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The topic of superconductivity in strongly disordered materials has attracted a significant attention. In particular 

vivid debates are related to the subject of intrinsic spatial inhomogeneity responsible for non-BCS relation between 

the superconducting gap and the pairing potential. Here we report experimental study of electron transport properties 

of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. We find 

that conventional models based on phase slip concept provide reasonable fits for the shape of the R(T) transition 

curve. Temperature dependence of the critical current follows the text-book Ginzburg-Landau prediction for quasi-

one-dimensional superconducting channel Ic~(1-T/Tc)
3/2

. Hence, one may conclude that the intrinsic electronic 

inhomogeneity either does not exist in our structures, or, if exist, does not affect their resistive state properties. 
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Coexistence of strong disorder and superconductivity, 

being a macroscopically coherent state, is the very 

intriguing topic. Of particular interest is the 

superconductor-insulator transition (SIT) observed in 

highly disordered two-dimensional (2D) thin films
1
 as well 

as in ultra-thin superconducting nanowires
2,3

. Though the 

phenomenon has been discovered more than twenty years 

ago, the debates about its origin are still vivid, both in 

relation to thin wires
4
,
5
 as we all thin films 

6,7,8,9,10
.  

Recent experiments
11,12,13

 on three representative 

materials InOx, NbTi and NbN indicate the existence of 

'intrinsic electronic inhomogeneity', claimed to be not 

determined by chemical or/and structural imperfection of 

the films. While the scanning tunnel microscopy (STM) 

technique can indeed reveal the spatial variation of the 

superconducting order parameter, the corresponding 

electron transport measurements in 2D films cannot shed 

light on the internal inhomogeneity, if it is present, for the 

following reason: As soon as a single channel of 

supercurrent is formed across a 2D superconductor, it 

shunts all non-superconducting inclusions.  Hence, in 2D 

geometry inhomogeneity-dependent deviations from 

fluctuation-governed behavior can be resolved by electron 

transport experiments only at the top of R(T) transition at 

T>Tc. In the opposite limit T<Tc the R(T) dependencies in 

2D samples are 'sharp' irrespectively of the film uniformity.  

On the contrary, in quasi-1D limit with the effective 

diameter of the channel smaller than the superconducting 

coherence length wt
1/2

<, the shape of the R(T) transition 

is very sensitive to inhomogeneities (here t and w are the 

thickness and the width of the wire, respectively). In 

homogeneous quasi-1D superconducting system at T<Tc 

finite resistivity can only be originated from the impact of 

peculiar topological singularities of the superconducting 

order parameter – the phase slips
14

 – activated either by 

thermal, or quantum fluctuations
15,3

. Deviation of the R(T) 

shape from predictions of the corresponding fluctuation 

model is the typical indication of inhomogeneity of a 1D 

sample
16

. Indeed such deviations have been observed in 

samples which were made inhomogeneous on purpose, by 

means of creating surface tension through the coating of the 

thin superconducting wires with silicon oxide
17

.  

Experiments with relatively wide NbN channels revealed 

the vortex-induced resistivity to dominate over the 

fluctuation mechanism


. Analysis of electron transport 

data with narrower NbN channels w/≈25 indicated that 

under conventional experimental conditions of small bias 

currents I<<4ekBT/h the thermally-activated phase slip 

(TAPS) mechanism takes over the vortex scenario
21

. It 

should be noted that in Ref. 20 the samples with width 

w=100 nm did not represent truly the 1D limit. To fit the 

R(T) data the authors had to modify the orthodox TAPS 

model


, justified exclusively for quasi-1D objects 

max(w,t)<into a 'phase slip strip' scenario
20


Recent STM study
24

 of 2D NbN films, ex situ fabricated 

using similar conditions as our samples, revealed deviations 

from BCS scenario: the higher the level of disorder, the 

more unusual are the tunneling spectra. In particular it has 



2 

 

been found that in NbN there exist reproducible from 

sample to sample inhomogeneity characterized by the two 

spatial length scales. The smaller one is of the order of few 

nanometers, thus is close to the coherence length . The 

larger one is of several tens of nanometers.  The latter one 

has been associated with slight variation of the film 

thickness due to underlying atomic steps of the substrate. 

The objective of this paper is to clarify the issue of the 

'intrinsic inhomogeneity' of disordered NbN films through 

study of  R(T) and V(I) dependencies in quasi-1D 

superconducting nanowires. The nanowires were fabricated 

using the same technological process as the 2D films
20,21

. If 

the intrinsic inhomogeneity affects not only the surface 

properties probed by STM, but also the 'bulk', then our 

studies should not reveal any reproducible correlation 

between the transport properties and the geometrical 

dimensions, but rather reflect the particular 'fingerprint' of 

inhomogeneity distribution specific for each sample.  

TABLE I. Sample parameters: sample code, experimental 

critical temperature Tc
 defined as R(Tc)=0.9RN, normal state 

resistance RN=R(T=15K), normal state resistance per coherence 

length Rξ(0), nanowire width w, film thickness t, normal state 

resistivityN and resistance per square R□. Length L=5 m was 

the same for all samples. Mean free path l can be determined from 

product Nl using literature data 25. 

Sam

ple 

Tc, K RN, 

k 

Rξ(0), 

 

w, 

nm 

t, 

nm 
N, 

m•m 

R□, 

 

211 11.60 91.0 60 44 4 3.20 801 

313 11.50 83.0 55 64 4 4.25 1062 

315 11.25 39.5 26 64 4 2.02 506 

421 12.80 32.3 21 41 8 2.12 265 

425 13.30 21.0 14 60 8 2.02 252 

116 13.00 14.2 9 63 8 1.43 179 

216 12.10 65.0 43 60 4 3.12 780 

311 10.95 45.0 30 59 4 2.11 528 

115 13.50 14.3 9 59 8 1.35 169 

414 12.95 26.0 17 45 8 1.87 234 

422 13.45 28.8 19 47 8 2.17 271 

423 14.10 24.1 16 52 8 2.01 251 

426 13.30 20.2 13 61 8 1.97 246 

213 11.55 95.0 63 52 4 3.95 988 

314 11.05 42.2 28 65 4 2.19 549 

415 13.40 22.6 15 51 8 1.84 231 

114 13.00 16.6 11 57 8 1.51 189 

113 13.20 18.0 12 53 8 1.52 190 

112 13.10 20.0 13 49 8 1.58 197 

111 13.05 22.5 15 48 8 1.71 214 

122 13.60 21.4 14 50 8 1.71 214 

124 13.90 26.1 17 59 8 2.46 308 

125 13.10 20.3 13 63 8 2.05 256 

126 13.40 19.4 13 66 8 2.03 254 

 

We have measured 24 samples (Table I): NbN nanowires 

fabricated from four separate film deposition runs resulting 

in different normal state resistivities. The structures were 

patterned from NbN films deposited by DC reactive 

magnetron sputtering from Nb target in gas mixture of 

argon and nitrogen. The thickness of the film was 

determined by previously measured deposition rate and 

deposition time. The patterning was made by e-beam 

lithography in HSQ resist and reactive ion etching in 5:3 

mixture of Ar and SF6. Then the nanowires were coated by 

AZ1512 photoresist to prevent further oxidation of NbN. 

All structures were of the same length L=5 m, the film 

thickness t was either 4 or 8 nm depending on fabrication 

runs. The width w of the line varied between ~40 nm and 

~65 nm and after patterning was controlled by SEM.  The 

normal state resistance of the nanowires RN varied from 

~14 k to ~95 k All samples demonstrated pronounced  

R(T) transitions with the experimental critical temperature 

varying from Tc=11 K to Tc=14 K defined as the point 

where the resistance drops by 10% from the normal state 

value: R(Tc)=0.9RN.  

The sample parameters (critical temperature, normal state 

resistivity and mean free path l≈0.3 nm) correlate well with 

literature data on thin NbN films
25

. Presumably in our thin 

NbN structures (4 nm and 8 nm) both the  resistivityN,  

related to bulk properties, and the resistance per square R□, 

related to 2D properties, are equally affected by the 

fabrication process and are both representative to 

characterize the level of disorder. Note that thickness 

dependence of resistivity is not a common feature. For 

example, in another representative highly-disordered 

superconductor, MoGe, the resistivity of the material does 

not depend on the film thickness or the wire diameter
26

. The 

most probable explanation of the resistivity thickness 

dependence in thin NbN films is the existence of 1-2 nm 

oxidized layer on top of the film, which has been revealed 

by X-photoelectron spectroscopy analyses
27

. Coherence 

length is calculated using almost thickness independent 

diffusion coefficient D=0.45 cm
2
/s, which can be extracted 

from the known dependency of the second critical field on 

temperature for similar 2D films
28

. Assuming the dirty limit 

lzero temperature coherence length 

=(πħD/kBTc)
1/2

≈3.3 nm and the well-known 

divergence Tc, one can consider our samples to be in 

quasi-1D limit >max(t,w) within a relatively wide 

temperature range ~1K below Tc, where one can expect the 

phase slips (PS) mechanism(s) to be revealed. It has been 

shown that vortices can exist in 2D superconductors only as 

soon as w>4.4Hence, in our nanowires vortex 

formation can be disregarded at T>0.9Tc. 
Structures were measured using the same electronics, 

which have been used previously for various sensitive 

experiments on mesoscopic-size superconductors
30,31

. The 

measuring circuit contained several stages of RLC filters 

capable to reduce the impact of external electromagnetic 

noise down to Telectron - Tphonon ≈ 15 mK at a base 

temperature Tphonon≈20 mK 
32

.  

The R(T) dependencies were measured by using the 

current bias mode with the typical value Iac=10 nA rms. 
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Within the experimental errors an increase of the measuring 

current by factor of 10 did not change the shape of the R(T) 

curves noticeably.  There is the correlation between the 

experimental critical temperature Tc and the sample's 

resistance per square R□ or resistivity N: The higher are 

these values, the lower is the critical temperature. The 

observation is in agreement with literature data 
13,18,19,20,21,25

.  

The R(T) data from several representative samples are 

presented in Figs. 1 and 2. The R(T) dependencies are 

rather smooth and are free from obvious sample-dependent 

artifacts, which would immediately disable an 

interpretation based on trivial inhomogeneity.  

 

FIG. 1.  Series of R(T) transitions for representative samples with 

low to high normal state resistivity. Normal resistances of the 

presented samples covers the whole range from the lowest one 

(sample 111, 14 k) to the highest one (sample 213, 95 k). 

Lines correspond to fits with TAPS model22,23,33. Solid lines 

account for the prefactor (T) derived in Ref. 23, while the 

dashed lines for that of Ref. 33. Recording of each curve typically 

takes of about 30 min. Kinks on the R(T) dependencies are 

experimental artifacts originating from switching of the lock-in 

amplifier sensitivity ranges and the finite integration time ~10 s. 

The straightforward interpretation of finite resistance of 

a homogeneous quasi-1D superconducting channel below 

TC evokes the fluctuation-governed phase slip process. The 

model of thermally activated phase slips (TAPS) 
22,23,33

 

predicts that the resistance is governed by the activation 

exponent: 








 


Tk

F
TTR

B

exp)()(
.   (1) 

The free energy barrier F can be expressed through 

parameters of the nanowire as 

F(RQ/Rξ(0))kBTc(1−T/Tc0)
3/2

, where Rξ(0)=RN(L/ξ(0)) is 

the sample resistance in normal state per coherence length 

ξ(0), RN the resistance in normal state, and RQ=h/(2e)
2
=6.45 

k the superconducting quantum resistance. The 

expression for F can be easily obtained within the 

Ginzburg-Landau (GL) model and, hence, formally is 

correct only rather close to the critical temperature Tc0. 

However in the dirty limit the quantitative discrepancy 

between the GL and the microscopic expressions is just 

about 20% at T=0.7Tc0 (see Ref. 34, Fig. 2). As in all our 

samples measurable resistance could be detected only at 

T>0.8Tc, hereafter we use the GL expression for F. The 

activation law Eq. (1) contains also the temperature-

dependent prefactor (T), which is different in Ref. 
23

 and 

in more recent work 
33

. In addition it has been argued 
35

 that 

the evaluation of the 'original' prefactor 
23

 is correct only in 

the limit (T)<kBT, which is not satisfied within the whole 

range of our measurements. However due to the relatively 

weak dependence of the both prefactors on temperature, 

compared to the exponent in Eq (1), the difference between 

the prefactors does not account for significant discrepancy 

in shape of the R(T) fits at R(T)<<RN, where the phase slips 

are rare events  and the TAPS model is essentially valid 

(see Fig. 1).  

Fig. 1 presents R(T) dependencies for representative 

samples with different normal state resistances, fitted by the 

TAPS model Eq. (1) using prefactor (T) both from Refs. 

23 and 33. The only fitting parameter (besides the absolute 

value of the normal state resistance RN) is the 'best fit' 

critical temperature Tс0 , which turned out to be slightly 

lower than the empirically determined critical temperature 

R(Tc)=0.9RN. It should be noted that the zero-temperature 

coherence length ξ(0)  is not a free parameter. One can see 

that the shape of R(T) dependencies can be nicely fit with 

the TAPS model Eq. (1) for the samples with both low and 

high normal state resistances (Fig. 1).  

At the same time, for some samples the R(T) 

dependencies demonstrate deviations from the TAPS 

behavior: namely, one can observe extended low-

temperature tails (Fig.2). Quantitatively, these deviations 

are not dramatic and can be attributed to some unidentified 

experimental artifacts such as finite level of external EM 

noise. Inhomogeneity of the samples in the form of short 

'weak points' (e.g. overlooked in SEM tests narrow 

constrictions or inclusions of non-superconducting phase), 

which do not affect noticeably the normal state resistance 

RN, can also contribute to finite TAPS-determined phase 

slip rate at lower temperatures. However, if to disregard 

those hypothetical artifacts, the deviations from the TAPS 

should be attributed to some other mechanism(s), which 

might systematically further broaden the R(T) 

dependencies. Below we discuss an interesting possibility 

that these low-temperature tails in Fig. 2 can be the 

manifestation of the quantum phase slip (QPS) mechanism 
36,37

. 

The QPS mechanism
36,37

 has been claimed to be 

observed in a number of experiments 
15,26,38

 and might be 

responsible for the broad R(T) transitions of the thinnest 

NbN nanowires (Fig. 2). The QPS contribution to finite 

resistivity of a quasi-1D superconductor is given by 
15

:   
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where b is an unimportant constant which remains the same 

for all samples; (T) and (T) are the temperature 

dependent superconducting energy gap and coherence 

length, respectively. The QPS action SQPS=ARQ/Rξ(T), where 

Rξ(T) is the resistance in normal state per coherence length 

ξ(T) at temperature T, and the constant A≈1 is the numerical 

prefactor that, unfortunately, cannot be determined more 

precisely within the model 
36,37

. Sufficiently close to Tc, one 

can approximate the QPS action as 

SQPS=ARQ/Rξ(0)(1−T/Tc0)
1/2

, similar to the expression for 

energy barrier F in TAPS model (1). As seen from Fig. 2, 

fits with QPS model provide reasonable agreement with our 

data except the very top of the R(T) transition. One should 

clearly understand that fitting R(T) dependencies with 

TAPS and QPS mechanisms, should not be understood as 

'either or':  both contributions should be present in all 

samples unless the inhomogeneities are not too severe to 

prohibit applicability of any model developed for uniform 

objects. In the thickest nanowires TAPS mechanism should 

dominate over the whole temperature range of 

experimentally measurable finite resistance. Due to 

exponential dependence of the QPS mechanism on cross 

section (Eq. 2), one can expect that in the thinnest samples 

at low temperature the QPS contribution can be resolved. 

Obviously it should be some intermediate regime, where it 

is difficult to separate one contribution from another. In 

earlier experiments on Al and Ti nanowires, where ion 

milling has been used to progressively reduce the cross 

section of a sample without affecting the bulk resistivity N, 

it has been clearly demonstrated that  the crossover from 

TAPS to QPS mechanism is a pure size effect 
15,39,40,41

. In 

NbN where the normal state resistivity N  and the 

resistance per square R□ both depend on the nanowire 

diameter (Table I), one should rather quote resistivity per 

unit length (see expression for the action SQPS in Eq. 2).  

 

FIG. 2.  Series of R(T) transitions for samples with relatively high 

normal state resistivity. Dashed lines correspond to TAPS model 
22,23, solid lines stand for QPS model 36,37.  

To make a more reliable statement about the evidence 

of TAPS and QPS mechanisms in our measurements, it is 

preferable to make a comparative quantitative analysis of 

the whole data set, and do not consider solely the 

corresponding fits to particular samples. To proceed one 

should note that Eqs. (1) and (2) predict different 

dependencies of the width of resistive transition R(T) on 

sample resistance in normal state RN. Let us define the 

transition width as Tc=T1−T2, where R1≡R(T1) and 

R2≡R(T2) are some arbitrary chosen points within the R(T) 

phase transition. If to define RN
0
≡R(Tc0) and R(Tc0)/R(T1,2)≡ 

RN
0
/R1,2≡C1,2, then it follows from Eq. (1) that 

     









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












3

2

2
3

2

2

3

2
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lnln

2.2
СС

R

R

T

T

QC

  (3) 

Tc0 is not measured directly and is just a fitting parameter of 

TAPS model, RN
0
 is unknown and the relation RN

0
/RN can in 

principle vary from sample to sample. For instance, 

resistance corresponding to the best fit Tc0 for the fits 

presented in Fig.1 varies from 0.4RN to 0.8RN. To avoid too 

sophisticated analysis, let us define Tc0 such as RN
0
≡0.5RN 

for all samples. Actually such a simplification appears quite 

realistic following the TAPS fits with Eq. (1) and the 

experimental R(T) data (Fig. 1). The resistances R1,2 should 

be chosen in the range of applicability of the fluctuation-

governed PS models, i.e. to be small compared to RN. Thus, 

R2 was set to 3×10
−4

RN, close to instrumental zero 10
−4

RN, 

and R1 was set to 3×10
−2

RN. The resulting dependence of 

Tc/Tc0 on RN
2/3

 is presented in Fig. 3. The depicted analysis 

basically requires no fitting parameters as the variation of 

RN
0
 (and correspondingly Tc0) has very little effect due to 

weak logarithmic dependence. 

 
FIG. 3. Normalized width of resistive transition vs. normalized 

sample resistance. Points corresponding to the data presented in 

Fig. 1 and Fig. 2, are indicated with the specific sample codes. 

Point corresponding to sample 313 seems to drop out from the 

expected trend: resistance of the sample is two times greater than 

the resistances of the samples 311, 314 and 315 with close 
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parameters (see Table 1). Sample 211A is the same sample as 211, 

but cross-characterized in the other laboratory. Curves are the 

predictions of TAPS model (solid line) and QPS model with 

A=0.25 (dashed line). 

One can notice that Tc/Tc0 for the samples with close 

normal state resistances has certain scattering, presumably 

indicating presence of inevitable sample imperfections. The 

transition width Tc=T1−T2 and the reference points 

R1≡R(T1) and R2≡R(T2) have been selected arbitrarily, and 

their redefinition might provide logarithmically weak 

better/worse agreement. Nevertheless one can conclude that 

almost all samples demonstrate wider transitions than 

TAPS model predicts.  

At the same moment QPS model predicts the dependence 

of T on RN which is qualitatively different from Eq. (3): it 

follows from Eq. (2) that Tc should be proportional to RN
2
. 

The prediction of QPS model (Eq. (2)) is plotted in Fig 3 as 

the dashed line for A=0.25. The freedom in selection of the 

fitting parameter A can significantly modify the QPS-

governed transition width T. Note that in case of Al and Ti 

nanowires the best QPS fits were obtained setting A to 0.15 

and 0.25, correspondingly
15

. Here we found that 

A=0.250.05 provides the best fits for selected samples 

with the widest R(T) transitions (Fig. 2). It should be noted 

that deviations of those high-Ohmic samples (211,213 and 

216) from predictions of TAPS model is not dramatic either 

(Figs. 2 and 3). 

The impact of coherent QPS has been observed 

unambiguously in qubit-type measurements in NbN rings, 

containing narrow segments with width 30 nm or lower
42

. 

Rate of QPS was found to be of order γQPS=10 GHz for the 

nanowire with the length of 1 μm made of film with sheet 

resistance R□=2 kΩ which corresponds to Rξ(0)=220 Ω if to 

assume that ξ(0) has the same value as in our samples. Note 

that the obtained resistance Rξ(0) is more than two times 

greater than that of the most high-Ohmic samples studied in 

present work (TABLE I). Taking the directly measured data 

for  γQPS from Ref. 42 as the reference, it is possible to 

estimate the expected effective resistance due to QPS 

process in our samples. One can rewrite Eq.(2) as  

 TTk

h
R

T

L
TR

B

QPS

Q




22 '

)(
)(




   (4)  

where the QPS rate is (scaled to a segment of length ξ(T)) 

γ'QPS~(T)SQPSexp(−SQPS)≡γQPS(ξ(T)/L), and set A=0.25. For 

the parameters of sample 211 and temperature 0.85 Tc, the 

resistance given by (4) turns out to be of order 10
−5

 Ω, 

which is far below the instrumental zero. The observation 

indicates that the samples studied in this work are still too 

thick (or low-Ohmic) to claim the clear impact of QPS 

mechanism on the shape of R(T) transition. For majority of 

samples TAPS mechanism dominates within the whole 

range of experimentally observed finite resistance below Tc.  

The current vs. voltage I-V dependencies, measured at 

temperatures T<Tc are typical for reasonably homogeneous 

superconducting nanowires and qualitatively resemble the 

behavior of the shunted superconducting tunnel junctions 

measured at a finite temperature: At small bias the 

instrumental zero voltage state  is observed, which 

smoothly approaches normal (Ohmic) state at higher 

currents (Fig. 4, inset). Absence of artifacts (e.g. kinks) 

indicates the absence of pronounced structural 

inhomogeneities such as regions with different values of 

local critical current density jc and/or sections with 

considerably different effective cross section (tw)
1/2

. The 

temperature dependence of the critical current nicely 

follows the Ic=Ic0(1−T/Tc)
3/2

 dependence (Fig. 4), following 

the prediction of the Ginzburg - Landau (GL) model for a 

1D superconducting channel, where Ic0  is the critical 

current at T=0. To outline the distinction between the 

behavior of the thinnest (sample 211, largest Tc) and the 

thickest (sample 116, smallest Tc) nanowires, in inset to 

Fig. 4 we plot the I-V dependencies measured at the same 

effective temperature T* defined as R(T*)/RN=10
-3

.
 
One can 

clearly see that the thickest structure (116) demonstrates the 

instrumental zero voltage state over much wider current 

range (in units Ic/Ic0) compared to the thinnest nanowire 

(211). At much lower temperatures T<< T* both structures 

demonstrate the I-V dependencies with extended current 

range corresponding to the zero voltage state, indicating 

that they are in 'truly' superconducting state in a sense that 

the rate of PSs is too small to provide a measurable voltage 

at a finite bias current.  

FIG. 4.  Critical current  vs. temperature for two representative 

structures with low (○, sample 116) and high (□, sample 211) 

normal state resistance. Line corresponds to Ginzburg - Landau 

Ic=Ic0(1-T/Tc)
3/2 dependence typical for 1D channels close to 

critical temperature. Inset: normalized I-V characteristics for both 

samples measured at temperature T*, defined as R(T*)/RN=10-3. 

The experimental critical current Ic corresponds to instrumental 

critical voltage Vc=2 V.  

As all samples demonstrate a finite measurable resistance 

within a certain temperature region below the critical 

temperature, the definition of the critical current is rather 

arbitrary. In the analyses above  we have defined the 
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'critical current' as the state corresponding to the  'critical' 

voltage Vc=2 V. This value has been selected to be well 

below the voltage across the sample in normal state (T>Tc), 

but noticeably larger than the experimental dc voltage zero 

~10 nV to distinguish if the resistive state is approached 

smoothly (Fig. 4, inset) or jump-like typical for massive 

superconductors. 

 To summarize, the smooth R(T) and V(I) dependencies, 

observed for all studied samples, support our hypothesis 

that the intrinsic electronic inhomogeneity, revealed in 

STM studies of NbN
 
films

 13,24
, either does not exist in our 

structures, or, if exist, does not affect their resistive state 

properties. Though the parameters of our most high-Ohmic 

samples correspond to the ones, where noticeable 

deviations from BCS behavior have been observed
24

, we 

find that conventional BCS-based models of fluctuation-

governed resistive state provide satisfactory agreement with 

our R(T) data 
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