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Abstract

Recognition tunneling (RT) identifies target molecules trapped between tunneling electrodes 

functionalized with recognition molecules that serve as specific chemical linkages between the 

metal electrodes and the trapped target molecule. Possible applications include single molecule 

DNA and protein sequencing. This paper addresses several fundamental aspects of RT by 

multiscale theory, applying both all-atom and coarse-grained DNA models: (1) We show that the 

magnitude of the observed currents are consistent with the results of non-equilibrium Green's 

function calculations carried out on a solvated all-atom model. (2) Brownian fluctuations in 

hydrogen bond-lengths lead to current spikes that are similar to what is observed experimentally. 

(3) The frequency characteristics of these fluctuations can be used to identify the trapped 

molecules with a machine-learning algorithm, giving a theoretical underpinning to this new 

method of identifying single molecule signals.
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1. INTRODUCTION

Electron-tunneling has been proposed1,2 as a readout system for nanopore sequencing3 of 

DNA because the tunnel current can be confined to a region as small as the size of a single 

DNA nucleotide (in contrast to the 4 to 5 nucleotides that are sampled by ion-current 

measurements). The proposal is that a single stranded DNA molecule would be driven 

through a nanopore electrophoretically while the sequence is read using the electron 

tunneling current passing between two closely spaced electrodes (embedded in the pore) as 

each base passes through the tunnel gap. Tunnel current reads of individual nucleotides have 

been demonstrated experimentally4 but the current distributions measured for the four DNA 
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bases were broad and overlapped considerably. Furthermore, a very small tunnel gap was 

required (0.8 nm) and this is too small for a single-stranded DNA molecule to pass through. 

Thermal fluctuations, Brownian motion, and both transverse and electrophoretic fields cause 

strong fluctuations of instantaneous position of the DNA bases relative to the electrodes. 

This results in large noise and poor signal-to-noise ratio in the transverse nonresonant 

tunneling conductance. For example, it was found that the variation in the conductance due 

to the geometry of the base relative the electrode can easily override the difference between 

different types of nucleotide2,5. Therefore, control of the DNA translocation and localization 

as it threads the nanopore becomes a primary concern for DNA sequencing techniques using 

synthetic nanopores6-9. Theoretical calculations predicted significantly increased signal-to-

noise ratio in the tunneling reads of the DNA if the electrodes are functionalized with 

nitrogen so as to promote resonant tunneling through the DNA nucleotides10. When using a 

fluidic nanochannel functionalized with a graphene nanoribbon the changes in the 

conductance of the nanoribbon were deciphered as a result of its interactions with the 

nucleobases via π–π stacking11. Electron transmission of graphene nanoribon shows 

characteristic features of physisorbed molecules on it and allows utilization of two-

dimensional molecular electronics spectroscopy for a DNA base recognition12. We have 

proposed an alternative approach we call recognition tunneling (RT).3 Recognition tunneling 

has significantly increased discrimination of the electron tunneling signals obtained from 

each of the DNA bases and is now becoming a good candidate as a “reading head” for DNA 

sequencing. Unlike nano pore ion-current measurements it is sensitive to single bases. 

Furthermore, a manufacturable solid state device that reads individual DNA nucleotides was 

recently demonstrated13. In RT, the electrodes of a tunnel gap are functionalized with 

organic molecular “readers” that form non-covalent contacts with the target molecules 

(figure 1) but are strongly bonded to the metal electrodes. The weak non-covalent bonding 

of the “readers” with DNA nucleotides allows for DNA translocation through a pore, but 

slows down the translocation of the DNA segment through the confining nanopore by some 

3 orders of magnitude14. These non-covalent bonds are strong enough to increase signal-to-

noise ratio by imposing constraints on thermal fluctuations15-18. A special reader molecule 

has been designed to form distinctive patterns of hydrogen bonds with all four DNA bases. 

This molecule, 4(5)-(2-mercaptoethyl)-1H-imidazole-2-carboxamide, is referred to as ICA 

in this paper. Its properties and hydrogen bonding patterns in a RT gap are described 

elsewhere.19 The ICA molecule serves to displace contamination and eliminate water 

molecules and ions from the tunnel current path, as well as holding the target molecule in 

place transiently. This scheme works well with gaps of about 2 nm,15 producing 

characteristic stochastic signals for each of the four DNA bases.16 The signals are comprised 

of a series of sharp current spikes. The spike widths are exponentially distributed with 

characteristic 1/e times of around a ms (experimental measurements are limited in time 

resolution to about 0.1 ms because of the limited frequency response of the current 

measuring electronics). Distributions of signal parameters, such as the heights of the current 

spikes, and of their widths, are still overlapped considerably from one base to another. 

However, by making use of a number of signal features simultaneously, individual signal 

spikes can be assigned to each of the DNA bases quite accurately, despite the stochastic 

nature of the signals. This assignment is done using a machine-learning algorithm called a 

Support Vector Machine (SVM).17 More recently, RT has been used to recognize individual 
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amino acids and peptides20 possibly opening the way to sequencing of proteins at the single 

molecule level.

Despite this progress and promise, there has been almost no theoretical analysis of 

recognition tunneling. He et al.21 have calculated tunnel currents through junctions in which 

one electrode is functionalized with a cytosine. Their calculations were carried out in the 

absence of thermal fluctuations, and so do not capture this key feature of RT signals. 

Furthermore their model system did not include water molecules. Lee and Sankey22 have 

calculated currents for the ICA-(DNA-base)-ICA complexes bridging a tunnel gap (as in 

figure 1a). However, these calculations were also carried out at 0K and in the absence of 

water molecules.

The limited scope of these previous calculations is a consequence of the challenges of 

modeling the real experiment. The measured fluctuations lie in the ms range, hopelessly 

beyond the reach of even classical molecular dynamics, let alone the quantum-mechanical 

calculations required to estimate tunneling currents. One ad hoc attempt to rationalize the 

form of the RT signal assumed a random walk with a thermal (Gaussian) distribution in one 

dimension, taking the exponential of displacement as a measure of tunnel current.23 By 

choosing parameter values appropriately, the form of the RT signal was reproduced. In this 

model, the parameters had no obvious relationship to measured physical quantities.

Several big questions remain unanswered: (1) Is the magnitude of the observed signals 

compatible with electron tunneling? (2) Does a reasonable physical model of the 

fluctuations predict the form of the RT signal? (3) Do the RT signals in a model system 

change enough with the chemistry of the target molecule (in the simulation) to allow a 

machine learning algorithm to identify individual signal spikes with significant accuracy? 

This latter point is very important, because the machine-learning based analysis of single 

signal spikes opens up an entirely new approach for analyzing single molecule interactions.

It is not possible to answer these questions with an all-atom, first principles calculation, but, 

in this paper, we make an attempt on constructing the best approximate models we can in 

order to address these issues. The goal here is to see if these best estimates resemble the 

experimental data, or conversely, rule out a mechanism by means of a large disagreement 

between theory and experiment. In Section 2 we begin with an all-atom quantum-classical 

molecular dynamics simulation of the motion of hydrated complexes at 300K, taking “snap 

shots” at short intervals of the atomic configurations and calculating the conductance of each 

configuration by means of a non-equilibrium Greens function (NEGF).24 These calculations 

extend only into the ps timescale, and are further complicated by the need to take averages 

of a wildly fluctuating current in order to begin to approximate the experimental situation 

where fluctuations are integrated. While there is no a priori reason to suppose that the result 

can be extrapolated from ps to ms timescales, it is gratifying that the calculated currents fall 

within about an order of magnitude of the measured currents. Next, we adapt a simplified, 

coarse-grain model of DNA (the “oxDNA Model”25-30) to extend classical dynamics 

simulations into the much longer time scales (covering ns-μs-ms ranges) to extract the 

hydrogen bond stretching (Section 3) and to develop (Section 4) a simplified representation 

of ICA molecules interacting with all DNA bases (more specifically, for a single “universal 
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base” interacting with DNA). Using the calculated values of the hydrogen bond stretching 

over large time spans in the tunneling decay model19, we calculate the time dependence of 

the corresponding RT signals (Section 5). The calculated signals bear a strong resemblance 

to measured RT signals. Finally, in Section 6 we take calculated RT signals for all four 

bases interacting with the model “ICA” molecule (i.e., the universal base) and analyze them 

with the support vector machine. Each signal spike can be correctly assigned (A, T, G or C) 

to an accuracy that approaches 80% for bases where adequate training data was available. 

This provides a theoretical underpinning for the experimental observation that individual 

signal spikes can be assigned to better than 90% accuracy if adequate training data are 

available. Our conclusions are presented in Section 7.

2. QUANTUM-CLASICAL TUNNELING DYNAMICS AND MAGNITUDE OF 

THE TUNNEL CURRENTS

The quantum tunneling calculations were performed using the simplified geometry shown in 

figure 1(b). The figure 1(a) illustrates gold wire-electrodes, the ICA reader molecules 

(attached the electrodes via a sulfur), and a guanosine nucleotide in the initial hydrogen 

bonded configuration prior to the addition of water. The tunnel gap (sulfur to sulfur) was 

chosen to be 2 nm. This is smaller than the gap determined using STM break-junction 

techniques19 but consistent with more accurate measurements that have recently been made 

using solid state devices (unpublished data). Starting structures for complexes with the other 

bases were taken from Liang et al.19 The structure, as hydrated by 90 water molecules, is 

shown in figure 1(b). The presence of the water molecules introduces many additional 

hydrogen bonds, as indicated by dashed lines in figure 1(b). The geometry of the complex, 

for each of the four bases is optimized and thermalized at 300K with the quantum-classical 

molecular dynamics approach for their mutual interactions, for the interactions with and 

among the water molecules and for the gold-electrodes configurations, prior to performing 

the Quantum-Tunneling Classical Molecular Dynamics (QTCMD)31.

The quantum-classical molecular dynamics (QCMD) simulation was performed by the Self-

Consistent-Charge Tight Binding Density Functional Theory (SCC DFTB32-34), using 

appropriate Slater-Koster parameters.35,37 We let the system evolve dynamically, using the 

classical molecular dynamics NVT calculation with a time step of 1 fs, dumping all 

coordinates each 10 fs. The Andersen thermostat37 was applied, with probability of 0.1 to all 

particles (except for the gold atoms, which are frozen) to scale the particle velocities to the 

Maxwell distribution at 300K. Electron transport calculations were carried out (for each of 

the sets of system coordinates dumped in 10 fs intervals) using the Non-Equilibrium Green's 

Function method (NEGF-DFTB38-40,32-34), thus obtaining the time-dependent tunneling 

signal.

Examples of calculations out to 1ps (for a bias of 0.5V) are shown in figure 2 for all four 

DNA bases. The currents fluctuate over a wide range, with only the largest peaks visible on 

these linear plots. These large peaks bear a striking resemblance to the measured spectra but 

of course the time scale is shorter by over 9 orders of magnitude. Although the classical MD 

calculations are fast, the computational bottle-neck is the electron transport calculations, 

which become formidable in presence of water. This is the reason that the all-atom, 
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QTCMD calculations have been performed only within a 1ps interval. The presence of water 

changes the signal through readers, influencing the frequency and intensity of the peaks. The 

most important observation here is that the fluctuations of the calculated signal is caused by 

the thermal fluctuations, and significantly influenced by the presence of water.

In order to compare with the experimental situation, these currents need to be integrated (as 

they are in the experiment by the finite response (~0.1 ms) of the electronics). In this present 

simulation, characteristic bond vibrational times are on the order of 0.1 ps, so a reasonable 

approximation to the average current can be found by integrating over the 1 ps duration of 

the simulation. The results of doing this are shown in figure 3. The currents do approach 

constant values when the time interval for the integral becomes much greater than 0.1 ps. 

The resulting averaged currents lie in the range from a few nA (Adenosine) to about 100 pA 

(Cytidine). These values are considerably greater than the tens of pA observed in 

experiments, but the averages would be likely reduced by other, longer timescale 

fluctuations beyond the reach of the current simulation. Thus, the magnitude of the 

measured RT currents are not inconsistent with values calculated for electron tunneling in 

the presence of strong fluctuations.

3. THE OXDNA MODEL FOR COARSE-GRAINED SIMULATIONS

A first step in order to capture fluctuations out to μs to ms timescales, is a reduction of the 

system complexity to the coarse-grained model of the interactions of solvated DNA bases. 

oxDNA25-30, a coarse-grained DNA model developed by the University of Oxford (and 

available for public download: https://dna.physics.ox.ac.uk/index.php/Main_Page), is 

particularly suited for this task.

The model represents DNA as a string of 2-center nucleotides, the centers being sugar-

phosphate and base rigidly connected to a nucleotide, which are mutually interacting (see 

the online Supporting Information, where some further details of the model are given). The 

potential energy of the system contains both interactions of the nearest-neighbors (nn) 

nucleotides on the same strand (the sugar-phosphate backbone potential, nn stacking, 

excluded volume) as well as remaining interactions that can couple different strands 

(hydrogen bonding VHB, cross and coaxial stacking). The interactions between nucleotides 

are schematically shown in figure S1 (Supporting Information).

Since the main focus of the present work is the hydrogen bonding, we focus here on how it 

is modeled.25,26 The Watson-Crick base pairing is modeled through the VHB term of 

potential, with a radial term dependent on the instantaneous bonding length R, defined by 

the separation of hydrogen bonding sites. The co-linear alignment of the antiparallel planes 

of the paired bases has strong preference in the hydrogen bonding interaction (quantified by 

a set, , of five angles)

(1)

Figure S2 shows the radial dependence of the VHB(R) for randomly chosen sets of  for the 

Watson-Crick pairs A-T and G-C. The range of coupling extends to more than 6 Angstroms, 
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while the absolute minimum of the coupling is close to 3.4 Angstroms and is about 0.32 eV 

for G-C and about 0.23 eV for A-T hydrogen bonding.

4. MODEL OF THE READER-BASE INTERACTION

The oxDNA model represents interactions between DNA molecules – how might it be 

extended to represent the interactions of the ICA reader molecules with the four bases? At 

this point, it has not proven possible to make a quantitatively accurate representation of the 

full ICA-base-ICA complex as shown in figure 1a. Instead, we have extended the oxDNA 

by a simple model of just one universal molecular reader (i.e., a representation of one of the 

ICA molecules) interacting with all DNA bases, by implementing a new “base” Z which 

bonds to all four DNA bases. The base-independent angular modulation of the hydrogen 

bonding is left as in the oxDNA model. Following the experimental observation, Z-T and Z-

A bond strengths (minima in the curves in figure S2) are given the smallest values of 0.23 

eV and 0.26 eV respectively, while Z-C and Z-G are assigned somewhat larger values, of 

0.292 eV and 0.32 eV, respectively. These assumed H-bond strengths lie between the 

maximum (G-C) and minimum (A-T) values for the Watson-Crick pairs. The coupling base-

pair dependent stacking strength for the Z-A, Z-T, Z-C, Z-G and Z-Z stacking is here taken 

to be 0.424 eV, which is the average value of all original stacking strengths between the 

various base pairs.

5. DESCRIPTION OF THE COARSE-GRAINED DYNAMICS

The modified oxDNA model was used to generate the inter-particle forces for a Langevin 

dynamics simulation of the relative motion between the “Z” readers and DNA bases. In 

Langevin dynamics the solvent exerts both random forces and dissipative drag on the solute, 

and the two are related by a fluctuation-dissipation relation to ensure that a steady-state 

Boltzmann distribution integration of the classical equations of motion into dynamical 

trajectories includes the effects of the solvent-mediated forces. In this model, each 

nucleotide (A, T, C, G and “Z”) is a 3D rigid body so that the configuration space spanned 

by N nucleotides has 12N dimensions in coordinate-momentum space. Pairs of nucleotides 

interact through the pairwise effective interactions, described in sections 3 and 4. The rigid-

body dynamics and description of diffusion in oxDNA are described in detail in the 

references25-29 and in the Supporting Information.

We first tested the model using interactions between DNA bases that Watson-Crick pair to 

see if the behavior was reasonable (Supplementary Information, figures S4-S6). Armed with 

this background, we then simulated interactions between the universal “Z” base and the 

DNA nucleotides. A typical configurations for modeling the Z-nucleotide interactions are 

shown in figures 4 and S3.

The dynamics produces trajectories of the system, which we capture at predefined time 

intervals. Typical calculations have run for 109 to 1010 time steps, i.e. tens to hundreds of μs, 

dumped each 200 steps, i.e., in steps of 1.7 ps. In addition to the trajectories of all particles, 

we record the components of energy, including the hydrogen bonding energies. Since 

oxDNA takes into account directional difference of the 3’-5’ and 5’-3’ strand topologies, for 

the purpose of a correct description of the double-helix association, the smallest DNA 
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segment used for a probe is a dimer. In order to have a single monomer of a dimer bonded to 

a DNA, we construct the dimer-nucleotides from one Z-base and another DNA base that will 

not bond to a target homopolymer. Figure 4 shows an example of ZA dimers and poly(dG) 

(mismatches have zero interaction in the oxDNA model). Both the probes and the DNA are 

subject to random Brownian forces, resulting in stochastic dynamics of the binding and 

unbinding of the probes to the DNA, as indicated in figure 4. In the model of a 

homopolymer interacting with a bath of dimers, it is possible to have several interactions 

occurring at once. For this reason, we followed the bonding evolution of each probe, 

obtaining the time-dependent bonding length for each monomer binding event. By analysis 

of the oxDNA output, from the trajectories and hydrogen bonding energies, we derive the 

lengths of the hydrogen bonds as functions of time, in steps of 1.7 ps, for each monomer in 

the dimer probes bonded to the DNA segment. Here, we will focus on interactions between 

dimers and a DNA homopolymer. (We have also investigated interactions between dimers 

and heteropolymers, extracting single Z-base interactions from the many types of event that 

can occur in that case, and obtaining results that were similar to those we present here for 

the much simpler case of a homopolymer.)

Even in the case of a homopolymer, simultaneous binding of more than one dimer to the 

target homopolymer may affect the dynamics, so we separate events into single dimer-

polymer bindings, double binding events and so on. Thus, for example, events in which a 

single dimer is bound to a poly(A) are labeled ZA_1, two dimers bound are labeled ZA_2 

and so on. Examples of calculated conductance vs. time traces where the different types of 

binding events are color coded are given in figure 5. We have excluded from these 

calculations events where dimers interact only with other dimers.

We assume that the tunnel current fluctuations are dominated by the stretching of the 

hydrogen bonds (as constrained by all the other interactions of the model). Once the time 

dependent hydrogen bond length was obtained, we used the electronic decay constants, βG-C, 

βA-T for hydrogen bond stretching computed by Lee and Sankey22 to estimate the 

conductance fluctuations for each bonded monomer, according to

(2)

where R is the hydrogen bond length, G0 is quantum of conductance (77μS) and βG−C = 

3.3A−1 and βA−T = 2.6A−1. This is a significant difference, and choosing, for example, to use 

βG_C for Z-C and Z-G complexes and βA-T for Z-A and Z-T complexes leads to significant 

difference in the size (figures S6 and S8) of the corresponding current fluctuation (though 

we shall see that this does not dominate the SVM analysis). For this reason, we used an 

identical value for all for interactions (ZA, Z-T, Z-G and Z-C) of β=3.0.

Typical conductance-time traces for Z interacting with each of the four poly-nucleotides, 

A,T,C and G, are shown in figure 5, estimated at each point of time by equation 2 using the 

calculated HB distance calculated for each interaction and the same β for all bases. The 

currents were obtained from the conductance’s assuming an applied voltage bias of 0.5V.

The simulations run out to a fraction of a ms, still not quite the experimentally measured 

time scale of fluctuations (which are limited to current peaks longer than about 0.1 ms). But 

Krstić et al. Page 7

Nanotechnology. Author manuscript; available in PMC 2016 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the form of the fluctuations bears a striking resemblance to the experimentally measured 

spectra9.

Do these simulated spectra contain enough information to allow identification of the 

individual nucleotides? This is the subject of the next section.

6. CHEMICAL ANALYSIS FROM SIGNAL PEAK FEATURES

Despite the fact that the experimentally measured RT signals are stochastic, with signal 

features that are broadly distributed, it turns out experimentally that individual signal peaks 

can be assigned to particular analytes with remarkable accuracy using a machine-learning 

algorithm that combines information from many signal features.17 Is this true of the 

simulated signals that are the subject of the present paper? This question is important in 

giving a theoretical underpinning to the observation that single signal spikes can be assigned 

to individual analytes with high accuracy.17,20

We used the calculated conductance signals (c.f., figure 5) for homogeneous DNA’s derived 

from the coarse-grained model described above to answer this question. The code developed 

for analyzing experimental signals20 begins by identifying each signal spike in the data train 

by setting a threshold that is a small multiple of the measured instrumental background 

noise. These simulated spectra have no noise on them and a very large bandwidth, down to 

the level of the numerical rounding errors. This is an advantage because the machine 

learning algorithm can be trained with far fewer data points than would be required for noisy 

experimental data (after selection of the desired monomer binding events, the simulations 

generated relatively few suitable events - see below). We accept the threshold for the 

hydrogen bonding inherent in the oxDNA model – the bonding is set to zero if the HB 

energy is smaller than ~kT (i.e. ~25 mV), so the calculated tunneling currents go precisely to 

zero when the bonds break. For this reason, no current threshold is required to identify a 

peak. We did set a time threshold, requiring that the peaks last longer than 8 sample points 

so that an FFT analysis could be applied. Peaks of 8 or fewer data points were rejected from 

the analysis. The “spikes” in the simulated data can have a very complex structure (an 

example is shown in figure S9).

A third difference between theory and experiment lies in the significance of signal 

amplitudes. These are too variable (from experiment to experiment) to be of much use in 

classifying experimental data.20 Here, the opposite is true: G’s and C’s are trivially 

separated from A’s and T’s when a different electronic decay constant used in the 

simulations. That said, the separation of all four bases, one from the other, was little affected 

by amplitudes (see below).

In the coarse-grained calculations showed here, we assume that the conductance is mainly 

determined by the conductance of the hydrogen bonds, dominated by the very large β values 

associated with hydrogen bond stretching, so the fluctuations in tunnel current reflect length 

fluctuations of the hydrogen bonds. This is probably a good model for the time dependence 

of the current. However, the calculated values of conductance (several nS) is significantly 

larger than the value observed in experiments (tens of pS) at least in part because this simple 
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model does not take account of tunnel current decay owing to the remainder of the 

molecular structure.

After the selection of peaks lasting longer than 8 data points (~14 ps) a number of peak 

properties were extracted including amplitude, peak width, and the power spectrum of the 

peak (for up to a total of 52 signal features as described in our experimental paper17). We 

used calculated currents for a homopolymer interacting with a ZX dimer where X is a base 

that will not pair with the homopolymer. A significant difference between the experiments 

and simulations lies in the frequency analysis. Because the simulation steps are 1.7 ps, the 

Nyquist frequency is almost 300 GHz (as opposed to kHz in the experiment). The power 

spectral density components were calculated as the averages of the FFT data in 51 equal bins 

(~6 GHz each) from 0 to 300 GHz (referred to as PS1(N) where N is the bin number, 1-51) 

and then again as the average over 10 equal bins (~30 GHz each). These are referred to as 

PS2(M) where N runs from 1 to 10. The bins are divided by the total signal power so the 

values are dimensionless.

We began with the full parameter set, reducing the number of parameters by removing the 

least significant (in terms of its contribution to classification accuracy) and then repeating 

the analysis. In this stage of training, a majority (90%) of the data were used to generate 

support vectors, the classification accuracy of which was tested on the remaining 10% of the 

data. This procedure was repeated with random sampling to reduce sampling errors. We 

plotted the assignment accuracy for each of the bases as a function of parameter number and 

choose a signal-feature set that was optimal for all four bases. The feature set used for all the 

analyses shown here was PS1(2,3,9,11,40,47,48) and PS2(3,6,10) for a total of 10 signal 

features.

These trials give the “training” accuracies listed in table 1. These are considerably smaller 

than the accuracies found in (much bigger) experimental data sets and likely reflect the 

small number of peaks used in these calculations (A, 928, G, 1862, C, 600 T, 190). In 

particular, the lifetime of the Z-T complex was the shortest, resulting in a much smaller 

amount of data for this base with corresponding smaller accuracy. (In contrast, experimental 

training is done with tens of thousands of peaks.) Nonetheless, the accuracies all exceed the 

expected random assignment value (of 25%) by a significant amount. This shows that these 

thermal fluctuations contain significant chemical information even when differences in 

electronic decay constant are removed.

It is important to test the robustness of the support vectors with independently simulated 

data. Our first simulations used homopolymers of 20 nucleotides and a dimer concentration 

of 10 dimers per box of 10 nm × 10 nm × 10 nm. This generated the training data. We ran a 

second set of simulations using a homopolymer of 30 nucleotides and a dimer density of 15 

in a box of 12 nm × 12 nm × 12 nm. We then used the support vectors generated using the 

training data and applied them this second set of independently (and slightly differently) 

generated data. The resulting classification accuracies are referred to as the “testing” results 

in table 1. The accuracies are, as expected, worse than the training accuracies, but still 

significantly better than random. (The case of T for different beta's is an exception, and 
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probably a consequence of poor training with the very small number of T signals used – 

poor training can result in assignment frequency that is worse than random.)

Inspection of table 1 shows that the imposition of different beta values for Z-C, Z-G and Z-T 

and Z-A (“different beta” in table 1) does little to improve the accuracy of the separation of 

the four bases, despite the significant differences imposed on Z-G, Z-C vs. Z-A, Z-T current 

fluctuation amplitudes. Thus, the most significant chemical information appears to be 

encoded in the time dependence of the current, paralleling what is found with experimental 

RT data.

Finally, it is instructive to see how non-linear correlations between signal features lead to 

enhanced separation of data, as these are key to the enhanced accuracy of the high 

dimensional analysis of stochastic data enabled by the SVM. Figure 6 shows a two 

dimensional distribution in which the probability densities of two signal features are plotted 

together (these are power density in the 40th bin of the FFT (PS1) and the peak widths at 

half height). The 1D histograms for each of the signal features correspond to the projection 

of the brightness of the points onto any one axis. Thus, using peak width alone (for example) 

only the very longest peaks could be assigned to A (red). However by using the two 

parameters together, most data points are well separated for A and G. Similar plots for real 

experimental data can be found in the paper by Zhao et al.17 Note that PS2(40) data 

correlate with peak widths (roughly linearly) because the shorter peaks put power density 

into bins that are even higher in frequency.

7. CONCLUSIONS

To the extent possible within the constraints of current simulation tools, we have 

demonstrated the following points:

(1) Thermal fluctuations give rise to sharp current spikes in an all-atom model of a 

solvated RT complex in a tunnel junction. Water molecules play an important 

role in these fluctuations.

(2) The magnitude of the currents calculated for these signal spikes using a non-

equilibrium Green’s function is consistent with the experimental data, assuming 

that the averaging procedure used here can be extrapolated to longer time scales 

(for a 2 nm tunnel gap, as used in the experiments).

(3) A coarse grained simulation based on the oxDNA model shows bonding 

fluctuations out to ms timescales, and generates conductance fluctuations that 

resemble the experimentally measured RT signals.

(4) Signal spikes in the RT signals calculated with a simplified model consisting of 

a single universal base “reading” a ssDNA contain enough information in their 

shapes alone (i.e., excluding signal amplitudes) for sequence to be read with 

high accuracy. The amplitudes of the RT signal peaks play a small role in the 

sequence recognition.

Thus, although it is not possible to generate a rigorous test of a model of RT that 

incorporates the full atomistic and quantum mechanical details out to the >ms timescales of 
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experiments, the modeling presented in the current paper supports the notion that stochastic 

thermal fluctuations in a tunnel junction can generate useful chemical information and 

generate signals of a useful magnitude in a tunnel junction big enough to accommodate a 

single stranded DNA molecule.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Recognition tunneling. Recognition molecules (ICA) covalently bound to gold 

electrodes, form transient hydrogen bonds (dashed lines) with a DNA base (Guanosine in 

this example) to bridge the gap between the electrodes. This complex serves as the model 

system for the NEGF simulation of the recognition tunneling current signals described here. 

(b) A much more complex pattern of hydrogen bonds emerges when the complex is 

embedded in a bath of 90 water molecules. Color key: red-oxygen, white-hydrogen, blue-

nitrogen, grey-carbon, yellow-gold atoms.
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Figure 2. 
Time-dependent tunnel current calculated for a bias of 0.5 V using combined classical 

molecular dynamics and quantum-mechanical NEGF calculations of the current for each of 

the four bases trapped in the tunnel junction by ICA molecules. Red (A), blue (G), yellow 

(T) and green (C) nucleotides.
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Figure 3. 
RT currents integrated over 1 ps for the four bases as marked.
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Figure 4. 
A typical configuration for detecting the H-bond interactions between ZA dimers and a 

poly(dG) ssDNA segment (stretched by an applied tension). The DNA bases are shown in 

green, the Z-bases are red, the A-basis are orange, while phosphorus-sugar groups for bot 

DNA and ZA dimers are shown in gray. The arrows indicate stretching forces of 24.3 pN 

imposed to linearize the homopolymer.
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Figure 5. 
Conductance vs. time for Z-A (a) Z-T (b), Z-G (c) and Z-C (d) complexes. The multiplicity 

of each complex is indicated by the color code. We used the same β=3.0 in Eq. 2 for all 

complexes. The dimer probes contain one Z monomer and one monomer which does not 

bond the respective DNA polymer. Thus, for polyA and polyT the dimers are ZC, and for 

polyG and polyC the dimers are ZT. Signals obtained with ZZ dimers are shown in Figs. S7 

and S8.
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Figure 6. 
Distribution of a power spectrum component for 230-236 GHz (intensity of points projected 

onto the vertical axis) against the distribution of peaks widths (intensity of points projected 

onto the horizontal axis) for Z-A interactions (red) and Z-G interactions (green). This is a 

color-mixed plot, so that overlapped data produces a yellow color (points are blurred to 

allow overlap). Note that if the distributions for A and G were plotted with only one 

parameter as a conventional (1D) histogram, most of the data points would be overlapped. 

Non-linear correlations between the two signal features result in enhanced separation in this 

2D analysis.
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Table 1

Accuracies of the SVM classification of the signals for each base for the signal-feature set that produced the 

most accurate overall classification of the bases.

A accuracy (%) G accuracy (%) C accuracy (%) T accuracy (%)

Equal beta training 88 83 71 55

Equal beta testing 70 51 55 35

Different beta training 95 80 62 60

Different beta testing 70 76 41 17

“Training” indicates that the cross validation was done on the same simulation.

“Testing” indicates that the cross validation was done with training on one simulation and testing on a different simulation.

The error in the accuracies is approximately ±5%.
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