then causality and the second law of thermodynamics

require all degrees of freedom on V to be present on L as well. On L their number is

bounded by the holographic principle, so it must be bounded also on V . The space-

like projection theorem will be of use in a number of spacetimes, including de Sitter

and AdS (sec. 3).

1.2 Outline

The holographic principle is a relation between space-time geometry and the number

of degrees of freedom. It is not equivalent to the statement that there exists a

conventional theory without gravity, living on the boundary of a space-time region,

with one degree of freedom per Planck area, by which all bulk phenomena including

quantum gravity can be described. The holographic principle is clearly necessary for

the existence of such a theory, but as we will argue below, it is not sufficient.

The holographic principle does imply, however, that all information contained on

L can be stored on the surface B, at a density of no more than one bit per Planck area.

(We neglect factors of ln 2.) We shall work with this interpretation. For a given space-

time, we ask whether the information in the interior can be completely projected (in

accordance with our formulation of the holographic principle) onto suitable hypersur-

faces which will be called screens. We are led to a construction (sec. 2) under which

the space-time is sliced into null hypersurfaces L. Each light-ray on L is followed in

the direction of non-negative expansion until the expansion becomes zero. This yields

a preferred location for a screen encoding the information on L. By repeating this pro-

cedure for every slice L, one obtains one or more screen-hypersurfaces. They will ei-

ther be located on the boundary or will be embedded in the interior of the spacetime.

We establish conditions under which projection along spacelike directions is possible.

In sec. 3 we apply the construction to examples of space-times, including anti-

de Sitter space, Minkowski space, de Sitter space, cosmological solutions, and black

holes. We find that AdS has highly special properties under our construction, as it
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admits spacelike projection onto timelike screens of constant area. For all examples

we find that the information in the entire spacetime can be projected onto preferred

screens. For spaces with black holes, inequivalent slicings lead to different screen

structures. We relate this to the question of information loss.

We discuss the structure of holographic screens in sec. 4, and draw some con-

clusions. In a number of examples, the screen-hypersurfaces are spacelike. In other

examples they are null or timelike, with the spatial area depending on time. One

would not expect such screens to admit a conventional Lorentzian quantum field

theory with one degree of freedom per Planck area, because the number of degrees

of freedom would have to be time-dependent.

This suggests that a distinction should be made between a dual theory, and

the holographic theory (sec. 4.2). In both types, the holographic principle would

be manifest. A dual theory would be characteristic of a certain class of space-

times. It would be a conventional theory without gravity, living on the geometric

background defined by a holographic screen of the space-time and containing one

degree of freedom per Planck area. It would complement, or be equivalent to, a

quantum gravity theory living in the bulk, and could thus be used to describe bulk

physics. The conformal field theory on the boundary of AdS [11, 12, 13, 14] is an

example of a dual theory.

The existence of a dual theory in a given class of space-times will depend on

certain properties of the projection and the screen which we aim to expose. More

generally, the structure of screens points to a fundamental theory in which quantum

degrees of freedom are a derived concept, and their number can change. The the-

ory must give rise to gravity by permitting the unique reconstruction of space-time

geometry from the effective number of degrees of freedom in such a way that the

holographic principle is manifestly satisfied (sec. 4.3). We call this the holographic

theory. Clearly it cannot be a conventional quantum field theory living on a pre-

defined geometric background. Perhaps an indication of its character can be gained

from certain proposals of ’t Hooft [9, 15].

Notation and conventions We work with D-dimensional Lorentzian manifolds

M . The terms light-like and null are used interchangeably. Any (D−1)-dimensional
submanifold H ⊂ M is called a hypersurface of M [16]. If D − 2 of its dimensions
are everywhere spacelike and the remaining dimension is everywhere timelike (null,

spacelike), H is called a timelike (null, spacelike) hypersurface. By a surface we al-

ways refer to a (D− 2)-dimensional spacelike submanifold B ⊂M ; by area we mean
the proper volume of a surface. By a light-ray we do not mean an actual electromag-

netic wave or photon, but simply a null geodesic. We use the terms null congruence,

and family of light-rays, to refer to a congruence of null geodesics [16, 17]. The term

light-sheet is defined in sec. 1.1; the terms projection, screen, and screen-hypersurface

in sec. 2.1; dual theory and holographic theory in sec. 4.2. We set h̄ = c = G = k = 1.
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2. Holographic projection

2.1 Screens

The construction described in the previous section answers the following question:

Given a surface B of area A, what is the hypersurface L on which Ndof is bounded

by A/4? We will now consider space-times globally, and ask a different question:

which surfaces store the information contained in the entire space-time? To answer

this question, the above prescription should be inverted. Given a null hypersurface

L, one should follow the geodesic generators of L in the direction of non-negative

expansion. One can stop anytime, but one must stop when the expansion becomes

negative. This procedure will be called projection. The (D − 2)-dimensional spatial
surface B spanned by the points where the projection is terminated will be called a

screen of the projection. If the expansion vanishes on every point of B, it will be

called a preferred screen.

Preferred screens are of particular interest for a simple reason. The expansion

of the projection typically changes sign on a preferred screen B. Therefore B will

be a preferred screen for projections coming from two directions, e.g., the past-

directed outgoing and future-directed ingoing directions. It will thus be particularly

efficient in encoding global information. (Actually, there may be a deeper reason why

preferred screens play a special role. We suspect that they are precisely the surfaces

for which the holographic bound, Ndof ≤ A/4, is saturated. This is suggested by
considerations in sec. 4.2 of ref. [1]. There it was found that the covariant entropy

bound can be saturated on the future light-sheet of an apparent horizon, but not

on the future light-sheets of smaller spheres inside the apparent horizon. Under

the projection that generates those light-sheets, the apparent horizon is a preferred

screen. This argument should be viewed with caution, however, because there might

be independent, practical reasons why the thermodynamic entropy cannot be made

as large as Ndof for the smaller spheres.)

By following all generators of the null hypersurface L in a non-contracting di-

rection to a screen, we obtain a projection of all information on the hypersurface

onto one or more screens, which may be embedded in the hypersurface, or may lie

on its boundary. The number of screens can be minimized by using preferred screens

whenever possible.

2.2 Screen-hypersurfaces

In order to project the information in a space-timeM , our strategy will be to sliceM

into a one-parameter family of null hypersurfaces, {L}. This will be possible in all
examples we consider. Usually the slicing is highly non-unique, but the symmetries of

most space-times of interest reduce the number of inequivalent slicings considerably.

To each slice L, we apply the projection rule. This procedure yields a number of

one-parameter families of (D−2)-dimensional screens. Each family forms a (D−1)-

5



J
H
E
P
0
6
(
1
9
9
9
)
0
2
8

dimensional screen-hypersurface embedded in M or located on the boundary of M .

(This sounds a lot more complicated than it is — see the “recipe” in sec. 2.3 and the

figures in sec. 3 below.) The screen-hypersurfaces can be time-like, null, or space-like;

in sec. 3 examples of each type will be found. In general, the causal character can

change from time-like to space-like within the screen-hypersurface.

Usually it will be clear whether we are talking about a screen (a spatial sur-

face), or a (D − 1)-dimensional hypersurface formed by a one-parameter family of
screens. Therefore we will often refer to a screen-hypersurface loosely as a “screen”

of M . If the hypersurface consists of preferred screens, we call it a preferred screen-

hypersurface, or loosely a preferred screen of M . If the expansions of both indepen-

dent pairs of orthogonal families of light-rays vanish on a screen, it will be preferred

under all four projections that end on it. We will call such a screen, and hypersurfaces

formed by such screens, optimal.

So far we have discussed only null projection, i.e., projection of information along

null hypersurfaces. It is sometimes possible to project information along spacelike

hypersurfaces. Namely, spacelike projection of the information in a spatial region V

onto a screen B is allowed if V and B satisfy the conditions set forth in the “spacelike

projection theorem” (sec. 1.1). This will be significant in a number of space-times,

in particular in de Sitter and anti-de Sitter space.

2.3 The recipe

To construct screens, one must slice a space-time into null hypersurfaces. In view of

the spherical symmetry of all metrics considered below, it will be natural to slice them

into a family {L} of light-cones centered at r = 0.2 The family can be parametrized
by time. This will leave two inequivalent null projections, namely along past or

future-directed light-cones. Often the light-cones will be truncated by boundaries of

the space-time and will not include r = 0, but this does not matter. In the case

of spherical symmetry, one thus obtains the following recipe for the construction of

screens:

1. Draw a Penrose diagram. Every point represents a (D − 2)-sphere. Each
diagonal line represents a light-cone. The two inequivalent null slicings can be

represented by the ascending and descending families of diagonal lines.

2. Pick one of the two families. Now the question is in which direction to project

along the diagonal lines.

3. Identify the apparent horizons, i.e. hypersurfaces on which the expansion of

the past or future light-cones vanishes. They will divide the space-time into

normal, trapped, and anti-trapped regions. In each region, draw a wedge whose

legs point in the direction of negative expansion of the cones.
2In Minkowski-space, we will also consider a family of light-rays orthogonal to a flat (D−2)-plane.
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4. On a given diagonal line (i.e. light-cone), project each point towards the tip of

the local wedge, onto the nearest point (i.e. sphere) Bi where the direction of

the tip flips, or onto the boundary of space-time as the case may be.

5. Repeat for every line in the family. The surfaces Bi will form (preferred)

screen-hypersurfaces Hi.

Below we will strive to make these steps explicit by including two or three Pen-

rose diagrams for most examples. In the first diagram, the apparent horizons will be

identified and the wedges placed. For each inequivalent family of light-cones, we will

then provide a diagram in which the projection directions are indicated by thick ar-

rows. We invite the reader to verify that these directions are uniquely determined by

the wedges. Screens will be denoted by thick points, preferred screen-hypersurfaces

by thick lines.

3. Examples

3.1 Anti-de Sitter space

Type IIB string theory on the background AdS5×S5, with N units of flux on the S5,
appears to be dual to (3 + 1)-dimensional U(N) supersymmetric Yang-Mills theory

with 16 real supercharges [11]. One can consider this theory to live on the boundary

of the AdS space. The correspondence between bulk and boundary [12, 13] relates

infrared effects in the bulk to ultraviolet effects on the boundary [18, 19, 13]. This

feature was exploited by Susskind and Witten [14] to show that the boundary theory

has only one degree of freedom per Planck area, as required by the holographic

principle in the traditional, “spacelike” form in which it has often been expressed.

We wish to understand some of these properties from the perspective of the

general formulation of the holographic principle given in sec. 1.1. From this point

of view, the bulk information is projected along null directions in general, and along

spacelike directions only if certain conditions are met. We will verify that these

conditions are indeed satisfied in AdS. Moreover, we will find that the boundary at

spatial infinity is a preferred (and optimal) screen under our construction. Finally, we

will note that AdS admits screen-hypersurfaces of constant spatial area that encode

their space-time interior. The concurrence of these properties is special to AdS (and

to some unstable solutions identified in sec. 3.5), and may be a necessary condition

for the existence of the kind of duality that has been found in this space-time.

Anti-de Sitter space can be scaled into the direct product of an infinite time axis

with a unit spatial ball [14]. In this form it has the metric

ds2 = R2
[
−1 + r

2

1− r2dt
2 +

4

(1− r2)2
(
dr2 + r2dΩ2

)]
. (3.1)
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The constant scale factor R is the radius of curvature. The spacelike hypersurfaces

are open balls given by t = const, 0 ≤ r < 1. The boundary of space is a two-sphere
residing at r = 1. The proper area of spheres diverges as r → 1.
Consider the past directed radial

r

t

V B
B

HH 8
8

B

L

singularity

r 
=

 1

r 
=

 0

AdS

AdS
Schwarzschild-

horizon

Figure 1: Conventions and methods used in

all diagrams are spelled out in sec. 2.3. Anti-

de Sitter space contains no apparent horizons;

all spheres are normal. Spacelike projection

is allowed. All null and spacelike projections

are directed away from the center at r = 0.

Interior information can thus be projected

onto a screen-hypersurfaces H of constant

area; H encodes no exterior information. The

screen at spatial infinity, H∞, is optimal and
encodes all bulk information. — The up-

per part of the figure shows a diagram for

Schwarzschild-AdS. Since the future light-

sheets of the screen surfaces are not complete

(see dotted line), the black hole interior can-

not be projected onto H along space-like di-

rections, but only along past light-cones.

light-rays emanating from a caustic (θ =

+∞) at r = 0, t = t0 (fig. 1).
They form a past light-cone L with

a spherical boundary. The cone grows

with affine time until the light-rays reach

the boundary of space at r = 1. It

is straightforward to check that the ex-

pansion, θ, is inversely proportional to

the affine time. It thus decreases mono-

tonically, but remains positive; one finds

that

θ → 0 as r → 1 . (3.2)

Consider a sphere B, of area AB, on

the lightcone L. The part of L in the

interior of B, LB, has negative expan-

sion in the direction away from B, and

therefore constitutes a light-sheet of B.

By the holographic principle, the num-

ber of degrees of freedom on LB does not

exceed a quarter of the area of B:

Ndof(LB) ≤ AB
4
.

Because the cone closes off at r = 0,

it has no boundary other than B. The

spatial interior of B on any spacelike hy-

persurface through B, VB, lies entirely

in the causal past of LB. Therefore the

conditions for the spacelike projection

theorem are met. It follows that area

bounds Ndof on spatial regions of AdS:

Ndof(VB) ≤ AB
4
.

Since the light-cone expansion is positive for all values of r, these conclusions

remain valid in the limit as the sphere B moves to the boundary of space, B → B∞.
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By eq. (3.2), B∞ is a preferred screen. As expected, the preferred screen is precisely
the one which encodes the entire space. By time reversal invariance of eq. (3.1), the

expansion of future-directed radial lightrays arriving at B∞ will also vanish; thus B∞
is an optimal screen.

So far we have considered screens bounding Ndof on a particular light-cone or

spatial hypersurface. A screen-hypersurface encoding the entire space-time is ob-

tained by repeating the construction for every single light-cone in the slicing of AdS.

By the time-translation invariance of eq. (3.1), this repetition is trivial. The family of

finite screens B(t) of constant area AB thus forms a timelike screen-hypersurface H

of topology R×SD−2. By the holographic principle, Ndof in the enclosed space-time
region does not exceed AB/4. From the spacelike projection theorem it follows that

it does not matter whether one counts degrees of freedom on null or on spacelike

hypersurfaces intersecting H . After taking the limit B(t) → B∞(t), one finds that
the timelike boundary at r = 1, H∞, is an optimal screen of anti-de Sitter space. It
encodes the entire information in the bulk, by spacelike or null projection.

Let us briefly discuss what happens when a black hole forms. This is shown

in the upper part of fig. 1. Let us assume that the constant screen area, AB, is

so large that the black hole never engulfs the screen-hypersurface H formed by the

screens B(t). Then the past-directed ingoing light-sheet of any B(t) lies outside the

event horizon, and has no boundary other than B(t). By arguments similar to those

leading to the spacelike projection theorem [1], this implies that Ndof in the region

between the black hole and H never exceeds AB/4. Generic space-like hypersurfaces

passing through the interior of the black hole, however, are not contained in the

causal past of any complete future-directed light-sheet of B (see dotted line in fig. 1).

The spacelike projection theorem does not apply to those regions, and therefore the

spacelike projection of the interior of the event horizon onto H is not possible. Of

course, the entire black hole interior can be encoded on H by null projection along

past light-cones. (Alternatively, it can be projected onto the apparent horizon; we

discuss this in more detail in sec. 3.2 for the case of Schwarzschild black holes.) This

discussion remains valid in the limit as B → B∞, and thus applies to the boundary
of Schwarzschild-AdS at spatial infinity.

3.2 Minkowski space

We now turn to space-times which are asymptotically flat. The discussion of

finite bound systems in Minkowski space does not differ much from the treatment

in AdS. The space-time region occupied by them can be projected onto a screen-

hypersurface of topology R× SD−2, formed by a spherical screen circumscribing the
system. As long as no black holes form, the projection can be spacelike. A spherical

screen of finite size is not preferred unless the interior is on the verge of gravitational

collapse (see sec. 3.5).
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A bound system can also be pro-

r 
=

 0

I+

I
I

I+

(a) (b) (c)

_
_

Figure 2: Like AdS, Minkowski space con-

tains no trapped or anti-trapped spheres (a).

Unlike AdS, the two allowed null projections

lead to different preferred screens, I− (b) and
I+ (c). Either screen is sufficient to encode

the entire spacetime. This can be viewed as

an expression of the unitarity of the S-matrix.

jected along past-directed light-rays

onto a remote flat plane. All families

of null-geodesics orthogonal to the plane

have zero expansion; therefore the scre-

en is optimal. It can encode bulk infor-

mation on both sides. This projection

was originally proposed by Susskind [10]

and was further investigated in ref. [20].

If the system does not contain black

holes, it can be projected onto the plane

along future-directed light-rays as well.

For the discussion of scattering pro-

cesses (fig. 2) we shall follow the recipe

given in sec. 2.3.

By following past light-cones

ho
riz

on

ev
en

t h
or

izo
n

singularity

(a) (b) (c)

r 
=

 0

I
_

I+

I
_

I+

apparent

Figure 3: A classical black hole forms in a scattering

process. The spheres within the apparent horizon are

trapped (a). All information can be projected along

past light-cones onto I− (b). But I+ only encodes
the information outside the black hole; this reflects

the information loss in the classical black hole. The

black hole interior can be projected onto the apparent

horizon (c).

centered at r = 0, all of Minkow-

ski space is projected onto past

null infinity, I−, where θ → 0.

Similarly, by following future

light-cones one can project the

bulk onto future null infinity, I+.

Both infinities are preferred scre-

ens of Minkowski space. Each

screen alone suffices to store all

information in the interior of the

space-time; one can interpret this

as a statement of the unitarity of

the S-matrix [21] in the absence

of black holes.

Let us now assume that a black hole forms during scattering (fig. 3a).

The past light-cones still project all points in the spacetime onto I−, including
the interior of the black hole (fig. 3b). The screen I+, however, encodes only the

exterior of the black hole, via future-directed outgoing light-rays (fig. 3c). This

discrepancy can be interpreted as information loss in classical black holes. The black

hole interior can be encoded onto the apparent horizon, which forms a preferred

screen, by future-directed outgoing and past-directed ingoing lightrays.

The picture becomes more interesting when the quantum radiation of black holes,

as well as its back-reaction, is included. This restores the possibility of unitarity.

After the black hole has formed from classical matter, the apparent horizon shrinks

due to the quantum pair creation of particles [22]. In this process a positive energy
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particle escapes to infinity, while its negative energy partner crosses into the black

hole. Unlike positive energy matter, this particle anti-focusses light: it violates

the null convergence condition and causes the expansion of light-rays to increase.

Outgoing light-rays immediately inside the horizon can thus change from negative

to positive expansion without going through a caustic (fig. 4).

(If the null convergence condition [16] holds, the

H

{

I

Ir 
=

 0

r 
=

 0

+

h

Figure 4: A quantum black hole

forms in a scattering process. Be-

cause negative energy particles

cross the apparent horizon dur-

ing the evaporating phase (H),

its size decreases. The expan-

sion of future light-cones immedi-

ately inside the apparent horizon

changes from negative to posi-

tive in this process. Therefore

the maximal area of the apparent

horizon marginally exceeds the

maximal area of the event hori-

zon. The diagram shows the pro-

jection of this space-time along

future light-cones onto screens

formed by the apparent horizon

and by I+ (thick lines). The

past light-cones would lead to the

usual projection onto I−.

expansion becomes positive only at “caustics,” or

focal points, of the light-rays. Caustics thus are the

generic endpoints of light-sheets [1].) This leads to

a situation which would not be possible in a classical

space-time. There exists a hypersurface H , namely

the black hole apparent horizon during evaporation,

from which one has to project away in both direc-

tions. Thus, past-directed ingoing light-rays map

H onto a different part of the apparent horizon (h),

and future-directed outgoing light-rays map it onto

a part of I+.

A digression on unitarity. Let us examine the

evaporation process in more detail. When a nega-

tive mass particle enters the horizon, the expansion

of the generators of the horizon changes from zero

to a positive value. There will be a nearby null con-

gruence, inside the black hole, whose expansion is

changed from a negative value to zero by the same

process. This congruence will now generate the ap-

parent horizon. Since it has smaller cross-sectional

area, the horizon has shrunk. The movement of the

apparent horizon will leave behind a trace in the

Hawking radiation, causing a deviation from a ther-

mal spectrum over and above the deviation caused

by greybody factors. This is similar to the distor-

tion in the thermal spectrum of radiation enclosed

in a cavity, while the wall of the cavity is being

moved.

The amount by which the apparent horizon de-

creases during a given pair-creation event depends

on the profile, θ(A), of the expansion of the outgo-
ing future-directed null geodesics near the horizon.

The cross-sectional area A of null congruences becomes smaller, and the expansion
θ more negative, the further inside the black hole they are located. If the black hole
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was formed by a system of low entropy, for example by the collapse of a homogeneous

dust ball of zero temperature, the profile will be a featureless monotonic function,

and the horizon will decrease very smoothly during evaporation. The back-reaction,

in this case, will not imprint a significant signature onto the thermal spectrum. How-

ever, if the black hole was formed by a highly enthropic system, the profile will be

more complex.

Consider a shell of matter falling into a black hole. For now, assume that the shell

contains only radial modes, and is thus exactly spherically symmetric even micro-

scopically. If a lot of entropy is stored in the shell, its density will be a complicated

function of the radius. By Raychauduri’s equation [16, 17], the density profile of

the infalling shell will be imprinted on the expansion profile of the outgoing future-

directed null geodesics that eventually pass through the apparent horizon during

evaporation. Correspondingly, the same type of pair creation process will sometimes

cause the horizon area to decrease by a larger step, sometimes by a smaller amount,

depending on the expansion profile of the null geodesics passing throughH at the pair

creation event. The back-reaction will be irregular, and the corresponding deviations

of the Hawking radiation from the thermal spectrum will be complex. There is thus a

signature in the radiation which encodes the irregularity of the back-reaction, which

in turn encodes the complexity of the matter system that formed the black hole.

It is easy to extend this discussion to systems containing also angular modes.

They will deflect outgoing lightrays into angular directions. The expansion will now

be a local function of the cross-sectional area, θ(δA;ϑ, ϕ). The back-reaction will not
be spherically symmetric, and the apparent horizon will develop dents and bulges.

This leaves a non-spherical signature in the Hawking radiation.

In this way information about the material falling into the black hole may be

transferred onto the outgoing Hawking radiation. The information will be encoded

in a subtle way and it will typically be necessary to measure the entire radiation

emitted by the black hole before the ingoing state can be reconstructed. Of course,

we have sketched only a qualitative picture, and we have taken the pair creation

model of black hole evaporation rather literally. Moreover, no mechanism can copy

ingoing information onto outgoing radiation unless one implicitly assumes that the

fundamental theory evades the “quantum Xeroxing” no-go theorem [23], for example

by non-locality [24].3 We have aimed to outline a specific mechanism by which

information may be transferred in the semi-classical picture. In general terms, our

discussion is strongly related to the approach of ’t Hooft [25, 26, 27].

3.3 de Sitter space

de Sitter space is the maximally symmetric solution of the vacuum Einstein equa-

tion with a positive cosmological constant Λ. It may be visualized as a (D − 1, 1)-
3We thank Lenny Susskind for pointing this out, and for a number of related discussions.
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hyperboloid embedded in (D + 1)-dimensional Minkowski space. A metric covering

the entire space-time is given by

ds2 = −dt2 +H−2 cosh2Ht dΩ2D−1 , (3.3)

where

H =

√
Λ

3
(3.4)

is the Hubble parameter, or inverse curvature radius. In this metric, the spacelike

hypersurfaces are spheres, SD−1. They contract, and then expand, at an exponential
rate. de Sitter space also admits metrics with maximally symmetric spatial sections

of zero or negative curvature, as well as a static metric,

ds2 = −(1−H2r2)dτ 2 + dr2

1−H2r2 + r
2dΩ2D−2 . (3.5)

Those metrics cover only certain portions of the spacetime.

The metric on the spatial (D − 1)-sphere is given by:
dΩ2D−1 = dχ

2 + sin2χ dΩ2D−2 , (3.6)

whence

r = H−1 coshHt sinχ . (3.7)

A geodesic observer is immersed in a bath of thermal radiation [28] of temperature

T = H/(2π), which appears to come from the cosmological horizon surrounding the

observer. The causal structure of de Sitter space is shown in fig. 5.

The only boundaries are past and future infinity, I− and I+; they are both
spacelike. The space-time is divided in half by the event horizon, E, of a geodesic

observer, who can be taken to live at χ = r = 0.

Consider the past light-cones centered at χ = 0, i.e. at one of the two poles of

the SD−1. Just as for AdS and Minkowski, the expansion starts with the value +∞
and decreases. Any surface on the light-cone bounds Ndof on the part of the cone

it encloses. By the spacelike projection theorem, it also bounds Ndof on any spatial

hypersurface in its interior. Perhaps surprisingly, this holds even for surfaces which

are both near the event horizon and near the past singularity (see fig. 5a, dashed line).

Their area will be ∼ H−2, but they enclose an exponentially large spatial region.
When the light-cone reaches I−, the expansion approaches zero. Thus the bound-

ary surface on past infinity is a preferred screen. (Actually it is optimal because a

past light-cone arriving from the other pole, χ = π, will also have θ → 0 near I−.)
Repeating this projection for all times, one finds that half of de Sitter space, namely

the region within the event horizon of an observer at χ = 0, can be projected onto

past infinity. The projection of only half of the space-time is peculiar to de Sitter

space. By contrast, past light-cones project all of Minkowski, or all ofAdS, onto their

respective infinities (secs. 3.1 and 3.2). By using past light-cones emanating from the
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other pole of the spatial SD−1, an additional portion of de Sitter can be projected
onto past infinity. But this still leaves out the antitrapped region beyond the cos-

mological horizons. It can only be projected by future-directed lightrays onto future

infinity. A global null projection of de Sitter space can thus be achieved by using

two optimal screen-hypersurfaces: past and future infinity. This is shown in fig. 5b.

Indeed, the potential holographic role of these boundaries has been speculated upon

for some time [21]. Both global screens are spacelike hypersurfaces. Because surfaces

near future infinity are anti-trapped, one cannot encode global de Sitter space on a

finite number of timelike or null screens.

However, we can apply the I+

I −

I+

I −

(b) (c)
χ 

= 
π

χ 
= 

0

(a)

E

Figure 5: Penrose diagram for de Sitter space. The

SD−1 spacelike slices would correspond to horizon-
tal lines through the square. The diagonals are ap-

parent horizons dividing the space-time into four

regions (a). The (D− 2)-spheres near past (future)
infinity are trapped (anti-trapped); the spheres near

the poles are normal. Null projection must be di-

rected towards the tips of the wedges (see sec. 2.3).

It follows that de Sitter space can be projected onto

past and future infinity (b), which are spacelike,

optimal screen-hypersurfaces of (exponentially) in-

finite size. A more interesting screen is obtained

by applying the spacelike projection theorem to

spheres near the event horizon E of an observer at

χ = 0 (a). By taking a limit, one can show that

all information in the observable region of de Sitter

space can be projected onto the preferred screen E,

which is a null hypersurface of constant spatial area

4πH−2 (c).

spacelike projection theorem (sec.

1.1) to the screens that form the

event horizon E of an observer at

χ = 0. They are all of constant

area, 4πH−2. (Since E never rea-
ches χ = r = 0, this argument

strictly requires a limiting proce-

dure starting from spheres in the

vicinity of E; see fig. 5a.) Be-

cause E is generated by light-rays

of zero expansion, all screens on

it are manifestly preferred. Thus,

the null hypersurface E is a pre-

ferred screen of constant area. Be-

cause of its degeneracy, E encodes

only itself under null projection

along E. Under spacelike projec-

tion, however, it encodes half of

the space-time (fig. 5c), namely

the region within the event hori-

zon. One can reasonably argue

that the region beyond the event

horizon has no meaning because

it cannot be observed, and that

de Sitter space should not be trea-

ted globally [29, 30] (fig. 5c); thus the screen E should suffice for a holographic

description of de Sitter space.

In inflationary models, the de Sitter phase is followed by a matter or radiation

dominated phase, and the entire space-time during this era can be projected onto

the screens available in the relevant FRW models [1] (see sec. 3.4). — Black holes in

de Sitter space can be treated much like black holes in AdS or Minkowski space.
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3.4 FRW cosmologies

Friedmann-Robertson-Walker (FRW) cosmologies are described by a metric of the

form

ds2 = a2(η)
[
−dη2 + dχ2 + f 2(χ)dΩ2

]
. (3.8)

Here f(χ) = sinhχ, χ, sinχ corresponds to open, flat, and closed universes respec-

tively. FRW universes contain homogeneous, isotropic spacelike slices of constant

(negative, zero, or positive) curvature. We will not discuss open universes, since

they display no significant features beyond those arising in the treatment of closed

or flat universes.

The matter content will be described by Tab = diag(ρ, p, p, p), with pressure

p = γρ. We assume that ρ ≥ 0 and −1/3 < γ ≤ 1. The case γ = −1 corresponds
to de Sitter space, which was discussed in sec. 3.3. The apparent horizon is defined

geometrically as the spheres on which at least one pair of orthogonal null congruences

have zero expansion. It is given by

η = qχ , (3.9)

where

q =
2

1 + 3γ
. (3.10)

The solution for a flat universe is given by

a(η) =

(
η

q

)q
. (3.11)

Its causal structure is shown in fig. 6.

The interior of the apparent

past singularity

ap
pa

ren
t

ho
riz

on

r 
=

 0

I+ (a) (b) (c)

Figure 6: Penrose diagram for a flat FRW uni-

verse dominated by radiation. The apparent hori-

zon, η = χ, divides the space-time into a normal and

an anti-trapped region (a). The information con-

tained in the universe can be projected along past

light-cones onto the apparent horizon (b), or along

future light-cones onto null infinity (c). Both are

preferred screen-hypersurfaces.

horizon, η ≥ qχ, can be projected
along past light-cones centered at

χ = 0, or by space-like projection,

onto the apparent horizon. The

exterior, η ≤ qχ, can be projected
by the same light-cones, but in

the opposite direction, onto the

apparent horizon. The apparent

horizon is thus a preferred screen

encoding the entire space-time.

Alternatively, one can use future

light-cones to project the entire

universe onto future null infinity,

another preferred screen.
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By eq. (3.9), the apparent horizon screen is a timelike hypersurface for −1/3 <
γ < 1/3, null for γ = 1/3, and spacelike for 1/3 < γ ≤ 1. In a universe dominated
by different types of matter in different eras, the causal character of the apparent

horizon hypersurface can change from timelike to spacelike or vice versa (see, e.g.,

fig. 5 in ref. [1]).

For a closed universe, the solution is given by

a(η) = amax

(
sin
η

q

)q
. (3.12)

In addition to eq. (3.9), a second apparent horizon emanates from the opposite pole

of the spatial SD−1, at χ = π; it is described by

η = q(π − χ) . (3.13)

The two hypersurfaces formed by the apparent horizons divide the space-time into

four regions, as shown in fig. 7.

Let us choose the first apparent

N
or

th
 p

ol
e

(χ
 =

 π
)

So
ut

h 
po

le
(χ

 =
 0

)

(a) (b)

past singularity

future singularity

Figure 7: Penrose diagram for a closed FRW uni-

verse dominated by pressureless dust. Two ap-

parent horizons divide the space-time into four re-

gions (a). The information in the universe can be

projected onto the embedded screen-hypersurface

formed by either horizon (b).

horizon, eq. (3.9), as a (preferred)

screen-hypersurface. On one side,

η ≥ qχ, lies a normal region and a
trapped region. These regions can

be projected onto the screen by

past-directed radial light-rays mov-

ing away from the South pole (χ =

0). The other half of the universe,

η ≤ qχ, can be projected onto the
same screen by future directed ra-

dial light-rays moving away from

the North pole (χ = π). There-

fore the preferred screen given by

eq. (3.9) encodes the entire closed

universe.

A number of cosmological en-

tropy bounds have been proposed

[4, 5, 6, 7, 8] which are based on the idea of defining a horizon-size spatial region to

which Bekenstein’s bound can be directly applied. We have emphasized the impor-

tance of these bounds in ref. [1], where we also discuss their relation to the covariant

entropy bound (sec. 1.1). Those bounds can be given a holographic interpretation

by considering them as limits on Ndof in the specified ken. Because they refer to

limited regions, however, it is not clear how global screen-hypersurfaces could be

constructed.
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3.5 Einstein static universe

The Einstein static universe (ESU) is a closed FRW space-time containing ordinary

matter as well as a positive cosmological constant of a certain critical value [16, 31].

Its metric can be written as a direct product of an infinite time axis with a (D− 1)-
sphere of constant radius a:

ds2 = −dt2 + a2dΩ2D−1 . (3.14)

The causal structure is shown in fig. 8.

Each hemisphere can be projected along

N
or

th
 p

ol
e

So
ut

h 
po

le

eq
ua

to
r

Figure 8: Penrose diagram for the

Einstein static universe. The equa-

tor separates two normal regions. It

forms an optimal, timelike screen-

hypersurface of constant area, encod-

ing all information by null or space-

like projection. These properties are

shared by the boundary of AdS.

past- or future-directed light-rays, or by space-

like projection, onto the equator. This screen is

optimal, because all four families of orthogonal

light-rays have vanishing expansion. Moreover,

the screen forms a timelike hypersurface, with

spatial slices of constant finite size.

This is reminiscent of the properties of the

screen at the boundary of anti-de Sitter space:

the screen is optimal, timelike, of constant size,

and encodes the entire space-time by space-

like projection. The difference is that the AdS

screen has infinite proper area, while the equa-

tor in the ESU is a (D−2)-sphere of finite area
∼ aD−2. It lies not on a boundary of space
(there is none in the ESU), but is embedded in

the interior.

The properties of the projection might give

rise to the hope that a boundary theory, dual

to the bulk description, could be formulated on the equator of the ESU. The example

may be of limited use, however, because the ESU is not a stable solution [16, 31].

Another unstable solution with similar properties is given by a static spherical system

just on the verge of gravitational collapse. Its radius will be equal to its gravitational

radius, and the expansion of both past- and future-directed outgoing light-rays goes

to zero at the surface of the system.

4. Holographic theory

4.1 Summary

From a universal entropy bound found in ref. [1], we obtained a background-indepen-

dent formulation of the holographic principle [9, 10]. This led us to a construction

of hypersurfaces (screens) on which all information contained in a space-time can be
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stored. The screens are embedded, or lie on the boundary of the space-time, and

contain no more than one bit of information per Planck area. In this sense, the world

is a hologram.

The construction was applied to a number of examples. For anti-de Sitter space

it yields the timelike boundary at spatial infinity as a preferred screen. In Minkowski

space, past or future null infinity, or a flat plane, can encode all information. de Sitter

space is mapped along light-rays onto the spacelike infinities in the past and future;

alternatively, all information in the observable half of the de Sitter space can be stored

on the event horizon (a null hypersurface of finite area) via spacelike projection.

Cosmological spacetimes may not have a boundary, but embedded screens can be

found; they may be spacelike, timelike, or null, depending on the matter content.

The information in a black hole can be mapped onto the apparent horizon, or onto

past null infinity.

From the examples one can draw the following observations:

• Holographic screens can be spacelike hypersurfaces.
• If they are timelike or null, the spatial area is not necessarily constant in the
induced, or any other, time-slicing.

Before explaining why these features may be significant, let us briefly discuss a

tempting but misguided conclusion. One might argue that holographic projection

onto spacelike screens is a trivial accomplishment, because in any conventional theory

one can specify initial conditions on a Cauchy surface and predict, or retrodict, the

past and future development of the system. That is true, but it is a different kind of

information storage. In that case, one stores not only the information at one moment

of time, but also a machine (namely the theory) which is capable of recovering the

state of the system at all other times. A holographic construction, on the other

hand, feigns ignorance of any theory describing the matter evolution, and simply

encodes all information, at all times, onto screens of dimension D − 2. The space-
time is sliced into null hypersurfaces; slice by slice the information is encoded onto

(D − 2)-dimensional spatial surfaces at a maximum density of one bit per Planck
area. These surfaces form a (D − 1) dimensional screen hypersurface which may be
timelike, spacelike, or null, but from the point of view of holographic information

storage its causal character is irrelevant.

4.2 Theories on the screen

Our interpretation, so far, has centered on the information needed to describe a

state. This is measured by the number of degrees of freedom. Therefore we can

use the holographic principle (which refers to Ndof) to project all information in the

space-time onto screen-hypersurfaces. In this sense, the holographic principle implies

a drastic reduction of the complexity of nature compared to naive expectations of,

perhaps, one degree of freedom per Planck volume.
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We did not, however, use the holographic principle to describe nature. The

holographic principle is far from manifest in the description of the world in terms of

general relativity and quantum field theory; yet these theories are very successful.

Working within their frame, one finds a number of non-trivial effects which appear

to insure that the entropy bound implied by the holographic principle is always

satisfied [1]; but these results could not have been immediately inferred from the

basic axioms of GR and QFT.

As a kind of external restriction imposed on physical theories, holography is in-

teresting but unsatisfactory. If the number of degrees of freedom is limited by the

holographic principle, there ought to be a description of nature in which this re-

striction is manifest. Let us call this hypothetical description the holographic theory.

One would expect the holographic theory to remain valid when semi-classical gravity

breaks down [9, 11]; in this regime it may be the only possible description. These

are good reasons to search for a holographic theory.

The simplest idea would be to define a theory on the geometric background

given by the screen-hypersurface(s). If the theory contained one degree of freedom

per Planck area, and was related by a kind of dictionary (“duality”) to the space-

time (“bulk”) physics, the holographic principle would be manifest. Let us call this

type of theory a dual theory.

This idea works for certain asymptotically anti-de Sitter space-times. The screen

encoding the entire bulk information is the timelike hypersurface formed by the

boundary of space (sec. 3.1). According to Maldacena’s remarkable conjecture [11],

a super-Yang-Mills theory living on this hypersurface describes the bulk physics

completely. By considering a finite boundary and taking the limit as it moves to

spatial infinity, one can show that the theory contains no more than one degree

of freedom per Planck area [14]. Therefore it is a dual theory in the sense of our

definition.

Perhaps it will be possible to find dual theories for some other classes of space-

times; certainly this would be be an important contribution to the understanding of

holography and of quantum gravity. In general, however, the “dual theory” approach

will not work. The theories we usually think of have a fixed number of degrees of

freedom built into them; these degrees of freedom evolve in Lorentzian time. But

consider the cosmological solutions studied in sec. 3.4. The area of the screens is time-

dependent. The screen theory would have to be capable of “creating” or “activating”

degrees of freedom. Moreover, the area can decrease, as seen in the closed universe

example. In the screen theory this would correspond to the destruction, or de-

activation, of degrees of freedom. Eventually their number would approach zero, and

the second law of thermodynamics would be violated in the screen theory.4 (Note

that this does not, of course, imply a violation of the second law in the bulk. Rather,

4We are grateful to Andrei Linde for stressing this point to us.
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it is related to the creation, or destruction, of degrees of freedom at the initial and

final singularities of the universe.)

This suggests that one should not in general think of the screen theory as a

conventional theory with a fixed number of degrees of freedom. Rather, one might

expect it to be a theory with a varying number of “active” degrees of freedom.

Thus, its properties would be very different from those of ordinary physical theories.

Moreover, since the screen hypersurfaces can be spacelike or null, one should not

expect the theory to live in Lorentzian time.

4.3 Geometry from entropy

We would like to advocate a more radical approach. One should not be thinking

about a “screen theory” (a theory defined on some hypersurface of space-time) at

all. The screen theory approach cannot be fundamental, because it presumes the

existence of a space-time background, or at least of an asymptotic structure of space

and time. In order to use the holographic principle for a full description of nature,

we suggest it should be turned around. Loosely speaking, one should not constrain

entropy by geometry, but construct geometry from entropy. (Strictly, “number of

degrees of freedom” should replace “entropy” here.) The construction must be such

that the holographic principle, in the form given in sec. 1.1, is automatically satisfied.

It thus appears that two problems must be overcome if a holographic theory is

to be found. First, one must formulate a theory with a varying number of degrees of

freedom. A possibility may be that the theory can activate or de-activate degrees of

freedom from an infinite reservoir.5 An extreme but perhaps more satisfying resolu-

tion would be to treat quantum degrees of freedom not as fundamental ingredients,

but as a derived concept. ’t Hooft has long been advocating that models should be

sought in which quantum degrees of freedom arise as a complex, effective structures

(see ref. [15] and references therein). It would be natural for Ndof to vary in such

models.

The second challenge is to find a prescription that allows the unique reconstruc-

tion of space-time geometry from the varying number of degrees of freedom (see

ref. [32] and references therein for a discussion of related questions). Part of this

prescription will be to equate Ndof with the proper area of an embedded (D − 2)-
dimensional preferred or optimal screen. A more difficult question is how the intrinsic

geometry of screen-hypersurfaces can be recovered. It may be undesirable to identify

the discrete steps of, say, a cellular automaton [33, 34] with Lorentzian time. But

the number and character of the degrees of freedom provide information about the

matter content. Therefore a complete reconstruction of space-time geometry is not

inconceivable.

5We thank Lenny Susskind for this suggestion and related discussions.
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