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Abstract
Mesoscopic models for polymers have the potential to link macromolecular properties with
the mechanical behaviour without being too expensive computationally. An interesting,
popular and rather simple model to this end was proposed by Termonia and Smith (1987
Macromolecules 20 835–8). In this model the macromolecular ensemble is viewed as a
collection of two-dimensional self-avoiding random walks on a regular lattice whose lattice
points represent entanglements. The load is borne by members representing van der Waals
bonds as well as macromolecular strands between two entanglement points. Model polymers
simulated via this model exhibited remarkable qualitative similarity with real polymers with
respect to their molecular weight, entanglement spacing, strain rate and temperature
dependence. In this work, we revisit this model and present a detailed reformulation within
the framework of a finite deformation finite element scheme. The physical origins of each of
the parameters in the model are investigated and inherent assumptions in the model which
contribute to its success are critically probed.

1. Introduction

Suitably designed mesoscopic models for the deformation and fracture of solid polymers form
an important bridge between atomistic and continuum models. Atomistic methods such as
molecular dynamics (MD) (e.g. Brown and Clarke 1991, Capaldi et al 2004, Negi and Basu
2006) can simulate deformation behaviour at very high strain rates on nanoscopic specimens.
On the other hand, continuum methods (e.g. Boyce et al 1988, Wu and van der Giessen 1993)
can model mechanical behaviour at macroscopic scales but are phenomenological in nature
and as a result cannot directly establish connections between microscopic properties (such as
molecular weight of the macromolecule) and macroscopic mechanical properties.
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A simple lattice model for simulating the deformation and fracture of solid polymers has
been proposed by Termonia and Smith (1987, 1988) and Termonia et al (1988). Henceforth
we will refer to this as the TS model. This model treats entanglements between polymer
chains as unbreakable (though in another version of the model slip of macromolecular chains
through entanglement points and consequent occasional disentanglement is allowed) and
a chain is thought of as being a self-avoiding random walk (SARW) through a regular
grid of entanglement points. The portions of a chain between two entanglement points,
called ‘strands’, behave as rubber elastic springs governed by the inverse Langevin function
(Treloar 1975). Additionally, the non-bonded van der Waals interaction between the chains is
represented by discrete linear elastic members. In the original model, both the van der Waals
elements and the ‘strand’ elements can break leading to a loss in the stress carrying capacity
of the material. Breakage rules for the van der Waals members are motivated by kinetic theory
of fracture and the members are broken through a Monte Carlo lottery. Thus the breakage rule
depends on a critical stress though no length scale characteristic of the mesh is included (Curtin
and Scher 1990, Jagota and Bennison 1995). Models similar in spirit to the TS model have
been used to deal with time dependent damage evolution (Curtin and Pamel 1997, Vujosevic
and Krajicinovic 1997) and fracture of fibres (Gonzalez and Llorca 2003). Recently, variants
of the Termonia and Smith model incorporating slippage of chains through entanglements
have been used by Terzis et al (2002) to study the deformation and fracture of bi-polymeric
interfaces.

The original TS papers concentrated on the behaviour of polyethylene at high temperatures
(>100 ◦C) but the modelling methodology is essentially applicable to even amorphous
polymers in the glassy state. This is due to the fact that the stress–strain response predicted by
the model for semi-crystalline polyethylene has qualitative features that resemble the behaviour
of a range of polymers under a range of conditions. Comparison of the predictions from the
TS model with experimental stress–strain behaviours of a number of commercial polymers has
been performed by Bicerano et al (1997). The results for amorphous polymers showed good
quantitative agreement with atactic polystyrene and ethylene–propylene–diene terpolymers at
a range of temperatures.

Though the TS model is simple in principle, a systematic evaluation of the significance of
the various parameters involved in the model has not been performed. In this work we present
a clearly formulated finite element based numerical model for a two-dimensional polymer
represented by SARWs on a lattice of entanglement points. The method adopted in this paper
to deform the macromolecular ensemble is significantly different from that used by Termonia
and Smith (1987) and Bicerano et al (1997). The method is based on the realization that
the macromolecular ensemble is basically a two-dimensional truss-like structure amenable
to a non-linear finite element analysis, where the individual members (the strands and the
van der Waals members) can undergo large deformations and rotations. In this regard, the
numerical algorithm used is similar in spirit to the rod finite elements adopted by Gonzalez
and Llorca (2003).

The TS model is able to reproduce the uniaxial stress–strain behaviour of polymers
qualitatively. We show that the reason for this success lies in a changeover in the load bearing
behaviour of the network with strain. In other words, the energetics of the network shift
from being van der Waals dominated at low strains to rubber elasticity dominated at higher
strains. Thus, parametrization of the discrete van der Waals members vis-a-vis the rubber
elastic behaviour of the chains is the key to fitting the simulated results to the experimental
ones. To this end, we take the parameters presented in the original papers as a basis and
explore, through a systematic parametric study, the influence of the key parameters on the
overall stress–strain response.
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Figure 1. Schematic showing the two-dimensional TS idealization in (b) of an actual dense
macromolecular system shown in (a).

This paper is organized in the following way. The next section describes the sample
generation procedure, the finite element solution method and techniques used for breaking the
van der Waals bonds and the macromolecular chains. In section 3 the influence of various
model parameters is discussed. Conclusions and discussions on the efficacy of the present
method are presented in section 4.

2. Computational procedure

The computational procedure consists of a few basic steps. First, a regular lattice of
entanglement points (also called nodes) is filled up with SARWs of a given length N such that
two and only two SARWs pass through each node. These SARWs represent macromolecular
chains. Superposed on this ensemble is a regular lattice of van der Waals members obeying
linear elasticity. The second step is to perform a finite element analysis of this two-dimensional
structure under volume preserving uniaxial stretching at a particular rate. The finite element
assemblage is composed of non-linear (strand elements) and linear (van der Waals members)
truss elements. During deformation, both van der Waals bonds and the macromolecular chains
can break leading to loss of stiffness. The analysis is stopped when the sample is separated
into two parts.

2.1. Sample preparation

Figure 1(a) is a schematic showing the situation prevailing in a real polymer. The
heavy black circles represent entanglements between the coiled polymer chains and the
dotted lines denote the van der Waals bonds acting between different parts of a chain
as well as between neighbouring chains. In figure 1(b) is shown the idealized TS
model (Termonia and Smith 1987). The heavy solid lines indicate chain vectors between
entanglements and the individual van der Waals bonds have been replaced by discrete members
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(dotted lines) joining each entanglement to its nearest neighbours. In the TS model, the chains
start or end at an entanglement point since loose chain ends do not bear any load and are thus
superfluous in the present context.

The chain vectors in an actual, undeformed specimen are randomly oriented in a three-
dimensional space, i.e. 〈cos2 ψ〉 = 1

3 , where ψ is the vector’s angle with the draw axis y. In
our simplified, regular two-dimensional representation (figure 1(b)), we have taken all strands
to be oriented at ψ = 54.7◦ with the x-axis. We should note here that the TS model also used
a similar orientation though in two-dimensions this does not lead to a strand that has equal
orientation to both the axes. A value of ψ = 45◦ is probably more suitable in two-dimensions.
However, we found that the effect of the strand orientations on the overall results to be presented
later is small and we have adopted ψ = 54.7◦ to be consistent with the TS model.

The simplified model is generated with the following considerations.

(i) Each chain behaves like a SARW and thus a chain does not cross itself.
(ii) One chain does not overlap with another, i.e. no two chains have the same two consecutive

entanglement points.
(iii) Chains do not cross each other.
(iv) Periodic boundary conditions apply in the x direction.

Ideally, the chain generation process stops after all entanglement points have been visited
by two and only two chains. However, this may not always be possible satisfying all
the above conditions (i)–(iv). Several trials may be required before a suitable sample is
generated.

Selection of a suitable generation procedure for a single chain in a dense system is
important for achieving complete occupancy of the lattice. We are interested in rather short
SARWs (of 5–10 steps each) and so we adopt a simple algorithm suggested by Sokal (1995)
for generating a single chain. It should be noted that more sophisticated schemes for single
chain generation have been used for generating dense fully occupied systems by Meirovitch
(1987) and Mansfield (1982) among others. However, for the short length SARWs that we
use, the algorithm due to Sokal (1995) turns out to be adequate in the sense that it yields
an almost monodisperse ensemble with all entanglement points occupied by two and only
two chains.

Polymers live in three-dimensional spaces. The two-dimensional lattice used here is at
best an approximation. The two-dimensional polymer sheet analysed can be thought of as
being one out of an infinite number of sheets arranged like a stack of cards. This stack makes
up the actual three-dimensional sample. Entanglements between chains are also basically
three-dimensional entities and in two-dimensions are represented as nodes at which two self-
avoiding walks are connected. The distance between the sheets at the onset in the z direction
is given by T0. When the system is stretched in the y direction, it contacts in the other
directions and consequently the distance between the sheets is also reduced. Assumptions
used in determining T0 are discussed in section 2.5.

Figure 2 shows the chain length distributions in the whole sample after filling it up with
multiple strands. Some chains need to be truncated at the top and bottom surfaces of the
domain while a few chains (especially when most of the system is filled up) cannot be grown
to their desired length because of overcrowding. Both these contribute to the fact that the
average chain length pavg falls below the desired length p. In figure 2, the horizontal axis
represents the size M of the M × M grid used. For the number of strands in a chain p = 1, 5,
10 and 15, we are able to generate pavg = 1, 4.3, 7.3 and 8.2, respectively. Also there is very
little effect of M on the value of pavg. The polydispersity is somewhat high for SARW sizes
greater than 5 steps produced with our simple algorithm for generating dense systems. For the
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Figure 2. Average chain lengths pavg of dense samples obtained using M×M meshes. The desired
chain lengths are given by p.
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Figure 3. A small 25 × 25 grid showing (a) a mesh with strand elements as part of 5 step SARWs
and (b) only van der Waals members.

model macromolecules considered in this study, a 5 step SARW represents a chain with about
700 monomers3.

The mesoscopic model of the polymer is obtained by taking into consideration both van
der Waals bonds and the strands. This is shown in figures 3(a) and (b) for a small 25 × 25 grid
containing 100 chains with p = 5. Figure 3(a) shows a sample with only the macromolecular
strands. Each strand connecting two entanglement points is assumed to follow inverse Langevin
based rubber elasticity (Treloar 1975). The van der Waals force acting between neighbouring
atoms is lumped into a network of linear, breakable springs joining entanglement points and
forming a regular two-dimensional triangular lattice as shown in figure 3(b). The final model
consists of the triangular lattice (shown in figure 3(b)) superposed on the ensemble of SARWs
representing the macromolecules in figure 3(a).
3 Assuming, as in the original TS paper, that each step comprises 14 Kuhn segments or strands per step and that each
strand is made up of about 10 monomers.
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Figure 4. A typical rod element used in this work. The symbols used are defined in the text.

2.2. Finite element formulation for the assemblage

As mentioned earlier, the generated sample consists of non-linear members formed by the
strands and linear van der Waals members. Under uniaxial stretching, the members can undergo
large rotations and deformations.

In the finite element model we consider the general case of a truss member whose stiffness
is a sum total of the stiffnesses of an inverse Langevin and a linear spring. Within the
assemblage, a particular member may have either or both of these two contributions active
at a point of time. Here we discuss the corotational formulation for such a general truss
element.

We start with the equation of virtual power in terms of first Piola Kirchhoff stress P in the
absence of body forces and surface tractions. Thus,

∫

V0

P : δḞ dV0 = 0, (1)

where F is the deformation gradient tensor and for two second order tensors A and B,
A : B = AijBji . In terms of the Cauchy stress σ, using P = JF

−1
σ, L as the velocity

gradient tensor with D as its symmetric part and J = det(F), we can write for volume
preserving deformations (i.e. J̇ = 0)

Ṗ = JF
−1(σ̇ − Lσ).

Thus, the incremental form of equation (1), namely,
∫

V0
Ṗ : δḞ dV0 = 0, in the deformed

configuration becomes
∫

V

δL : [σ̇ − Lσ] dV = 0, (2)

where δL = δḞF
−1.

Now consider a one-dimensional 2-node truss element with a corotational axis x̂ having
a current cross sectional area A and a current length l (see figure 4). For a volume preserving
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deformation of this bar, along x̂, the virtual power equation simplifies to
∫

V

δD̂x̂x̂(
˙̂σ − D̂x̂x̂ σ̂x̂x̂)A dx̂ = 0,

where ˆ( ) denotes quantities in the x̂ coordinate system.
For the 2-node bar, the velocities û and v̂ are interpolated in terms of their nodal values as

û = N1û1 + N2û2 and

v̂ = N1v̂1 + N2v̂2,

where N1 = 1 − x̂/ l, and N2 = x̂/ l. Thus,

D̂x̂x̂ = [−1 0 1 0]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

û1
v̂1
û2
v̂2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= B̂û. (3)

This immediately leads to
∫

V

δû
T
B̂

T
[ ˙̂σ x̂x̂ − B̂ûσ̂x̂x̂]A dx̂ = 0. (4)

In general an element supports two types of forces. The total force f̂ on an element is
given by

f̂ = f̂s(λ) + f̂vd(λ), (5)

where f̂s is the ‘strand force’ arising out of the non-linear spring character of the strand and
f̂vd is the van der Waals force. The quantity λ is the instantaneous stretch. Therefore

f̂
.
= f̂ ′

s λ̇ + f̂ ′
vdλ̇. (6)

The force on any member in the x̂ direction is given by

f̂ = σ̂x̂x̂A, (7)

where A is the current area of the member, whereby,

f̂
.
= ˙̂σ x̂x̂A + σ̂x̂x̂Ȧ. (8)

Using volume conservation the area and length in the reference configuration A0 and l0 can be
related to A and l as A0l0 = Al. The fact that the volume of each ‘strand’ element is conserved
follows from the picture of the element that we have in mind. The radius of each element in
the undeformed state is equal to rg⊥, the component of the radius of gyration perpendicular
to the Gaussian end to end vector Ree. When the element is stretched uniaxially to λRee, rg⊥
scales as 1/

√
λ (see, Heymans (1988)). This implies volume conservation and we get

f̂
.
= ˙̂σ x̂x̂

A0

λ
− σ̂x̂x̂A0

λ2 λ̇, (9)

where λ = l/ l0. Using equation (6) in the LHS of equation (9) we get

f̂ ′
s λ̇ + f̂ ′

vdλ̇ = ˙̂σ x̂x̂

A0

λ
− σ̂x̂x̂A0

λ2 λ̇, (10)

leading to

˙̂σ x̂x̂ = λ

A0

[

f̂ ′
s + f̂ ′

vd +
σ̂x̂x̂A0

λ2

]

λ̇ = λ

A0
C(λ)λ̇, (11)
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where C(λ) = f ′
s + f ′

vd + σ̂x̂x̂A0/λ
2. It can be easily shown that

λ̇ = λB̂û. (12)

Using equation (12) in (11), then inserting in equation (4) and using the usual finite element
procedures yield

K̂û = 0, K̂ = K̂mat + K̂geo, (13)

where Kmat is the material stiffness matrix and Kgeo is the geometric stiffness matrix. Further,

K̂mat =
∫

V

B̂
T λ

A0
C(λ)λB̂ dV. (14)

When written explicitly this becomes

K̂mat = λ2

A0
C(λ)

⎛

⎜

⎜

⎝

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

⎞

⎟

⎟

⎠

. (15)

Moreover, using the definition of B̂, it is easy to show that the expression for the geometric
stiffness matrix is

K̂geo = − σ̂x̂x̂A

l

⎛

⎜

⎜

⎝

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

⎞

⎟

⎟

⎠

. (16)

The stiffness matrices in the (x̂, ŷ) system Kmat and Kgeo can be easily transformed to the
global (X, Y ) system through

Kmat = T
T
K̂matT and

Kgeo = T
T
K̂geoT, (17)

where the transformation matrix T is given by

T =

⎛

⎜

⎜

⎝

cos θ sin θ 0 0
− sin θ cos θ 0 0
0 0 cos θ sin θ

0 0 − sin θ cos θ

⎞

⎟

⎟

⎠

. (18)

Therefore, in the global (X, Y ) system we have in terms of the angle θ the bar which it makes
with the X axis (see figure 4),

Kmat = λ2

A0
C(λ)

⎛

⎜

⎜

⎝

cos2 θ cos θ sin θ − cos2 θ − cos θ sin θ

cos θ sin θ sin2 θ − cos θ sin θ − sin2 θ

− cos2 θ − cos θ sin θ cos2 θ cos θ sin θ

− cos θ sin θ − sin2 θ cos θ sin θ sin2 θ

⎞

⎟

⎟

⎠

. (19)

The geometric stiffness is invariant to rotation and thus

Kgeo = −fs + fvd

l

⎛

⎜

⎜

⎝

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎞

⎟

⎟

⎠

. (20)
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The total stiffness in the global (X, Y ) system is given by the sum of the material and geometric
stiffnesses as

K = Kmat + Kgeo. (21)

According to classical theory of rubber elasticity for non-Gaussian chains, force on a chain
strand having a vector length r is given by (see Treloar (1975))

f̂s = kT

ls
L

−1
(

r

Nls

)

, (22)

where N is the number of statistical chain segments (Kuhn segments) and ls is their length.
The inverse Langevin function L

−1 for an arbitrary variable s can be approximated as (see
Perrin (2000))

L
−1(s) = s(3 − s2)

(1 − s2)
. (23)

Thus equation (22) becomes

f̂s = kT

ls

λ̂√
N

[

(3N − λ̂2)

N − λ2

]

(24)

and

f̂ ′
s = kT

ls

1√
N

[

3(N − λ2)2 + 2λ2(3N − λ2)

(N − λ2)2

]

. (25)

Further, the van der Waals force is assumed to lead to a linear elastic stress–stretch relationship
and

f̂vd = KvdAvd

(

1 − 1
λ

)

, (26)

where Kvd is the elastic modulus. The area of the van der Waals member in the reference
configuration is Avd, which is equal to A when the van der Waals member overlaps a strand.
A different area is used for the horizontal van der Waals members which do not overlap with
strand elements. Issues regarding estimation of Kvd and Avd are discussed later. Thus,

f
′

vd = KvdAvd

λ2 . (27)

Therefore the non-linear finite element problem can now be solved in principle with velocities
applied at specific nodes.

2.3. Boundary conditions

The geometry chosen for analysis is as shown in figure 5. We start with a unit cell of dimension
B0 × H0 × T0 that deforms in a volume preserving way to a cell of dimensions B × H × T at
time t . The boundary conditions in terms of the velocity components u and v applied on the
edges of the unit cell are

u(0, y, t) = 0 and
v(x, 0, t) = 0.

(28)

In addition, at any point of time t

v(x, H, t) = v0 and
u(y, B, t) = u0(t).

(29)
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Figure 5. Schematic showing the problem analysed in this work and the applied boundary
conditions. The quantity v̇0 is the constant velocity applied at the top face while u̇0 is the appropriate
velocity applied on the right face in order to keep the volume of the unit cell constant.

In the above, the velocity of the top face v0 is kept constant. Furthermore, in order to perform
the analysis at constant volume, at any point of time we need to have the principal stretches in
the y and x directions related as

λx = 1√
λy

.

This can be achieved if

u0(t) = − v0

2λ
3
2
y

B0

H0
in equation (29).

The overall strain Ey is defined as

Ey(t) = v0t

H
. (30)

The overall stress �y is obtained from

�y = 1
V

∂U

∂Ey

, (31)

where U is the total strain energy stored in the unit cell.
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The unit cell also has a thicknessT0 such that only a single polymeric layer is enclosed in the
cell. The initial thickness T0 is assumed to be equal to the distance between the entanglement
points

√
Nls, which equals the Gaussian end to end distance for a chain of length N . Thus,

plane stress conditions are assumed to prevail where the thickness of the unit cell scales as
T = T0λ

−1/2
y .

2.4. Sources of irreversibility

As the system of entangled polymeric chains analysed here is deformed, two debilitating
processes occur. They are the breakage of van der Waals bonds and scission of the
macromolecular chains. As in Termonia and Smith (1987) van der Waals bonds break according
to kinetic theory of fracture at the rate

ν = τexp
[

− (U0 − βσ̂ )

kBT

]

. (32)

Here τ is the thermal vibration frequency and U0 and β are the activation energy and volume,
respectively. Also kB is Boltzmann’s constant and T is the temperature.

The simulation of van der Waals bond breaking is performed with the help of a Monte
Carlo lottery that continues with a pre-set time step of �t till a desired strain level Ey is
attained. At every time step, the calculations proceed in the following manner.

1. Apply a displacement increment v0�t on the top face at y = H and the corresponding
volume preserving displacements at the right edge x = B.

2. Solve the finite element system for the displacement increments applied in step 1 to obtain
new displacements of all nodes and forces in all elements.

3. Start the bond breaking process. Initialize ζ = 0.
4. Calculate a probability

Pi = νi

νmax
, (33)

where νi and νmax are the rates of breaking of the ith and the most strained bond in the
ensemble.

5. Within the analysis time step �t , visit the intact van der Waals bonds at random.
6. Generate a uniformly distributed random number Ri on a visit to bond i.
7. Break bond i if Ri < Pi , else go to the next bond.
8. After each visit of a bond ζ is incremented by 1/[νmaxnvd(t)], where nvd(t) is the total

number of intact bonds at time t .
9. Terminate the process, increment time by �t and go back to step 1 when ζ � �t .

Additionally, in view of equation (23) it is evident that as the value of s → 1 the force
f̂s → ∞. We therefore break a strand when the draw ratio of a strand approaches

√
N .

In Washiyama et al (1993), the minimum force required to cause scission of a polymeric
chain is estimated to be around 2 nN. In our case, for a strand with N = 14, at T = 300 K,
this would imply a stretch in the strand of the order λ ≃ 0.99

√
N . Thus, the probability of a

strand breaking at lower stretches is negligibly small and unlike the van der Waals bonds, the
strand breakage rule is assumed to be deterministic: a strand breaks when it attains a stretch
of

√
N .
The inherent assumption in the TS model therefore is that plasticity in polymers stems

from the breaking of van der Waals bonds and scission of polymer chains. The TS model
considers chain slippage and consequent disentanglement as possible additional sources of
irreversibility. However, at low temperatures in the glassy regime disentanglement seems less
likely compared with the mechanisms considered here.
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2.5. Parameters

Several parameters are involved in the TS model. The most important parameters pertain
to equation (32). In this work, following the original paper (Termonia and Smith 1987),
we define a ‘base’ material for which the parameters are the same as in the TS model,
i.e. U0 = 1.9 × 10−19 J, τ = 1012 s−1 and β = 1.75 × 10−26 m3. In equation (22), the
number of statistical segments per strand is N = 14 with each segment being ls = 10 Å in
length.

The simulations were conducted at T = 473 K unless otherwise mentioned. However, the
exact value of the temperature is not very important (except to compare with the TS results) for
our purpose since experimental uniaxial deformation behaviour at any other lower temperature
can be fitted by a proper choice of parameters.

The van der Waals members have stiffness Kvd = 4 MPa. There are two kinds of discrete
van der Waals members in the assemblage. There are van der Waals members overlapping with
the strand elements and horizontal ones. The horizontal van der Waals members have a cross
sectional area Avd = 2Nl2

s cos θ representing in a lumped manner the integrated non-bonded
interaction between the neighbouring chains.

The overlapping van der Waals members and the strands have the same cross sectional
area A0 = πrg

2
⊥ls, assuming that these members are cylindrical rods having radii equal to the

component of the radius of gyration rg⊥ perpendicular to the strand axis. Assuming that the
strand is randomly coiled at the onset, rg⊥ =

√
1/3

√
N/6ls under the Gaussian approximation

(see Treloar (1975)). The van der Waals forces along the strands represent the lumped effect
of the intrachain non-bonded interactions. We use ∼10000 nodes (entanglement points) in our
simulations representing an initial box size of about 0.8 × 0.8 μm2.

3. Results and discussions

In this section we present and discuss salient results from uniaxial deformation of the ‘base’
material. In particular we focus on the physical significance of the parameters involved in the
TS model. The objective is to try and understand the inherent assumptions in the model so
that at a later stage parameters for it can be derived from lower order simulations such as MD.

3.1. Significance of various parameters in the TS model

In figures 6(a)–(c), we illustrate the behaviour of the ‘base’ material as it is strained. In
figure 6(a), the evolution of the number of intact van der Waals bonds nvd (normalized with
nvd0, the number of intact bonds at Ey = 0) with the overall strain Ey is demonstrated. Clearly,
most van der Waals bonds break within the early part of the deformation. Beyond Ey = 2 no
more van der Waals bonds break and the load is borne primarily by the strands. The transfer
of load from the van der Waals bonds to the polymer strands manifest as a point of inflection
on the total energy U versus Ey curve shown in figure 6(b). The total energy is calculated by
summing the strain energies of all elements in the system as

U(Ey) =
∑

i

∫ λi

1
f̂ i

s li0 dλi +
∫ λi

1
f̂ i

vdl
i
0 dλi . (34)

In the above equation, f̂ i
s and f̂ i

vd denote the strand and van der Waals forces on the element
i, while li0 is its initial length. The quantity λi is the stretch in element i when the overall
strain is Ey .
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Figure 6. Variation of (a) the number of intact van der Waals bonds nvd as a fraction of the initial
number of bonds nvd0, (b) van der Waals, strand and total energies and (c) overall stress �y with
imposed strain Ey .

At low strains, the total energy is dominated by the quadratic van der Waals energy.
With further straining, the chains begin to stretch and van der Waals bonds also break at the
same time. Thus the energy of the strands governed by the inverse Langevin function gains
importance. This is also illustrated by the evolution of the individual energy components in
figure 6(b). For the parameters chosen for the ‘base’ material, beyond Ey ≈ 2.3, the energy
of the strands dominates the total energy.

Since equation (31) is used to calculate the stress, the point of inflection in the total energy
manifests as the yield drop in the overall stress–strain curve shown in figure 6(c). Thus, in this
model the yield drop arises due to a changeover in the energetics of deformation from a van
der Waals energy dominated situation to a strand energy dominated situation with a large scale
breakage of the van der Waals bonds. The qualitatively realistic stress–strain curve obtained
from the model exhibits linear elastic behaviour and low strains, softening at yield and finally
strain hardening behaviour.

An important point to be noted about figures 6(a) through (c) is the gradual transition in
the energetics which leads to a rounded yield drop in the stress–strain curve. The slope change
at the point of inflection in the total energy depends on the parameters chosen and especially
on the rate at which van der Waals bonds break. A sharp unrealistic drop in stress would result
if these bonds broke too quickly.
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Figure 7. Effects of the values of (a) U0, (b) β and (c) Kvd on the overall stress (�y ) and strain
(Ey ) response.

The yield drop in solid polymers and its influence on mechanical behaviour has been
studied extensively (see, e.g., Lai and van der Giessen (1997), Smit et al (2000)). In the TS
model, the yield drop comes about as a consequence of a switch in energetics. The severity
of the yield drop will consequently depend on the parameters governing van der Waals bond
breakage (mainly U0 and β) vis-a-vis the mechanical properties of the strand (mainly N ). It is
worth mentioning here that MD studies have shown (see, Negi and Basu (2006)) that the van
der Waals energy does flatten with strain after the yield strain. However, further studies are
needed to establish whether the physical reason for the yield drop is indeed linked to the early
breakage of the van der Waals bonds.

As already discussed, the softening is a consequence of the early breakage of the van
der Waals bonds. Thus the pre-softening elastic response is almost entirely dependent on the
stiffness of the van der Waals bonds. This is shown in figure 7(c) where the parameter Kvd
in equation (27) is varied from 4 to 10 MPa. Increasing Kvd has the effect of reducing the
yield strain while keeping the yield stress almost unchanged. The yield stress is influenced
more strongly by the activation energy U0 and the activation volume β as shown in figures 7(a)
and (b). The activation energy U0 has been varied from 1.8178 × 10−19 to 1.9178 × 10−19 J
(i.e. from the original TS values to somewhat higher ones: note that the simulations are very
sensitive to the value of U0). Higher U0 makes the breaking of van der Waals bonds more
difficult leading to a higher yield stress. On the other hand, increasing β makes the breaking
of the bonds possible at lower levels of σ̂ and consequently leads to a lowering of the yield
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Figure 8. Effect of molecular weight Mw on the overall stress (�y ) versus the strain (Ey ) response.

stress as shown in figure 7(b).

3.2. Effect of macromolecular and loading parameters

One of the major attractions of a mesoscopic model is that it allows us to connect molecular
properties such as molecular weight Mw of polymer chains and the entanglement spacing φ to
the macroscopic mechanical response. In this section we demonstrate how Mw and φ influence
the stress–strain response of the polymer. The parameters chosen are identical to that of the
‘base’ material described in the previous section.

A single SARW step roughly corresponds to a chain of Mw = 1900 g mol−1. We have
varied the molecular weight through 1900, 5700, 9500 and 19000. Thus a chain ofMw = 19000
corresponds to 10 SARW steps. The overall stress–strain response of all these curves is shown
in figure 8. The response is very brittle at Mw = 1900 and gradually becomes ductile as Mw
increases. This behaviour is quantitatively similar to that observed by Termonia and Smith
(1987). The stress–strain behaviour observed in these simulations is also qualitatively similar to
the effect ofMw on the ductility observed in experiments (Nunes et al 1982). In the experiments,
the ultimate elongation as well as the impact strength of high density polyethylene (HDPE)
has been shown to increase rapidly with molecular weight till a critical molecular weight of
about 5 × 105 was attained. In real polymers, the effect of Mw comes about due to increased
intermolecular forces and entanglement effects at high Mw. These effects are mimicked by
the TS model successfully.

To systematically examine the effect on the deformation behavior of the entanglement
spacing, i.e. of the number of statistical chain segments between entanglements, Termonia and
Smith (1988) introduced the spacing factor φ defined as

φ =
(

1900
Me

)

, (35)
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Figure 9. Effect of entanglement spacing φ on the overall stress (�y ) versus the strain (Ey )
response of the base material.

where Me is the molecular weight between entanglements. The numerical scaling factor 1900
is somewhat arbitrary but pertains to the approximate molecular weight between entanglements
in melts of linear polyethylene macromolecules.

Figure 9 shows a series of nominal stress–strain curves calculated for monodisperse
polyethylene of Mw = 19 000 at different values of the entanglement spacing factor φ = 0.1,
0.2, 0.4, 0.8 and 1. A low value of φ corresponds to a lightly entangled polymer with
strands longer than in linear polyethylene melts, while higher values simulate highly entangled
polymers with shorter strands. This figure reveals that the post-yield modulus of highly
entangled polymers (large φ) is higher than lightly entangled ones. Lightly entangled polymers
have an almost perfect plastic response after yielding. Moreover, they bear much lower levels
of stress though elongation at failure is somewhat larger for the lightly entangled samples.
This again is in keeping with the results obtained by Termonia and Smith (1988) (see, figure 2
of their paper).

Polymers are known to be rate and thermally sensitive and Termonia et al (1988) had
studied the effects of deformation rate and temperature on the TS model. The essential feature
of the rate sensitivity is an increase in the yield stress at high rates of loading. On the other
hand, temperature reduces the yield stress and weakens the hardening process. The weakening
of the hardening response is due to thermally activated loss of entanglements (see Raha and
Bowden (1972), Arruda et al (1993)). According to Raha and Bowden (1972), the density of
strands obeys

ns(T ) = B − Dexp
(

− Ea

RT

)

, (36)

where Ea and D are constants. Moreover since the total number of monomers in the ensemble
is constant, nsN is fixed. This leads to the fact that the number of Kuhn segments between
entanglements at temperatures T1 and T2 follows the relation

N2

N1
=

1 − D
B

exp
(

− Ea
RT1

)

1 − D
B

exp
(

− Ea
RT2

) . (37)
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Figure 10. Overall stress (�y ) versus strain (Ey ) responses at deformation rates of Ėy of 1, 5 and
10 min−1 for the base material.

Following Basu and van der Giessen (2002) we have taken D/B = 1.648 × 103 and
Ea/R = 2.8 × 103 K in this work.

Figure 10 shows the effect of the strain rate on the stress–strain response of the ‘base’
material. The overall strain rates (i.e. rate of change in Ey) used are Ėy = 1, 5 and 10 min−1.
As expected, the material hardens with strain rate and, in particular, the yield stress increases
with the increase in rate. In the TS model, the rate sensitivity arises from equation (32) which
governs the breakage of the van der Waals bonds. This is illustrated in figure 11 where the
fraction of the intact van der Waals bonds ns with respect to the initial number ns0 is plotted
at various rates. At higher rates, owing to the short times involved in the deformation, larger
number of van der Waals bonds survive large deformations allowing the material to carry higher
stresses. Also note that the hardening response is not dependent on the deformation rate. In
the TS model, the rate insensitivity of the large strain behaviour is due to the fact that most of
the load at large strains is borne by strands which are governed by the rate-insensitive inverse
Langevin function. This feature of the model is not entirely consistent with experimental
results where the stress–strain curves are seen to shift upwards almost parallel to each other
with the deformation rate (see, e.g., G’Sell and Gopez (1981)).

Figure 12 shows the effect of temperature on the stress–strain response. At every
temperature the number of Kuhn segments is adjusted according to equation (37). The large
strain behaviour of the polymer at high temperatures is similar to that for low φ as in figure 8.
This is not surprising since high temperatures lead to a larger number of Kuhn segments
between entanglements.

Another interesting effect of high temperature is the change in the yield drop
as the temperature changes. It should be noted that continuum models of polymers
(e.g. Boyce et al 1988, Wu and van der Giessen 1993) do not capture the change in yield drop
with temperature. However, change in the yield drop with temperature is seen in experimental
studies as in the work of G’Sell and Gopez (1981). In this model, both the rate of breakage of
the van der Waals bonds and the force stretch relationship of the strands depend on T . Thus
the energetics of the van der Waals bond stretching as well as chain deformation are altered
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Figure 12. Stress (�y ) and strain (Ey ) responses of the polymer at different temperatures T as
predicted by the TS model.

with temperature. For example, at 325 K a higher difference between the van der Waals energy
and the energy of the strands at the yield point leads to a larger yield drop.

In summary, the above discussion reinforces the fact that the TS model is a viable mesoscale
model for polymer deformation as it has intrinsic capability of capturing many of the essential
features of the stress–strain response of polymers. These include the yield drop, the post-yield
hardening response and the thermal sensitivity. However, in the present form rate sensitivity
of these materials is not properly represented by the model.

The stress–strain responses shown in figures 8 and 9 match closely with the original
results of Termonia and Smith (1987, 1988). This implies that the model formulated in this
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paper works as well as the original model proposed by Termonia and Smith (1987). However,
the present approach systematically positions the method within the framework of the finite
element method, the generality of which is firmly established. The results pertaining to the
strain rate and thermal sensitivity of polymers are also realistic.

4. Conclusions

In this work, the Termonia and Smith (1987, 1988) model has been analysed critically. The
primary objective is to ascertain the applicability of this mesoscopic model to predicting
the mechanical response of polymers. The implementation of the model has been clearly
explained, in our opinion, to an extent not done in the previous literature. The model has
been implemented within the framework of the large deformation based finite element method
wherein the two-dimensional lattice is viewed as a non-linear truss assemblage.

We have highlighted an important physical basis of the model, namely, that it implicitly
assumes a switch in the energetics of deformation from being governed by the non-bonded
van der Waals forces at low strains to the intrachain forces at higher strains. The parameters in
the model basically tend to influence the competition between these two energies. The yield
drop in the stress–strain response is a significant consequence of the switch in energetics. The
post-yield hardening response of the polymer is on the other hand a consequence of the inverse
Langevin nature of the strand response.

We have also looked at the significance of each parameter in the TS model and have
shown that particular salient features in the stress–strain response of glassy polymers such as
the elastic modulus, yield stress, yield drop and hardening are primarily governed by particular
parameters in the model. A qualitative description of the stress–strain behaviour at low strain
rates is thus given by the TS model.
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