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(Dated: June 8, 2018)

Abstract

In this exploratory study the spectrum of tetraquarks of type cc̄ss̄ is calculated within a simple

quark model with chromomagnetic interaction and effective quark masses extracted from meson

and baryon spectra. It is tempting to see if this spectrum can accommodate the resonance Y(4140),

observed by the CDF collaboration, but not yet confirmed. The results seem to favour the JPC

= 1++ sector where the coupling to the VV channel is nearly as small as that of X(3872), when

described as a cc̄qq̄ tetraquark. This suggests that Y(4140) could possibly be the strange partner

of X(3872), in a tetraquark interpretation. However the sector JPC = 0++ cannot entirely be

excluded. This work questions the practice of extracting effective quark masses containing spin

independent contributions, from mesons and baryons, to be used in multiquark systems as well.
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I. INTRODUCTION

The CDF Collaboration [1] has recently observed a narrow structure in the J/ψφ mass

spectrum of B+ → J/ψφK+ decays, which has been named Y(4140). Its mass and decay

width are M = 4143.0 ± 2.9(stat) ± 1.2(syst) MeV/c2 and Γ = 11.7+8.3
−5.0(stat) ± 3.7(syst)

MeV/c2 respectively, which suggest that its structure does not fit conventional expectations

for charmonium states. The CDF Collaboration expects that the J/ψφ final state, with

positive C-parity and two JPC = 1−− vector mesons (VV), is a good candidate for an exotic

meson search. This resonance is well above the threshold for open charm decay D+
s D

−

s at

3936.68 MeV and a charmonium cc̄ with this mass would decay into an open charm pair

predominantly and have a small branching fraction into J/ψφ [2]. The mass of Y(4140) is

below the threshold of the decay channel D∗+
s D∗−

s at 4224.6 MeV, and not far above the

J/ψφ threshold at 4116.4 MeV.

More recently the Belle Collaboration reported preliminary results on Y(4140) [3]. No

significant signal was found but their efficiency is low for the mass of Y(4140). The upper

limit on the production rate B(B+ → Y (4140)K+, Y (4140) → J/φ) is 6 × 10−6 at 90% C.L.

This upper limit is lower than the central value of the CDF measurement (9±3.4±2.9)×10−6

[1] which is thus considered not to contradict the CDF measurement.

The Belle Collaboration also searched for Y(4140) in the J/ψφ mass spectrum of the two-

photon process γγ → J/ψφ [3]. Again, the efficiency was low and no signal was reported. In

exchange, evidence was found for a new narrow structure at 4.35 MeV and width 13.3 MeV,

with a statistical significance of about ∼ 3.5σ in the J/ψφ mass spectrum. This resonance

was named X(4350).

As such, the present situation allows a new opportunity to look for exotics. The fashion-

able option of a D∗

sD
∗

s molecule has been considered in Refs. [4–7] and the QCD sum rules

in Ref. [8–10]. where states with JPC = 0++ or 2++ are favoured. Let us note however that

the Belle Collaboration measurement of a two-photon partial width difavours the scenario

of Y(4140) to be a D∗

sD
∗

s molecule with JPC = 0++ or 2++ [3].

Prior to the observation of Y(4140) by the CDF Collaboration, predictions for tetraquarks

cc̄ss̄ seen as diquark-antidiquark systems with various JPC were made in a simple non-

relativistic model including ℓ = 0 and 1 partial waves in Ref. [11] and in a relativistic

framework based on the quasipotential approach in Ref. [12]. In the latter, states with 0++
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and 1+± acquired masses in the range 4.1 - 4.2 MeV.

We should also mention that the resonance Y(4140) was studied as the second radial

excitation of the P-wave charmonium χ′′

cJ (J = 0 and 1), looking at the hidden charm decay

mode. The conclusion was that such a description is problematic [13].

Deciphering the nature of Y(4140), if confirmed in the future, (presently the B-factories

have a poor acceptance for B → KJ/ψφ in the desired range [14]), is a new challenge.

Thus it is legitimate to consider the tetraquark interpretation without correlated quarks or

antiquarks, and try to find out if the Y(4140) fits into the spectrum of the cc̄ss̄ system.

Most important, we search for the decay pattern given by this possible structure. For

simplicity, we use the model of Ref. [15] which successfully describes the X(3872) as a cc̄qq̄

tetraquark. In Ref. [15] it was shown that X(3872) can be interpreted as an eigenstate of the

chromomagnetic interaction, where the lowest 1++ has a dominant octet-octet component

(0.9997) and a very small singlet-singlet component (0.026) which explains why this state

decays with a very small width into J/ψ+ρ or J/ψ+ω, in agreement with the experimental

value for the total width Γ < 2.3 MeV of X(3872) [16], and that the J/ψ + pseudoscalar

channel is absent. As Y(4140) is seen to be narrow and decays into two vector mesons we

wonder whether or not the same mechanism can give an explanation of its small width,

about 5 times larger than that of X(3872), and similar to that of X(4350), but considerably

narrower than the decay width of every other X,Y or Z resonances.

The paper is organized as follows. In Sec. II we introduce the quark model used in this

study. In Sec. III we recall the basis states in the direct meson-meson channel with emphasis

on the charge conjugation quantum number. In Sec. IV we present the matrix elements

of the Hamiltonian [15] for JPC = 0++, 1++, 1+− and 2++ states. In Sec. V we show the

calculated spectrum and discuss its features. The last section is devoted to conclusions. In

Appendix A we derive the orthogonal transformation from the direct meson-meson channel

to the exchange meson-meson channel for states 0++, in Appendix B for states with 1++

and 1+− and in Appendix C for states with 2++. Appendix D is devoted to an attempt to

dynamically derive effective masses in a standard constituent quark model in order to justify

the simplicity of the present study and enlighten the choice of effective masses.
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II. THE MODEL

This is an exploratory study, based on the simple model of Ref. [15] which can reveal the

basic features of the cc̄ss̄ tetraquark, especially the structure of the wave functions. In the

next section we introduce the relevant basis states in the color-spin space, including both

the singlet-singlet channels and the octet-octet, simply called hidden color channels. There

are no correlated quarks or diquarks, as in Ref. [11], for example.

Accordingly, the mass of a tetraquark is given by the expectation value of the effective

Hamiltonian [15]

H =
∑

i

mi +HCM, (1)

where

HCM = −
∑

i,j

Cij λ
c
i · λcj ~σi · ~σj . (2)

The first term in Eq. (1) contains the effective masses mi as parameters. The constants Cij

represent integrals in the orbital space of some unspecified radial forms of the chromomag-

netic part of the one gluon-exchange interaction potential and of the wave functions.

A warning should be given to the way of determining the effective massesmi to be used for

multiquark systems. Besides the kinetic energy contribution, they incorporate the effect of a

Coulomb-like term and of the confinement, the latter still being an open problem [17]. Thus,

in principle, they cannot be directly extracted from meson or baryon spectra as discussed

in Appendix D. Lack of better knowledge we however use the compromise proposed in Ref.

[15]

mc = 1550MeV, ms = 590MeV, (3)

but due to the arbitrariness in the choice of effective masses of quarks, precise estimates of

the absolute values of tetraquark masses is difficult to make. One can have an approximate

idea about the range where the spectrum should be located. But a shift of the whole

spectrum is justified and sometimes even performed, like in the popular work of Maiani et

al. [18], which deals with diquarks, where the arbitrariness in mass is even larger.

However, the relative distances between the eigenstates obtained from the chromomag-

netic Hamiltonian (2) and the structure of its eigenstates do not depend on the effective

masses, which is important for exploring the strong decay properties.
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TABLE I: Theoretical and experimental meson masses in MeV

Meson JPC Theory Exp

J/ψ 1−− 3121.3 3096.9

φ 1−− 1225.9 1019.5

Ds 0−? 2032.0 1968.5

D∗

s 1−? 2175.7 2112.3

The parameters Cij have been taken from Ref. [19] where a more complete list, containing

also parameters needed in this work, is given. The required values are

Ccs = 5.0MeV, Ccc = 5.5MeV,

Ccs̄ = 6.7MeV, Css̄ = 8.6MeV.
(4)

We should mention that the above parameters were extracted from a global fit to meson

and baryon ground states. For some mesons into which Y(4140) can decay in Table I we

compare the experimental masses of PDG [20] with the theoretical values obtained from the

two-body version of (1) and (2) in the parametrization (4) which is

mqq̄ = mq +mq − 〈λc1 · λc2〉〈 ~σ1 · ~σ2〉Cqq̄ (5)

where q stands here for any light or heavy quark. From Table I one can see that the

two-body Hamiltonian (5) with the masses effective (3) systematically overestimates the

meson masses. Therefore the threshold energies of the channels J/Ψφ, DsDs, D
∗

sD
∗

s, and

D∗

sD
∗

s, are considerably overestimated. Due to this discrepancy it is meaningless to compare

the tetraquark states with the theoretical threshold. This work questions the practice of

using identical effective masses in both ordinary and exotic multiquarks. In such a case we

would return us to the schematic treatment of the never observed ”stable” H-dibaryon [21]

predicted to be strongly bound by the chromomagnetic interaction. We do not intend to

make a fine tuning of the effective masses. We are mostly interested in the structure of the

tetraquark wave functions which essentially depends on the hyperfine interaction. We shall
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FIG. 1: Three independent relative coordinate systems. Solid and open circles represent quarks

and antiquarks respectively: (a) diquark-antidiquark channel, (b) direct meson-meson channel, (c)

exchange meson-meson channel.

compare the calculated spectrum to the experimental thresholds. In Appendix D we give a

simple proof that one cannot use the same effective masses both in mesons and tetraquarks.

In the following, an important parameter in this study is the difference between the values

of Ccs̄ and Ccs. In fact we shall see that the replacement of the light quarks q = u, d with

the strange quark s does not much modify the structure of the cc̄ss̄ with respect of that of

cc̄qq̄.

III. THE BASIS STATES

Here we use a basis vectors relevant for understanding the decay properties of tetraquarks.

The total wave function of a tetraquark is a linear combination of these vectors. We suppose

that particles 1 and 2 are quarks and particles 3 and 4 antiquarks, see Fig. 1. In principle

the basis vectors should contain the orbital, color, flavor and spin degrees of freedom such

as to account for the Pauli principle. But, as we consider ℓ = 0 states the orbital part is

symmetric and anyhow irrelevant for the effective Hamiltonian described in the previous

section. Moreover, as the flavor operators do not explicitly appear in the Hamiltonian, the

flavor part does not need to be specified. A detailed description of the three distinct bases

corresponding to the three choices of internal coordinates shown in Fig. 1 is presented

in Refs. [22, 23]. It was found that the inclusion of meson-meson channels accelerate the

convergence, for example in ccq̄q̄ tetraquarks [24].

We remind that in the color space there are three distinct bases: a) |312334〉, |612634〉,
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b) |113124〉, |813824〉 , and c) |114123〉, |814823〉, associated to the three distinct internal

coordinate systems shown in Fig. 1. The 3 and 3 are antisymmetric and 6 and 6 are

symmetric under interchange of quarks and antiquarks respectively. This basis is convenient

for diquark-antidiquark models, where usually the color space is truncated to contain only

|312334〉 states [18]. This reduces each JPC spectrum to twice less states than allowed by

the Pauli principle [25] and influences the tetraquark properties. The sets b) and c) contain

a singlet-singlet color and an octet-octet color state. The amplitude of the latter vanishes

asymptotically, when the mesons, into which a tetraquark decays, separate. These are

called hidden color states by analogy to states which appear in the nucleon-nucleon problem,

defined as a six-quark system [26]. The contribution of hidden color states to the binding

energy of light tetraquarks has been calculated explicitly in Ref. [22]. Below we shall point

out their role in the description of the of cc̄ss̄ tetraquarks. The situation is similar to the

interpretation of the X(3872) resonance as a cc̄qq̄ tetraquark in Ref. [15], where its small

width has been explained as due to a tiny J/ψ + ρ or J/ψ + ω component in the wave

function of the 1++ tetraquark state.

As the quarks and antiquarks are spin 1/2 particles the total spin of a tetraquark can be

S = 0 , S = 1 or S = 2.

For S = 0 there are two independent basis states (two Young tableaux) for each channel.

The spin states associated to the three distinct internal coordinates depicted in Fig. 1 are:

a) |S12S34〉, | ~A12 · ~A34〉, b) |P13P24〉, |(V13V24)0〉 , c) |P14P23〉, |(V14V23)0〉, respectively,
where S stands for scalar, A for axial and P and V for pseudoscalar and vector subsystems

and the lower index 0 indicates the total spin. The relation between the three different bases

can be found in Ref. [23].

For S = 1 there are three independent spin states, corresponding to three distinct Young

tableaux. Presently we are interested into those corresponding to Fig. 1b, named the direct

meson-meson channel. In this channel we remind that the basis vectors are [23]

|(P13V24)1〉, |(V13P24)1〉, |(V13V24)1〉. (6)

As above, the lower index indicates the total spin 1.

In this case the charge conjugation operator is related to permutation properties of the

basis vectors in a simple way. Under the transposition (13) manifestly one has

(13)|P13〉 = −|P13〉, (13)|V13〉 = +|V13〉, (7)
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and similarly for the transposition (24)

(24)|P24〉 = −|P24〉, (24)|V24〉 = +|V24〉. (8)

The case S = 2 is trivial. There is a single basis state

χS = |(V13V24)2〉, (9)

which is symmetric under any permutation of quarks.

From Ref. [27] Ch. 10, one can see that the permutation (13)(24) leaves invariant the

color basis vectors |113124〉 and |813824〉. Then, with the identification 1 = c, 2 = s, 3 = c

and 4 = s the permutation (13)(24) is equivalent to the charge conjugation operator [32].

Thus all basis states introduced below have a definite charge conjugation, which is easy to

identify.

IV. MATRIX ELEMENTS

For a ground state tetraquark the possible states are JPC = 0++, 1++, 1+− and 2++. In

the direct meson-meson channel, in each case a basis can be built with the quark-antiquark

pairs (1,3) and (2,4) as subsystems, where each subsystem has a well defined color state, a

singlet-singlet or an octet-octet. This arrangement is convenient to describe hidden charm

J/ψ + light meson or ηc + light meson channels, the light meson quantum numbers being

consistent with JPC . The other quark-antiquark pairs, (1,4) and (2,3) describe open charm

meson channels, here called exchange channels (see Fig. 1c) as e. g. DsDs, DsD
∗

s or

D∗

sD
∗

s. One can fix a basis in terms of the problem one looks at, but for convenience, in the

calculations one can pass from one basis to another by an orthogonal transformation. In

this study the adequate basis is that related to the direct meson-meson channel, depicted

in Fig. 1b. The orthogonal transformations from the direct to the exchange meson-meson

channel for JPC = 0++ and 1++ are given in Appendices A and B respectively.

The matrix elements introduced below appeared in the Proceedings [25]. For the reader’s

convenience we present them here again. They correspond to the scalar, axial and tensor

tetraquarks introduced above. Later on, the authors of Ref. [19] calculated the matrix

elements of the chromomagnetic interaction (2) in a basis corresponding to Fig. 1a. Although

the spectrum is the same, one cannot distinguish between charge conjugation C = 1 and
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C = −1 because in that basis JP = 1+ states do not have a definite charge conjugation. To

identify C one must return to our basis. Therefore we found it convenient to use our basis

which can give direct information to experimentalists.

For JPC = 0++ the basis constructed from products of color and spin states associated

to Fig. 1b are

ψ1
0++ = |113124P13P24〉, ψ2

0++ = |113124(V13V24)0〉,

ψ3
0++ = |813824P13P24〉, ψ4

0++ = |813824(V13V24)0〉. (10)

The chromomagnetic interaction Hamiltonian with minus sign, -HCM, acting on this basis

leads to the following symmetric matrix

















































16(C13 + C24) 0 0 8

√

2

3
(C12 + C23)

−
16

3
(C13 + C24) − 8

√

2

3
(C12 + C23)

16
√
2

3
(C23 − C12)

−2(C13 + C24)
4√
3
(2C12 − 7C23)

16

3
C12 +

56

3
C23 +

2

3
(C13 + C24)

















































(11)

For JP = 1++ there are two linearly independent basis vectors built as products of color

and the third spin state of Eq. (6) .

ψ1
1++ = |113124 (V13V24)1〉, ψ2

1++ = |813824 (V13V24)1〉. (12)

The matrix associated to the chromomagnetic interaction -HCM is





















−
16

3
(C13 + C24)

8
√
2

3
(C23 − C12)

2

3
(4C12 + 14C23 + C13 + C24)





















(13)

which has been previously related to X(3872). Its lowest state gave a mass of 3910 MeV to

X(3872) [15, 25], quite close to the experimental value [16].
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For JP = 1+− there are four linearly independent basis vectors built as products of color

states b) and the first and second spin states of Eq. (6)

ψ1
1+− = |113124(P13V24)1〉, ψ2

1+− = |113124(V13P24)1〉,

ψ3
1+− = |813824(P13V24)1〉, ψ4

1+− = |813824(V13P24)1〉. (14)

The matrix associated to the chromomagnetic interaction -HCM is

















































16(C13 −
1

3
C24) 0 0 8

√

2

3
(C12 + C23)

0 −
16

3
(C13 − C24) 8

√

2

3
(C12 + C23) 0

−2(C13 −
1

3
C24) −

4

3
(2C12 − 7C23)

2

3
(C13 − 3C24)

















































(15)

For JPC = 2++ the basis vectors are

ψ1
2++ = |113124χS〉, ψ2

2++ = |813824χS〉, (16)

where χS is the S = 2 spin state (9). The corresponding -HCM 2 × 2 matrix is





















−
16

3
(C13 + C24) −

8
√
2

3
(C23 − C12)

−
2

3
(4C12 + 14C23 − C13 − C24)





















(17)

In the calculation of the matrix elements we have used the equalities

C14 = C23, C12 = C34, (18)

due to charge conjugation.

The above matrices have been first used to calculate the full spectrum of cc̄qq̄ with q = u, d

[25]. They can be used in any quark model containing a chromomagnetic interaction. In

that case the coefficients Cij should be replaced by integrals containing the chosen form

factor of the chromomagnetic interaction and the orbital wave functions of the model.
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Note that the matrices (11), (13) and (17) have in common the off-diagonal matrix

element C23 − C12. With the identification at the end of Sec. III this leads to C23 − C12 ≡
Ccs̄ − Ccs. As Ccs̄ and Ccs have comparable values (4) their difference is small. In the next

section we shall see that this off-diagonal matrix element plays an important role in the

structure of the eigenstates with JPC = 0++, 1++ and 2++.

0++

3995

4135

4288

4418

1+−

4154

4208

4272

4353

1++

4195

4356

2++

4343

4359

FIG. 2: The spectrum of the cc̄ss̄ tetraquark with the Hamiltonian introduced in Sec. II and the

color-spin bases of Sec. III

V. THE SPECTRUM OF cc̄ss̄

The calculated spectrum is exhibited in Fig. 2. There are several states in the range

4.1 - 4.2 MeV, consistent with predictions of more realistic models [12]. This implies that

the choice of the effective masses (3) is quite adequate for cc̄ss̄ tetraquarks. Here we are

mostly interested in those states with a small amplitude in the VV channel in the present

parametrization.
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A. JPC = 0++

In the order indicated by the basis (10) the lowest state, 3995 MeV, has the amplitudes

(−0.7737, 0.0594, 0.1789, 0.6049) (19)

The first number in the bracket implies that this state can decay substantially into a PP

channel, i. e. ηc + η (threshold 3528 MeV) or ηc + η′ (threshold 3938 MeV). The second

number indicates a very weak coupling to the VV channel. The mass is too low for the

decay into J/ψφ.

A better candidate would be the first excited state at 4135 MeV with the amplitudes

(−0.6172, − 0.1774, 0.4006, − 0.6536) (20)

decaying substantially into PP channels and much less into the VV channel J/ψφ. The last

two amplitudes correspond to hidden color channels which do not decay strongly.

The tetraquark states mentioned above can also decay into the D+
s D

−

s , the threshold

being 3936.68 MeV. The corresponding amplitudes can be obtained from the orthogonal

transformation going from the direct meson-meson channel, Fig. 1b, to the exchange meson-

meson channel, Fig. 1c. In Appendix A we present the exchange basis vectors (A2) in terms

of the direct basis vectors (10) given by this transformation. Using the expressions(A3)-(A6)

and the amplitudes (19) obtained in the direct channel we can write the lowest state 0++ in

the exchange channel basis as

ψ0++(3995) = −0.7244 |114123〉|P14P23〉+ 0.0743 |114123〉|(V14V23)0〉

−0.2088 |814823〉|P14P23〉+ 0.6529 |814823〉|(V14V23)0〉 (21)

Looking at Fig. 1c, again with 1 = c, 2 = s, 3 = c and 4 = s, we can identify the color

singlet-singlet channels in (A2) with the asymptotic meson-meson channels. Thus we have

ψ1ex
0++ = |114123〉|P14P23〉 = DsDs (22)

ψ2ex
0++ = |114123〉|(V14V23)0〉 = D∗

sD
∗

s (23)

From the wave function (21) we can see that the open DsDs channel acquires a large ampli-

tude in the ground state (3995 MeV), corresponding to a probability of about 50%, which

will imply a large decay width in this channel and a negligible amplitude 0.5% to the closed

channel D∗

sD
∗

s.
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TABLE II: The D∗

s −Ds splitting (MeV) and the amplitudes of the basis vectors (12) of the 1++

state at 4195 MeV as a function of Ccs̄ (MeV).

Ccs̄ D∗

s −Ds 113124(V13V24)1 813824(V13V24)1

6.0 128.0 0.0245 0.9997

6.7 143.7 0.0399 0.9992

B. JPC = 1+−

In this sector the lowest state has an appropriate mass, but not the convenient charge

conjugation. It would decay exclusively into a PV channel for ℓ = 0 tetraquarks. For general

interest the exchange meson-meson basis is also given in Appendix B.

C. JPC = 1++

For the lowest 1++ state at 4195 MeV, which is quite close to the experimental range,

the amplitudes of its components in the basis (12) are shown in Table II for two values of

Ccs̄. The singlet-singlet channnel 113124(V13V24)1 has a very small amplitude for both values

of Ccs̄. The hidden color state 813824(V13V24)1 is by far the dominant component. The

situation is entirely analogous to that of the resonance X(3872) in the same model [15, 25].

The clue was to have a nonvanishing, but small, value for C23 − C12 ≡ Ccq̄ − Ccq in Eq.

(13). For X(3872) one had 1.5 MeV, here we have Ccs̄ − Ccs = 1.7 MeV imposed by the

parametrization (4). As seen from Table II a decrease of Ccs̄ will make the hidden color

state even more dominant but it will somewhat deteriorate the value of the MD∗

s

− MDs

splitting, the experimental value of which is 143.8 MeV. Combined with the phase space of

the decay Y(4140) → J/ψφ obtained from the experimental threshold, the lowest state 1++

of the tetraquark cc̄ss̄ would acquire a rather small width, as required by experiment, and

could be the best candidate for Y(4140) in a tetraquark interpretation.

It is useful to write the wave function of the lowest state also in the exchange channel

basis, as for the scalar tetraquaks above. For this purpose we use the transformation between
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the direct and exchange channel basis vectors derived in Appendix B, namely the Eqs. (B14)

and (B15). Together with the amplitudes from Table II associated to Ccs̄ = 6.7 Mev we

obtain for the lowest 1++ state

ψ1++(4195) = −0.9554 ψ1ex
1++ + 0.2954ψ2ex

1++ . (24)

From Fig 1c and Eq. (B1) one has

ψ1ex
1+ = DsD

∗

s, ψ2ex
1+ = D∗

sDs (25)

According to (B8) a molecular-type component with C = + is obtained in the exchange

channel as

ψ1ex
1++ =

1√
2
(DsD

∗

s −D∗

sDs) (26)

having a very large probability of 91.3 % in the 1++ ground state. The phase space is

larger than for the J/Ψφ channel, so that a large width is expected in the DsD
∗

s channel.

The second term in (24) is a hidden color component, which does not decay, but vanishes

asymptotically.

D. JPC = 2++

The spectrum is formed of two, nearly degenerate states, both too high for Y(4140), by

about 200 MeV. In the parametrization (4) the wave function of the lowest state has the

amplitudes

(−0.4675, 0.8840) (27)

in the order of the basis (16). One can see that the color singlet-singlet state ψ1
2++ =

|113124χS〉 has a small amplitude and the hidden color state ψ2
2++ = |813824χS〉 is dominant,

again due to the smallness of the off-diagonal matrix element Ccs̄−Ccs. With Ccs̄ = 6.0 MeV

the amplitudes become ( - 0.2274, 0.9738). This would give rise to a even smaller decay width

into J/ψφ. The calculated mass fits better into the newly found narrow structure X(4350)

reported by the Belle Collaboration [3]. According to Appendix C the wave function of the

lowest state obtained from the latter amplitudes becomes

ψ2++(4343) = 0.8442 D∗

sD
∗

s − 0.5390 ψ2ex
2++ (28)
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where we have replaced ψ1ex
2++ by its physical content. This state has a dominant molecular-

type structure plus a hidden color component (C2) which would vanish asymptotically, but

is important at short range. In a standard hadronic molecule interpretation [4–7] the second

component is absent because the emitted mesons do not have a structure.

VI. CONCLUSIONS

Prior to the CDF experiment [1], among other multiquark systems, the tetraquark cc̄ss̄

has been studied with a different parametrization from the one considered here and with a

different basis using an SU(6) classification [28]. In that basis it is difficult to identify the

VV component. Moreover a distinction between charge conjugation C = 1 and C = -1 has

not been made.

Our study favours mostly the 1++ sector for the cc̄ss̄ tetraquark interpretation of the

recently observed narrow structure Y(4140) [1]. If correct, Y(4140) would be the strange

analogue of X(3872), when interpreted as a cc̄qq̄ tetraquark. This observation follows from

the fact that in the schematic model of Ref. [15] the chromomagnetic interaction leads to a

similar composition of the wave function in the basis (12) for tetraquarks containing either

u and/or d, like X(3872), or s quarks, like Y(4140).

Note however that one should consider the effective masses (3) with caution. They have

been obtained from fitting baryon and meson spectra. A natural question raises whether or

not these masses are adequate for tetraquarks. This study questions their use in tetraquarks,

inasmuch as they contain the effect of the kinetic energy and of the confinement. The

confinement has been thoroughly studied in lattice calculations. A Y-shape confinement

potential is almost confirmed by lattice results (see i. e. [29]). Information from lattice

calculations on tetraquark (see i. e. [30]) may lead to a better understanding of the effective

masses to be used in simple models. Thus, with the present parametrization it is meaningless

to look at the tetraquark spectrum relative to the theoretical threshold. A detailed discussion

based on a simple example is presented in Appendix D.

Finally, we should mention that the present study does not exclude the 0++ sector. In fact,

in the molecular D∗

sD
∗

s, Y(4140) can have the quantum numbers 0++ or 2++. As mentioned

in the introduction, here we stress again that the Belle Collaboration measurement of a

two-photon partial width disfavors the scenario of Y(4140) to be a D∗

sD
∗

s molecule with

15



JPC = 0++ or 2++ [3].

A correct interpretation of the narrow structure Y(4140) observed by CDF [1] would be

possible if its existence was confirmed and its quantum numbers JPC were found experi-

mentally, in order to remove the doubt cast by some theoretical interpretations [31]. Also,

the measurement of the decay widths of other open channels such as ηc + η or ηc + η′ is

important. If such decays are observed, the 0++ sector is favored, if not, the sector 1++ is

favoured in a tetraquark interpretation. Complementary information can also be obtained

from the decays to DsDs, DsD
∗

s, D
∗

sD
∗

s etc.

In conclusion, as a start, we have presented results in a tetraquark schematic model to get

a hint on the interpretation of Y(4140), which remains an open problem. Perhaps a more

realistic view, if Y(4140) was confirmed, would be to have a compact tetraquark structure at

short range and a molecular structure at medium or large range. Anyhow, a more elaborate

study of the cc̄ss̄ tetraquark system is worth by itself.
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Appendix A: Direct to exchange channel basis for JPC = 0++

In the following we need to express the color exchange basis in terms of the color direct

basis vectors. The well known relations are

|114123〉 =
1

3
|113124〉+

2
√
2

3
|813124〉, |814823〉 =

2
√
2

3
|113124〉 −

1

3
|813124〉, (A1)

Next, using Appendix C of Ref. [23] for the spin states we obtain the spin-color exchange

channel basis in terms of the spin-color direct channel basis (10).

For JPC = 0++ the exchange channel basis vectors are defined by

ψ1ex
0++ = |114123P14P23〉, ψ2ex

0++ = |114123(V14V23)0〉,

ψ3ex
0++ = |814823P14P23〉, ψ4ex

0++ = |814823(V14V23)0〉. (A2)

In terms of the direct channel basis vectors (10) the orthogonal transformation is given by
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the following relations

ψ1ex
0++ =

1

6
ψ1
0++ − 1

2
√
3
ψ2
0++ +

√
2

3
ψ3
0++ −

√

2

3
ψ4
0++ (A3)

ψ2ex
0++ = − 1

2
√
3
ψ1
0++ − 1

6
ψ2
0++ −

√

2

3
ψ3
0++ −

√
2

3
ψ4
0++ (A4)

ψ3ex
0++ =

√
2

3
ψ1
0++ −

√

2

3
ψ2
0++ − 1

6
ψ3
0++ +

1

2
√
3
ψ4
0++ (A5)

ψ4ex
0++ = −

√

2

3
ψ1
0++ −

√
2

3
ψ2
0++ +

1

2
√
3
ψ3
0++ +

1

6
ψ4
0++ (A6)

These relations are used to derive Eq. (21).

Appendix B: Direct to exchange channel basis for JPC = 1++

In the exchange channel corresponding to Fig. 1c the basis states can be defined as above.

Note however that in this case they do not all have a definite charge conjugation. Let us

first introduce the JPC = 1+ the exchange channel basis vectors as

ψ1ex
1+ = |114123(P14V23)1〉, ψ2ex

1+ = |114123(V14P23)1〉,

ψ3ex
1+ = |114123 (V14V23)1〉, ψ4ex

1+ = |814823(P14V23)1〉,

ψ5ex
1+ = |814823(V14P23)1〉, ψ6ex

1+ = |814823 (V14V23)1〉. (B1)

Using Appendix C of Ref. [23] which gives the transformations in the spin space, the

exchange channel basis vectors (B1) can be written as linear combinations of the direct

channel basis vectors (12) and (14). The orthogonal transformation gives the equations

ψ1ex
1+ =

1

6
(ψ1

1+− + ψ2
1+−)− 1

3
√
2
ψ1
1++ +

√
2

3
(ψ3

1+− + ψ4
1+−)− 2

3
ψ2
1++ , (B2)

ψ2ex
1+ =

1

6
(ψ1

1+− + ψ2
1+−) +

1

3
√
2
ψ1
1++ +

√
2

3
(ψ3

1+− + ψ4
1+−) +

2

3
ψ2
1++ , (B3)

ψ3ex
1+ = − 1

3
√
2
(ψ1

1+− − ψ2
1+−)− 2

3
(ψ3

1+− − ψ4
1+−) , (B4)

ψ4ex
1+ =

√
2

3
(ψ1

1+− + ψ2
1+−)− 2

3
ψ1
1++ − 1

6
(ψ3

1+− + ψ4
1+−) +

1

3
√
2
ψ2
1++ , (B5)

ψ5ex
1+ =

√
2

3
(ψ1

1+− + ψ2
1+−) +

2

3
ψ1
1++ − 1

6
(ψ3

1+− + ψ4
1+−)− 1

3
√
2
ψ2
1++ , (B6)
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ψ6ex
1+ = −2

3
(ψ1

1+− − ψ2
1+−) +

1

3
√
2
(ψ3

1+− − ψ4
1+−) . (B7)

From these relations one can see that only ψ3ex
1+ and ψ6ex

1+ have a definite charge conjugation

C = −. But in the exchange channel one can further introduce definite charge conjugation

from the basis vectors in the following way. For C = + the normalized states are

ψ1ex
1++ =

1√
2
(ψ1ex

1+ − ψ2ex
1+ ) , (B8)

ψ2ex
1++ =

1√
2
(ψ4ex

1+ − ψ5ex
1+ ) . (B9)

Then for C = − the normalized states are

ψ1ex
1+− =

1√
2
(ψ1ex

1+ + ψ2ex
1+ ) , (B10)

ψ2ex
1+− = ψ3ex

1+ (B11)

ψ3ex
1+− =

1√
2
(ψ4ex

1+ + ψ5ex
1+ ) , (B12)

ψ4ex
1+− = ψ6ex

1+ . (B13)

Lastly, replacing the expressions of ψ1ex
1+ , ψ2ex

1+ , ψ4ex
1+ and ψ5ex

1+ in Eqs. (B8) and (B9) we get

the orthogonal transformation relating the exchange channels with the direct channel wave

functions (12) for C = +

ψ1ex
1++ = −1

3
ψ1
1++ − 2

√
2

3
ψ2
1++ (B14)

ψ2ex
1++ = −2

√
2

3
ψ1
1++ +

1

3
ψ2
1++ (B15)

This transformation will be used in the subsection C of Sec. V.

Appendix C: Direct to exchange channel basis for JPC = 2++

The relations between the exchange and direct basis are in this case a direct consequence

of the definitions (A1) inasmuch as the spin state χS is symmetric under any permutation

of S4. One obtains

ψ1ex
2++ =

1

3
ψ1
2++ +

2
√
2

3
ψ2
2++ , (C1)

ψ2ex
2++ =

2
√
2

3
ψ1
2++ − 1

3
ψ2
2++ . (C2)

This transformation will be used in the subsection D of Sec. V.
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Appendix D: Effective masses

First we establish the relation between effective quark masses used in these calculations

and masses m0
i of a constituent quark model. For this purpose we start from the spin-

indepenent part of a simple model of the commonly used type [33]

H0 =
∑

i

m0
i +

∑

i

~p 2
i

2m0
i

− (
∑

i ~pi)
2

2
∑

im
0
i

+
∑

i<j

[Vℓ(rij) + VC(rij)] (D1)

with a kinetic part from which the center of mass energy has been removed and a potential

part containing a two-body linear confinement Vℓ(rij) and a Coulomb-like term VC(rij)

Vℓ(rij) = − 3

16
λci · λcj (

rij
a20

− d) , VC(rij) = − 3

16
λci · λcj

κ

rij
. (D2)

Together with a spin-spin part identical to that of Ref. [33] (not necessary to be specified

here, also used in other studies as e. g. Ref. [23]), we have fitted the parameters of

(D1) to reproduce resonably well the mass of J/ψ and φ mesons by choosing a trial wave

function of the form φ0 ∝ exp(−a2r2ij/2). These calculations are aimed at understanding

the basic reason behind the difference between effective masses and bare masses m0
i . The

fitted parameters are

m0
c = 1600MeV, m0

s = 398MeV, a0 = 0.0361MeV−1/2fm1/2,

d = 552.4MeV, κ = 39.47MeV fm. (D3)

Below they are used to estimate the expectation value of H0 corresponding to a cc̄ss̄ system

described by a trial wave function of the form R ∝ exp[−a2(σ2 + σ′ 2 + λ2)], a being a

variational parameter, as above. Here, for convenience, we use the internal coordinates

~σ =
1√
2
(~r1 − ~r2) , ~σ′ =

1√
2
(~r3 − ~r4) , ~λ =

1

2
(~r1 + ~r2 − ~r3 − ~r4). (D4)

corresponding to Fig. 1a. Note that this function can be defined in any of the coordinate

systems of Fig. 1. Using the coordinates (D4) we can work out the matrix elements of the

flavor operators of (D2) in the basis |312334〉, |612634〉 of Sec. III. The desired expectation

values obtained with the parametres (D3) are shown in Table III for all considered systems.

From these results we can define effective masses in a similar way as in Ref. [15]. We

have

meff
q =

1

2
〈H0〉qq̄ (D5)
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TABLE III: Expectation values of H0, Eq. (D1) and of its kinetic and potential parts obtained

from a trial wave function with the parameter a (see text).

System a Kinetic Potential 〈H0〉

(fm−1) (MeV) (MeV) (MeV)

cc̄ 2.5 229.6 -317.8 3092

ss̄ 1.4 336.7 3.27 1020

cc̄ss̄ 2.1 656.8 -39.8 4477

which lead to

meff
c = 1546MeV, meff

s = 510MeV. (D6)

Although we rely on the same PDG data [20] these masses are different from those of Eq.

(3) proposed in Ref. [15]. The difference is however very small for the c quark and this

can be explain by the cancellation of the kinetic and potential energies, as one can see from

Table III. Such a cancellation does not take place for the quark s. Thus in a dynamical

approach based on a Hamiltonian like (D1) there is a cancellation of various parts of the

Hamiltonian. The cancellation is more subtle in a tetraquark which has 6 distinct quark-

quark or quark-antiquark pairs, while in a meson there is only one pair. It follows then that

the effective masses needed for a tetraquak can be different from those of Eq. (D6). Indeed,

using Table III, we obtain

meff
c +meff

s =
1

2
〈H0〉cc̄ss̄ = 2238.5MeV (D7)

which is different from the sum of masses in (D6). This proves that one cannot use the

same effective masses in mesons and tetraquarks. In this light we can consider the choice

(3) acceptable and understand why the agreement with the experiment in Table I is unsat-

isfactory for mesons. A better knowledge of the confinement and more precise calculations
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are necessary to obtain the mass of the cc̄ss̄ tetraquark relative to the J/ψφ threshold.
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