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Abstract

String and field theory ideas have greatly influenced each other since
the so called second string revolution. We review this interrelation paying
particular attention to its phenomenological implications. Our guiding
principle is the radical shift in the way that we think about the funda-
mental scale, in particular the way in which string models have been able
to accommodate values from the Planck MPl ∼ 1018 GeV down to the
electroweak scale MEW ∼ TeV.

1 Vacuum degeneracy: vice or virtue?

There are two purposes to this article. The first is as an overview (for
an experimental audience) of string theory developments in the past 8
years or so, since the so-called 2nd string revolution, concentrating on
aspects that have to do with “phenomenology”. Many ideas that are now
common, such as large extra dimensions, have arisen from string theory or
at least been inspired by it. Conversely ideas couched purely in terms of
for example extra dimensional field theory have often guided subsequent
string theory developments. For the lay audience the resulting picture
has become exceedingly obscure, and there is a clear need for some kind
of overview. This article is an attempt to meet this need by focussing
on one particular area where our ideas have radically changed in the past
few years, namely what the fundamental scale of gravity, or string scale,
ought to be. In the first half of the article therefore, we shall discuss how
string models have consistently been able to accommodate successively
lower string scales, until today it is possible to construct models that
have fundamental scales of order a few TeV.

The second purpose of this article is to address the most immediate
question that presents itself to people with a more phenomenological view-
point, namely whether such low scale string models have anything to do
with reality, i.e. do they have any repercussions for experiment? We shall
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argue that they indeed do and that flavour changing effects constrain the
string scale to be higher than 103 TeV thereby eliminating a whole tranche
of low scale string models. A more optimistic phraseology would be to
say that experiment is already probing string scales of order 103 TeV.
This indicates, we think, that string theory is finally becoming an honest
theory, that is one that can be readily disproved by experiment.

A subsidiary purpose of this article, of interest to those concerned
with extra dimensional field theories, is to show how most conceivable
ideas that have been discussed in field theory terms can be constructed
and tested in a stringy set-up. The obvious virtues of the latter are that
questions that are difficult to address (e.g. divergences) or impossible to
address (e.g. quantum effects) in extra dimensional field theory models,
are usually resolved in string theory.

We begin with a discussion of how we used to estimate the fundamental
scale of quantum-gravity. The familiar estimate is a dimensional one,
based on measured constants of nature

G = 6.673 × 10−11m3 kg−1 s−2

h = 1.055 × 10−34Js
c = 2.997 × 108ms−1







→ LPl =
√

Gh/c3 = 1.61× 10−33 cm

The resulting Planck length (≡ MPl = 1.22 × 1019 GeV) is the scale at
which we used to think quantum-gravity effects would first make them-
selves felt.

What can go wrong with this estimate? The crucial point, emphasized
in Ref.[1], is that the energy scale at which we measure GN is vastly
different from MPl itself. (This is possible because, alone among the
forces, the effect on gravity of adding extra masses is always positive.)
The implicit assumption is that in between the two scales there are no
abnormally large parameters entering into the physics. In particular for
this discussion, in theories which have extra dimensions that are much
larger than the fundamental scale, the measured Newton’s constant can
be much weaker than expected because the gravitational force is diluted
by the extra volume. Indeed the naive relation is

G4 ∼ V −1
D−4GD

where VD−4 is the volume of whatever extra dimensions our theory hap-
pens to have. (Note that we will for simplicity only consider flat extra
dimensions.) If for example we have a fundamental scale of Ms ∼ 1TeV
then VD−4 ∼ 1032 (in fundamental lengths) gives the required enhance-
ment factor of 1016 to the Planck mass. If D = 10 then we would require
the extra dimensions to be of order few×105 TeV−1 .

On the other hand gauge forces cannot consistently be allowed to feel
the same extra dimensional volumes. This is because gauge couplings are
dimensionless so that the extra volume would just lead to either nonper-
turbatively large or immeasurably small couplings. (They could feel some

large volumes however, in which case there is some rescaling required and
the relationships become a little more complicated but similar.)

The generic picture for significantly changing the scale of quantum
gravity is therefore as shown in Figure 1. The large flat 4 dimensional
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Figure 1: Brane world picture with 4 large flat dimensions represented as a
plane and extra small dimensions determining the different scales of nature.

space in which we apparently live is shown as the flat plane. Blowing
up any portion of it reveals an internal space that determines all of the
physics (supersymmetry, particle content and so on). The fundamental
scale can be much lower than the Planck scale if gravity feels a large
internal volume (denoted by green blobs), with the Standard Model (SM)
fields being confined to some restricted subvolume.

This type of set up is a natural possibility in string theory with its
6 extra dimensions, but large extra dimensions are a reasonable thing to
consider only because of a feature of string theory that we used to regard
as a problem, namely the vacuum degeneracy problem. To summarize,
the problem is that string theory gives no hints as to the shape or size of
the compactified vacua, or even the number of compactified dimensions.
So for example we have no explanation as to why there are 4 large flat
dimensions. More specifically this can be stated as follows. The size and
shape of a particular compactification manifold can be specified by various
parameters (for example the various radii), known collectively as moduli.
Choosing a particular compactification radius corresponds to fixing these
parameters. Since they determine the 4 dimensional physics they should
of course be the same (i.e. Figure 1 should look the same) at every point
in M4. However these parameters correspond to the VEVs of fields in the
spectrum that are left over from the higher dimensional metric. These
fields turn out to be massless, and indeed their potential is completely flat
to all orders in perturbation theory. (In terms of Figure 1, if for example
we perturb the compactification manifold at a particular point in M4

then all the neighbouring manifolds are perturbed and so on, and a signal
radiates out at the speed of light in M4; these are the massless particles.)
In addition we are at liberty to set the compactification to be as large
as we like, with the hope that our preferred choice will at some stage be
explained by a non-perturbative contribution to the moduli potential. So
when it comes to lowering the fundamental scale, the vacuum degeneracy
problem is seen as a virtue.
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2 The road to Ms = MW

We now turn to how this idea has been realized in stringy set-ups. For this
we first need a “road-map” of string theory in order to orient ourselves;
we begin with the canonical layout of 10 dimensional string theory plus
supergravity shown in Figure 2.

Type I

Type IIA

TypeIIB

11−D Sugra

Het. SO(32)

Het. E8xE8

Figure 2: M-theory road map

Five of the labelled points represent the various perturbative regimes
(i.e. different kinds of string theory) that can be written down in 10 di-
mensions. These are Heterotic, and type IIA/B, all of which are theories
of closed strings, and type I which is an SO(32) theory of open strings.
In addition the diagram includes a sixth point representing 11D super-
gravity. The triumph of the 2nd string revolution was to demonstrate
that by applying successive duality transformations it is possible to get
from any of the 6 perturbative points on this diagram to any other. The
conjecture is therefore that the perturbative theories are simply limits of
some nonperturbative underlying theory which encompasses the whole of
this diagram, for which the search continues. In the meantime one can
consider the phenomenological possibilities for the 6 theories where we
can do perturbation theory.

In the following sections our phenomenological discussion will take us
to all the different corners of this road map. The itinerary is determined by
the value of the string scale in the different models, starting with the most
conservative case of a string scale of the order of the Planck mass in weakly
coupled heterotic models down to GUT string scale (strongly coupled
heterotic), intermediate scale models (type I and II models) and finally
discussing the radical idea of a TeV string scale (in non-supersymmetric
models with D-branes intersecting at non-trivial angles).
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3 From Ms ∼ MPl to Ms ∼ MGUT: weakly

and strongly coupled heterotic models

At first sight (i.e. perturbatively) only the Heterotic models seem to be
of much use for model building. This is because they alone contain both
quantum gravity and gauge fields. Gravity, being a spin 2 field, requires
closed strings which rules out type I. However the type II models are
also ruled out because they only contain gravity multiplets and no gauge
fields. Heterotic theories are also closed strings, but they are a curious
combination of supersymmetric and bosonic string theories. The former
can exist in 10 dimensions whereas the latter require 26. The 16 additional
internal degrees of freedom in the bosonic half then become gauge degrees
of freedom in the effective theory; hence the gauge groups must have
rank 16 and indeed anomaly cancellation restricts them still further to be
E8 × E8 or SO(32) (the latter turns out to be dual to the SO(32) of the
type I models).

Model building in heterotic strings concentrated on the E8×E8 gauge
group. In order to get N=1 supersymmetry in 4 dimensions, the com-
pactification manifold K6 has to be of a certain type (Calabi-Yau) and
consistency requires a breaking of the gauge group by the compactifica-
tion. One attractive route of gauge breaking is then

E8 × E′
8 −→ SU(3)× E6 × E′

8 −→ MSSM×hidden

This route arose from a particularly simple way of satisfying the vari-
ous consistency conditions that compactification imposes, which became
known as the “standard embedding”. The first E6 factor is a potential
Grand Unified group whereas the second E′

8 factor forms a hidden sector
group. The latter is a potential source of supersymmetry breaking by for
example the condensing of the gaugino of some hidden sector group at
a high mass scale (much like the condensation that takes place in QCD
leading to a ΛQCD breaking).

Let us now turn to the question of the fundamental scale. As we
have said, in heterotic models, all degrees of freedom in the perturbative
model are the result of excitations of closed strings. All closed strings can
travel everywhere in the compact space and so both gauge and gravity
degrees of freedom necessarily feel the same compact volume, V6 say. The
Planck scale and the gauge couplings can then be simply computed from
the dimensional reduction of the 10-dimensional theory. In terms of the
string scale, Ms, and the heterotic string coupling, λH , they read

M2
Pl ∼

V6

λ2
H

M8
s , (1)

and

αY M ∼ λ2
H

V6M6
s

. (2)

These expressions, together with the experimental fact that αY M . 1,
imply, in the case that the heterotic string remains weakly coupled (i.e.
λH . 1), the following relations between the compactification, string and
Planck scales

Ms ∼MPl ∼ V
1/6
6 . (3)
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Things are less simple in the strongly coupled limit. The strongly
coupled E8 × E8 heterotic is only tractable thanks to the fact that, as
Horava and Witten showed [2], it is described by 11-dimensional super-
gravity compactified on an S1/Z2 orbifold. Based on anomaly cancella-
tion arguments they argued that an E8 gauge group lives on each of the
two 10-dimensional orbifold fixed planes whereas gravity lives in the 11-
dimensional bulk as sketched in Fig. 3. In the case of strong coupling, the
radius of the orbifold R11 is larger than the compactification scale of the 6
extra dimensions. It is therefore possible to consider the compactification
of this theory down to 4 dimensions in two steps, with an intermediate
5-dimensional model compactified on an orbifold.

E 8 E 8

Figure 3: Horava-Witten construction for the strong coupling limit of the E8 ×
E8 heterotic string. The green planes represent the 10-dimensional boundaries
of the orbifold S1/Z2 where each E8 factor lives, 11-dimensional supergravity
propagates in the bulk.

The 11-dimensional action takes the form

S =
1

2κ2
11

∫

d11x
√
gR −

∑

i

31/3

4π(2πκ2
11)

2/3

∫

d10x
√
gTrF 2

i + . . . , (4)

where κ11 is the 11-dimensional gravitational constant and i runs over the
two 10-dimensional fixed planes where the two E8 groups live. Compact-
ifying down to five dimensions (with a compact volume V6) and then to
four dimensions we can write the fundamental 11-dimensional constant,
M11 = 2π(4πκ2

11)
−1/9 and the radius of the 11-th dimension, R11, in terms

of 4-dimensional quantities,

M11 = (2αGUTV6)
−1/6, R2

11 =
(αGUT

2

)3

V6M
4
Pl. (5)

It is now possible to have

M11 ∼ V
−1/6
6 ∼MGUT ∼ 1016 GeV, (6)

and therefore R−1
11 ∼ 1013 − 1015 GeV.

Thus we have seen how the heterotic string can accommodate a fun-
damental scale of the order of the Planck mass in the weak coupling limit,
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Figure 4: D-brane realization of a U(2) gauge group.

or GUT scale in the strong coupling limit. In the following sections we
shall see how the existence of D-branes in type I and II theories allows an
even greater reduction in the fundamental scale.

4 Intermediate models

The arrival of the large extra dimension idea stimulated interest in the
other variants of string theory as model building tools. In particular at-
tention turned to the type I and type II theories which have in their non-
perturbative spectrum objects known as Dirichlet branes [3, 4]. These can
be built like monopoles from the effective field theory, and are membrane-
like and fully dynamical, with a typical surface tension and a width of
order the fundamental scale. They have p dimensions on their world vol-
ume where p = 1, 3, 5, 7, 9 for type IIB, 1, 5, 9 for type I and 0, 2, 4, 6, 8 for
type IIA. The interesting feature of D-branes from a model builder’s point
of view is that open strings can end on them and this can generate gauge
groups in the following way. Associated with an open string end point is
an index, the Chan-Paton index. If there are a few branes together, the
index simply labels the branes to which the open string is attached. If we
consider two branes for example, the endpoints can be attached in one of
4 ways as in Figure 4.

What do we see when we observe this from 4 dimensions? Remember
that from the 4 dimensional point of view we need to arrange things such
that the compactified space is the same everywhere. In particular the
brane must be lying in the large M4 space that we observe in order for
the open string to be able to travel along it (otherwise it would be stuck
at a single point in M4. So the branes must have p ≥ 3. (If p = 3 the
branes appear as points in the compactified space.) Given this, the open
strings may freely propagate in M4 but have 4 internal degrees of freedom
corresponding to the adjoint of U(2). It also turns out that the strings
have to have an excitation from the brane volume giving them a Lorentz
(gauge boson) or internal (matter field) index. Finally a remarkable fea-
ture of D-branes is that they break only half the supersymmetry. Thus
the original theory which has N = 8 supersymmetry in 4 dimensions (if
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the compactified space is toroidal) ends up being N = 4. We thus end
up with an N = 4 theory with U(2) gauge group. In order to reach a
more phenomenogically interesting N = 1 configuration, the compactified
space K6 can be chosen in such a way that the supersymmetry is already
partially broken before the D-branes are added. A type of compactifica-
tion which is particularly easy to work with are orbifolds - spaces with
curvature singularities at fixed points of the orbifolding (like the corners
on cushions).

Before we start throwing branes together at random, we need to take
care of some consistency conditions. The most important of these for D-
branes are the Ramond-Ramond tadpole conditions. Every D-brane has a
“Ramond-Ramond” (RR) charge, and couples to Ramond-Ramond fields
that exist in the closed string spectrum (that is they are closed string
excitations that are present in the type I or type II theory even before the
D-branes are added in). Since these are closed string states they do not
care about the presence or otherwise of the D-branes. In a toroidal com-
pactification they propagate throughout the entire compactified volume.
Curvature singularities, for example when the compactified space is an
orbifold, introduce a second type of “twisted” RR field that is confined to
the fixed points. The RR fields behave rather like gravitons and dilatons
and form part of the gravitational spectrum. However they differ in the
respect that flux lines of Ramond-Ramond fields must be absorbed in a
compact space otherwise the theory is rendered entirely inconsistent. One
has to be careful therefore to choose the arrangements of D-branes such
that the flux lines are all absorbed. Once this requirement is satisfied,
other requirements such as anomaly cancellation are usually satisfied as
well.

These requirements led to an approach to model building which be-
came known as “bottom-up” [5]. Consider what are the important fea-
tures of any model from the point of view of phenomenology. The leading
factors are those things that have to do with the gauge groups, particle
content, number of generations and so on. Secondary factors are things
that have to do with supersymmetry breaking, the cosmological constant
etc. The latter are things whose eventual properties are intertwined with
gravity. As such their influence on phenomenology is less important. In a
large extra dimension set-up, the correspondence with the configuration
in the compactified space is rather direct. The primary factors have to
do with the local arrangements of D-branes around, for example, some
orbifold fixed point, whereas the secondary factors are all associated with
objects far away in the bulk of the compactified space. For example a
“hidden” sector can be included consisting of a collection of branes at
some other fixed point far away in the compactified space. The commu-
nication to the visible sector then has to be through the bulk, and will
get the same volume suppression as that felt by gravity. This is shown
schematically in Figure 5. The points represent for example D3 branes
localized at some point in the compactified space with twisted RR flux
cancelled locally. These are chosen in such a way that the visible sec-
tor is the MSSM. Gravity and the untwisted RR fields live in the bulk
of the compactified space. These details and in particular the details of
untwisted RR flux cancellation are less well determined.
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just K 
6

gravity

lives here

Figure 5: Schematic picture of the bottom-up approach. The small blue points
represent the local configuration of D-branes leading to the MSSM whereas
the large green blob represent the global structure, less important from a phe-
nomenological viewpoint.

The bottom-up approach begins therefore by focussing on the local
MSSM configuration. We assume an intermediate fundamental scale of

MI ∼
√
MWMPl ∼ 1011 GeV. (7)

This scale is familiar from the hidden sector supersymmetry breaking
communicated by gravity and had been suggested earlier on more general
grounds to do with supersymmetry breaking and mediation by gravity.
First a set of D-branes is included at some fixed point of K6 with all the
necessary elements to make up the standard model gauge group and leave
N = 1 supersymmetry in the visible sector. This can for example be a set
of D3-branes lying on top of each other at a single point in K6, but with
their world volumes filling the whole of M4 (as of course we require if the
open strings on their world volumes are able to travel anywhere in M4).
We then need to satisfy the requirements of local RR-tadpole cancellation.
That is we need to add in additional branes (D7 branes for example) such
that the “twisted” RR-tadpoles cancel but locally supersymmetry is pre-
served. This puts a constraint on the angles at which the branes can
interesect (for example that the D7 branes intersect at right angles). This
arrangement takes care of the local consistency conditions, however one
should also take care of the global RR-tadpoles and make sure those fluxes
cancel as well. This however can be done by adding other D-branes and
anti-D branes elsewhere in the bulk or may be done in some other way.
From the point of view of 4D phenomenology therefore, the particular way
in which the global tadpoles are cancelled affects only the hidden sector,
and consequently the soft supersymmetry breaking and cosmological con-
stant. A consistent set-up is shown schematically in Figure 6. This figure
shows the global RR flux being absorbed by anti-branes, but the set-up
can be entirely different away from the visible sector without affecting the
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6
K

hiddenhidden visible

Figure 6: Set-up for the bottom up approach. The visible sector consists of
3-branes at a fixed point in K6. D7 branes have to be included passing through
this fixed point to cancel local RR-tadpoles. Global absence of tadpoles requires
additional branes and/or anti-branes in the bulk, or possibly something else
entirely.

MSSM set-up directly.
The reason for the particular choice of the intermediate scale can now

be made clear. The additional ingredients required to ensure global tad-
pole cancellation generally break supersymmetry. Since it is only the
global configuration that breaks supersymmetry, the net effect is the same
as hidden sector supersymmetry breaking communicated by gravity and
we must choose the fundamental scale accordingly. In other words, the
volume of the bulk can be responsible for the large Planck scale and the
dilution of supersymmetry breaking effects only if Ms ∼MI . The precise
dependences on volumes can be derived from the reduction of the effec-
tive 10 dimensional type I action to 4 dimensions [13]. We begin with the
Planck mass relation to the total compact volume

VK6 = λ2
I
M2

P

M2
s

, (8)

where λI is the string coupling. To get an idea of what this has to be, we
can look at the effective gauge coupling αp on a p-dimensional brane. The
gauge interactions are proportional to the string coupling but are diluted
by the volume of the branes in the compactified space, Vp−3, since the
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gauge bosons are free to roam anywhere in this volume. Hence

αp ∼ λI

Vp−3
. (9)

Substituting Eq. (9) into Eq. (8) gives us

αpM
2
P =M2

s
V9−p

Vp−3
, (10)

where V9−p is the co-volume (i.e. the volume orthogonal to the p brane).
Any process we care to calculate that breaks supersymmetry, such as a
contribution to the scalar mass-squareds communicated via closed string
modes from an anti-brane, feels the same volume dependence

m2
SUSY ∼M2

s
Vp−3

V9−p
. (11)

The dilution due to the co-volume V9−p is obvious. The Vp−3 enhancement
factor arises from the sum over Kaluza-Klein (momentum) modes in the
brane volume and is essentially the same factor as arising that arising in
1/αp. Essentially this is like a phase space factor. (As a rule-of-thumb,
one can use the fact that if we invert a radius, Ri → 1/Ri, we also turn
that dimension from a brane dimension into a dimension orthogonal to
the brane or vice-versa, and also change the dimensionality of the brane,
p → p± 1. Hence the volumes must appear as the ratio of brane volume
to co-volume, Vp−3/V9−p.) There is no 1/λI contribution as there is in
the tree level Yang-Mills terms (hence the equation for αp) because the
diagrams that contribute to MSUSY are one-loop and λI acts like a loop
expansion parameter.

Now, for reasonable phenomenology we would like MSUSY ∼ MW so
that from the above, and assuming that we have αp ∼ 1 we need

M2
s ∼MWMP

as expected, and consequently a volume ratio

Vp−3

V9−p
∼ MW

MP
(12)

The beauty of the bottom-up approach is that is allows us to disregard
those parts of the construction that are not vital to phenomenology. For
example there is a question of global validity of these models due to the
fact that there are uncancelled tadpoles of another kind, namely NS-NS
tadpoles. These however can be absorbed dynamically by adjusting the
background (i.e. K6) and their presence does not automatically render
the theory inconsistent [7]. Although this effect may make the theory
intractible on a global scale, it may still be a reasonable approximation
to assume a nice (tractable) flat or orbifold background near the visible
sector branes, where we can still calculate, for example, interactions.

Let us turn briefly to the local arrangement of branes that yields the
visible sector particle content and gauge group. This is often represented
as in Figure 7. The Figure shows the arrangement of D3 branes at a

11



Q

L,H

U(1)U(3)
U(2)

U

X D

Figure 7: Local arrangement of states on D3-branes leading to the MSSM.

particular fixed point in K6. The branes are extended in M4 and fixed
in K6 so that two of the dimensions shown are in M4 and the dimension
orthogonal to the branes should be in K6. In addition the branes are
on top of each other. (Any separation of branes translates into a mass
for the relevant states due to the stretching energy.) There are three
stacks of branes corresponding to a gauge group U(3) × U(2) × U(1).
The gauge states are those strings with ends attached on a single stack
of branes. The matter states correspond to strings stretched between
different stacks of branes and consequently appear (in this simple example)
in the bifundamental. Thus we can identify strings stretched between the
U(3) and U(2) stacks with left handed quarks, QL, between the U(2) and
U(1) branes with left handed leptons and higgses, and between the U(3)
and U(1) branes with right handed quarks. The gauge groups contain
too many U(1) factors, and the final reduction down to a single U(1)Y
of hypercharge comes about because there is only one linear combination
of U(1)′s that is anomaly free. Of course string theory is a consistent
theory, and there should be no anomalies at all. But the way in which
string theory cancels the anomalies makes the naively anomalous U(1)′s
massive, and one expects that the anomalous combinations will be broken.
Remarkably the states turn out to have the hypercharge assignments of
the SM.

The bottom up approach has a number of advantages, many of which
were outlined in Refs.[5, 8]. For example the prediction of an intermediate
fundamental scale is interesting for a number of reasons. It is a natural
realization of hidden sector supersymmetry breaking communicated by
gravity. The model provides axions with just the right Peccei-Quinn scale
to allow an axion solution to the string CP problem. In addition the
see-saw mechanism for neutrino masses is consistent with a fundamental
intermediate scale, and so on. One of the disadvantages of the bottom-up
approach is that, by its very nature it is difficult to make concrete pre-
dictions of phenomenological implications. This is because the approach
begins with a visible sector that resembles the MSSM and, by construc-
tion, aspects such as supersymmetry breaking have to do with the global
configuration over which we assume very little control.
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Figure 8: Contributions to Kinetic Mixing in field theory.
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Figure 9: Contributions to Kinetic Mixing in string theory

What then can be said about the emergent phenomenology? In the
next subsections we will pick out a couple of areas that are currently ex-
ercising us, where the bottom-up approach can make generic predictions.
The first concerns a little considered possibility in models that have sev-
eral U(1) factors, namely millicharged particles. The second related area
has to do with the generic properties of supersymmetry breaking. At
the end of this section we shall summarize where other progress has been
made on this question.

4.1 Kinetic Mixing and Millicharged particles

Millicharged particles are a possibility in any theory that has a number
of U(1)′s, as string theories with stacks of D-branes generally do. The
phenomenon that gives rise to this effect is known as Kinetic Mixing.
Consider for example a field theory that has, in addition to some visible
U(1)a, a U(1)b factor in the hidden sector. Kinetic Mixing happens when
the hidden U(1)b couples to the visible U(1)a through the diagram in
Figure 8. The fields in the loop correspond to heavy states that do not
appear in the low energy theory.

This diagram, proportional to Tr(QaQb) , results in a Lagrangian of
the form [9]

LY M = −1

4
Fµν
a Faµν − 1

4
Fµν
b Fbµν +

χ

2
Fµν
a Fbµν (13)

The most immediate consequences of this type of mixing were first studied
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by Holdom [9]. On diagonalizing the Yang-Mills lagrangian, one finds that
the hidden sector fields charged only under U(1)b pick up a small charge
of order χ under the visible sector U(1). The bounds on such particles are
very severe, especially if they are massless. In fact ifmhidden < me there is
a constraint of χ < 10−15 coming from astrophysical bounds (specifically
plasmon decay in Red Giants). Direct but much weaker experimental
bounds of χ < 10−4 are found from orthopositronium decay as well as a
number of other accelerator and astrophysical sources [10].

This phenomenon generally arises in the intermediate models [11] be-
cause they include a hidden sector of anti D-branes in the bulk. Anti-
branes and branes couple by exchanging closed string modes through the
bulk. However a closed string exchange (which resembles a cylinder) can
also be interpreted as an open string stretched between brane and anti-
brane going in a loop as shown in Figure 9. The modes in the loop are
heavy because they have a stretching energy proportional to their length
(i.e. the distance between brane and anti-brane since they are stretched
between them). Importantly the presence of anti-branes breaks super-
symmetry. Therefore the one loop diagrams do not cancel (as they would
in a supersymmetric configuration with just parallel branes for example),
and there is a residual contribution to kinetic mixing and hence χ.

Going back to the closed string exchange picture, it is (almost) obvious
that the diagrams receive the same sort of volume suppression as the
gravitational diagrams that lead to a large MP . That is, the coupling χ is
diluted by co-volume V9−p (i.e. the volume orthogonal to the D-branes)
and enhanced by the brane volume Vp−3. However the normal Yang-Mills
couplings are enhanced by the same Vp−3 factor since the gauge bosons
travel the entire volume of the brane (indeed this is where Eq. (9) comes
from). The suppression of the Kinetic Mixing term relative to the normal
Yang Mills terms is therefore suppressed only by the co-volume but has
an extra λI factor because it is one-loop. Using the expression for αp we
can therefore write

χ ∼ Tr(QaQb)
αpVp−3

V9−p
. (14)

Comparing this to Eq. (12) we find

χ ∼ αpTr(QaQb)
MW

MP
.

Thus independently of p this crude estimate gives the expected value of χ
to be just below the bounds extracted from astrophysical considerations.
However there are a number of factors that we have glossed over here
for simplicity, and the situation can be slightly more complicated due to
uncancelled NS-NS tadpoles, extremely non-degenerate extra dimensions
and so on. One of the most important factors is that the volume depen-
dence of χ does not quite go as the co-volume. Indeed if the radius of the
co-volume is R then the supersymmetry breaking mass-squared depend
on 1/V9−p ∼ Rp−9 whereas χ ∼ Rp−7 which merely reflects the fact that
the potential is just that of gravitational attraction (e.g. in D space-time
dimensions instead of 10 we have Rp−D−3 and get the familiar 1/R if
we have particles/D0-branes in D = 4.). The end result will be a more
complicated dependence on p and an enhanced millicharged particle effect
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Figure 11: Supersymmetry breaking contribution to d−EDM

with some cases being ruled out. For further details the reader is directed
to Ref. [11].

4.2 Kinetic mixing and SUSY breaking

The consequences of χ ∼ MW /MP are extremely interesting for super-
symmetry breaking and it is to this that we now turn. Before we consider
the specifics of kinetic mixing in detail we should mention some of the
problems of supersymmetry breaking in generic models that we would
like to be able to solve. One of the most enduring problems arises from
possible flavour non-universality in the supersymmetry breaking terms.
This leads to large violations of flavour from diagrams such as those in
Figure 10 and large EDM contributions such as those in Figure 11.

In the former example, the flavour changing is driven by generational
mass differences, m2

s̃ − m2
d̃
. In the second example, even though it is

CP violating and flavour conserving, large contributions come from non-
universal A-terms in the lagrangian once the fermions are rotated to their
mass basis. These problems are known collectively as the supersymmetric
flavour and CP problems. In the bottom-up configuration it is very diffi-
cult to say anything general about them. However one can identify new
possibilities for solving them.

This is where Kinetic Mixing can play and important role. Dienes et

al pointed out that Kinetic Mixing can contribute significantly and even
dominantly to supersymmetry-breaking mediation [12]. This results in
additional contributions to the scalar mass-squared terms proportional
to their hypercharge (assuming the visible sector group is U(1)Y , other-
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wise whatever the charge under U(1)a is) as follows. The supersymmetry
breaking in the hidden sector is assumed to be maximal, and one expects
a non-zero VEV for the D-terms of the hidden U(1)b of order

〈Db〉 ∼M2
s . (15)

Upon kinetic mixing, the fields in the visible sector see this VEV through
their U(1)b millicharges. That is the scalars pick up effective mass-
squareds order

m̃2 ∼ QaχM
2
s . (16)

The interesting feature of the kinetic mixing in intermediate models is
that it gives

m̃2 ∼ QaχM
2
I ∼ QaM

2
W .

The volume factors required to produce the large Planck mass therefore
match those required to suppress χ to beMW /MP . Furthermore the mass-
squared terms are proportional to hypercharge and is therefore generation
independent. What we have found in intermediate models therefore is a
source of degenerate mass-squareds of order M2

W that can be used to
solve or at least ameliorate some of the problems of generic supersymmet-
ric models. As pointed out by in ref[12], Kinetic Mixing to hypercharge
cannot be the only source of mediation, as some of the mass-squareds
would have to be negative however the problem should be reduced. Alter-
natively one could invoke a second U(1)a group in the visible sector that
provides additional positive mass-squared contributions.

It is interesting to contrast the Kinetic Mixing here with that in
Ref.[12]. In a model with a string scale of say Ms ∼ MGUT , including
χ ∼ MW /MP looks like a very unnatural fine tuning according to the
criterion of t’Hooft. These authors therefore focused on placing an upper
limit on χ in order to avoid destabilizing the gauge hierarchy (i.e. to avoid
supersymmetry breaking in the visible sector much larger than 1 TeV).
The appropriate limit on χ then depended on the scale of supersymmetry
breaking in the hidden sector which in turn depends on the other sources of
mediation (e.g. gravity or gauge). The conclusion was that generic mod-
els with gravity mediation would have disastrously large Kinetic Mixing
if the hidden sector contained additional U(1)’s. The relevant bound to
avoid destabilizing the hierarchy is of course χ < MW /MP ∼ 10−16 as is
clear from Eq. (16). Clearly values of χmuch larger than this will produce
scalar masses much greater than MW . In heterotic strings the situation is
ameliorated somewhat because the gauge groups are usually unified into
some non-abelian GUT groups. The Kinetic Mixing only arises due to
mass splittings once the GUT groups are broken, and one finds typical
values of χ ∼ 10−9; much less than 1 but still large enough to destabilize
the hierarchy.

4.3 Other aspects

There are a number of other areas where changing the fundamental scale
has a significant effect. In particular the structure of supersymmetry
breaking is quite different due to the different scales involved in renor-
malization group running. The most obvious impact is on the spectrum
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of the supersymmetric scalars discussed in Ref.[14]. These works also fo-
cussed on the affect on the neutralino dark matter cross section, and this
was picked up on and extended in Refs.[15, 16] where it was emphasized
that there are regions of parameter space where the neutralino-nucleon
cross section is significantly enhanced, making dark matter detectable in
current experiments. The second reference also extends the discussion to
rare processes, and finds that there is a significantly different correlation
between dark matter and rare processes. In particular lowering the string
scale changes B decay rates, in particular Bs → µ+µ−.

One aspect about which intermediate models have something interest-
ing to say is an alternative solution to the flavour and CP problems in
supersymmetry, the so-called dilaton domination solution. Dilaton domi-
nation is a pattern of supersymmetry breaking that arises when the main
contribution to supersymmetry breaking is the dilaton field. Since the
dilaton is part of the gravity multiplet it couples universally to all matter
and in particular to all the generations. Consequently supersymmetry
breaking driven by the dilaton solves the supersymmetry flavour and CP
problems since the soft supersymmetry breaking that apears in the effec-
tive four dimensional theory is necessarily flavour universal. However in
conventional MSSM models with unification at the GUT scale, dilaton
domination is excluded because of cosmological considerations. Specifi-
cally the electro-weak vacuum is unstable to decay into deeper minima
that break charge and/or colour [17, 8, 18]. (See also[19] for a discussion
on scales.) It is possible to live with such an instability if the decay time
is long enough (i.e. longer than the age of the Universe) but it is more
usual for the existence of a charge and colour breaking (CCB) minimum
to be taken as grounds for a model to be excluded. CCB minima are
driven by the negative mass-squared of the higgs fields (which are also
responsible for the successful prediction of electroweak symmetry break-
ing of course) which in turn is driven by the effect of the large top-quark
Yukawa in the renormalization group running. Because of the important
effect of the renormalization group, things are rather different in interme-
diate scale models essentially because of the shorter interval (in energy
scales) that the soft-supersymmetry breaking parameteres have to run.
This is discussed in Ref. [8, 18].

Finally we should mention the impact of lowering the string scale on
the so-called fine tuning parameters of supersymmetry. This was dis-
cussed in Ref.[20] which concluded that lowering the string scale actually
increases the amount of fine-tuning required to produce the correct MZ

whilst having relatively heavy scalar masses.

5 Ms ∼TeV: Branes at angles

Following the progression down to lower string scale models, we will dis-
cuss in this section a class of models that represent, within a bottom-up
approach, realistic string models with many of the features of the SM,
allowing in principle for a very low string scale. Our main aim in this
review is to account for their phenomenological features, their realistic
structure and, especially, their flavour structure, which, as it turns out,
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provides the deepest probe of this kind of models and the most stringent
constraints on the string scale as well.

Models with D-branes intersecting at non-trivial angles [21] (see [22]
for an earlier application of the same idea, in the dual version of branes
with fluxes, to supersymmetry breaking), have a number of very appealing
phenomenological features such as for instance four-dimensional chirality
or a reduced amount of symmetries (both gauge and supersymmetries)
among many others. One particularly important feature that these models
have is an attractive explanation for family replication. Specifically the
matter fields correspond to the string states at the intersections that are
stretched between two branes. There are then three generations simply
because the branes are wrapped so that each type of intersection appears
three times, with a repeated set of multiplets stretched between the branes
at the intersections.

Configurations with branes at angles typically break all the supersym-
metries (supersymmetric configurations have been constructed [23] but
they are very constrained and minimal models are very difficult to obtain)
and therefore a very low string scale ∼ TeV is required. The first semi-
realistic models were constructed in [24] and soon after in [25] and [26]
(see [27] for some related technical developments). These initial mod-
els presented additional gauge symmetries or matter content beyond the
ones in the SM. The first models containing just the SM were presented
in [28]. Since then, a great deal of effort has gone into into the study
of the consistency and stability [29] and phenomenological implications
of intersecting brane models, from the construction of supersymmetric
models [23], gauge symmetry breaking [30], GUT or realistic SM con-
structions [31, 32] to cosmological implications [33]. In the following we
will review some of these developments paying particular attention to their
flavour structure [34, 35, 36] and its profound experimental implications.

For the sake of clarity we will concentrate here on one very particular
model [34] that exemplifies most of the interesting properties as well as
some of the possible problems of models with branes intersecting at angles.
It is an orientifold compactification of type II theory with four stacks
of D6-branes wrapping factorizable 3-cycles on the compact dimensions.
This mouthfull is displayed in Fig. 12 which shows just the compactified
space, K6. The compactified space is a compact factorizable 6-Torus

T 2 × T 2 × T 2,

and the orientifold projection is given by ΩR where Ω is the world-sheet
parity and R is a reflection about the horizontal axis of each of the three
2-tori,

RZI = Z̄I .

We have denoted the coordinates of the tori by complex coordinates ZI =
X2I+2+iX2I+3, I = 1, 2, 3, so the three boxes in the figure represent each
2 torus, with the edges being identified. Recall that the 6 branes must lie
in M4 so that there are only three dimensions of each D6-brane that will
appear in K6. The branes therefore appear as just lines in each T2. The
net effect of the orientifold projection is to introduce mirror images of the
branes in each T2 (in the plane running horizontally).
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This particular model contains at low energies just the particle content
and symmetries of the MSSM. In order to get that we include four stacks
of D6-branes, called baryonic (a), left (b), right (c), and leptonic (d).
Three of the dimensions of each D6-brane wrap a 1-cycle on each of the
three 2-tori, with wrapping numbers denoted by (nI

k,m
I
k), i.e. the stack k

wraps nI
k times the horizontal dimension of the I−th torus and mI

k times
the vertical direction. We have to include for consistency their orientifold
images with (nI

k,−mI
K) wrapping numbers. The number of branes in each

stack, their wrapping numbers and the gauge groups they give rise to are
shown in Table 1 and a subset of them, together with some of the relevant
moduli, are displayed in Fig. 12.

Stack Nk Gauge group wrapping numbers
a 3 SU(3)×U(1)a (1,0);(1,3);(1,-3)
b 1 SU(2) (0,1);(1,0);(0,-1)
c 1 U(1)c (0,1);(0,-1);(1,0)
d 1 U(1)d (1,0);(1,3);(1,-3)

Table 1: Number of branes, gauge groups and wrapping numbers for the dif-
ferent stacks in the models discussed in the text.
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Figure 12: Brane configuration in the model discussed in the text. The leptonic
sector is not represented while the baryonic, left, right and orientifold image of
the right are respectively the dark solid, faint solid, dashed and dotted. The
intersections corresponding to the quark doublets (i = −1, 0, 1), up type singlets
(j = −1, 0, 1) and down type singlets (j∗ = −1, 0, 1) are denoted by an empty
circle, full circle and a cross, respectively. All distance parameters are measured
in units of 2πR with R the corresponding radius (except ǫ̃(3) which is measured
in units of 6πR).

The open string light spectrum in these models consists of the following
fields:

• (p + 1)-dimensional gauge bosons (for the case of a stack of N Dp-
branes) corresponding in general to the group U(N) ∼ SU(N)×U(1)
live in the world volume of the corresponding branes. In our partic-
ular configuration, we have seven-dimensional gauge bosons corre-
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sponding to the gauge group SU(3)×SU(2)×U(1)a×U(1)c×U(1)d
(see Table 1) 1. Of the several abelian groups, every anomalous lin-
ear combination receives a mass through the Green-Schwartz mech-
anism, whereas anomaly-free combinations can remain massless or
not, depending on the particular brane configuration. This is indeed
a salient feature of this class of models that allow non-anomalous
gauge bosons to couple to the RR two-form fields acquiring a mass
of the order of the string scale in this form [28]. The phenomenol-
ogy of these extra massive U(1)′s has been studied in [37] finding
a bound on the string scale Ms & 1 TeV. Interestingly enough,
these gauge symmetries remain at the perturbative level as unbroken
global symmetries [28]. Quite generally these new global symmetries
correspond to baryon, lepton, or Peccei-Quinn like symmetries, pre-
venting proton decay even in low scale models. In our particular
example, the anomaly free massless combination corresponding to
the hypercharge is

QY =
1

6
Qa − 1

2
(Qc +Qd).

• Four-dimensional chiral massless fermions living on the intersections
of two branes and transforming as bi-fundamentals of the corre-
sponding gauge groups. Their number depend on a topological in-
variant, the intersection number, which in the case of factorizable
cycles on a factorizable torus is simply

Iab =

3
∏

I=1

(nI
am

I
b −mI

an
I
b),

with different signs corresponding to different chiralities. The fact
that these branes wrap compact dimensions naturally provide in-
tersection numbers greater than one and therefore replication of
fermions with the same quantum numbers. It should be mentioned
here that in the case of lower-dimensional branes, like D5 or D4-
branes, chirality is not automatic and locating the whole configura-
tion at orbifold singularities is required in order to get it [26].

• Four-dimensional scalars, also localized at the intersections, with
masses that depend on the particular configurations of the branes.
They can be seen as the (generally massive when SUSY is broken
by the intersection) superpartners of the fermions at the intersec-
tions. In realistic models, scalars with the quantum numbers of the
(MS)SM Higgs boson also exist. In the example we are considering
the configuration is such that the same supersymmetry is preserved
at each of the intersections and massless scalars, superpartners of
the corresponding fermions completing the matter spectrum of the
MSSM live at the intersections.

The massive spectrum comprises, apart from the winding modes, that
correspond to stretched strings that wind around the compact dimensions

1Note that the left stack of branes consists of just one brane that gives rise directly to a
USp(2) ∼ SU(2) gauge group instead of the usual U(1) due to the orientifold projection [4].
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and have massesMwind ∼ Rc/L
2
s, where Rc is the compactification radius

and Ls the string scale, KK modes, that are states with non-zero (quan-
tized in units of 1/Rc due to the periodicity conditions) momentum in the
compact dimensions and string excitations not related to the intersections
normally present in string models, a set of massive vector-like fermions,
the so-called gonions [26], localized near the intersections and with angle-
dependent masses. Although a purely effective field theory study shows
that relatively light vector-like fermions, especially when they mix with
the top quark, are the most likely source of modifications of trilinear cou-
plings [38], the presence of Flavour Changing Neutral Currents (FCNC)
in these models overcomes in general any phenomenological relevance of
these states.

We have therefore seen that at the level of the light spectrum, mod-
els with intersecting branes have a number of nice features, namely four-
dimensional chiral fermions, natural family replication and local and global
symmetries and matter content of the SM (or simple extensions thereof).
As we have seen, the closed string sector, which lives in the full ten-
dimensional target space, contains among other fields the graviton. These
models thus have a natural hierarchy of dimensionalities, with gravity
propagating in ten dimensions, gauge interactions in seven and matter in
four. As we sketched in the introduction, this will allow us to reduce the
string scale down to observable levels.

In our particular example, as can be seen in Fig. 12, there are no
dimensions transverse to all the branes and therefore no transverse vol-
ume can be made large enough to account for the large effective four-
dimensional Planck mass with a small string scale. The thing that is
stopping us are of course the gauge couplings which would receive the
same volume suppression seen in Eq. (9) and become extremely small.
This problem can be circumvented in several ways, the simplest one is
to connect our small torus to a large volume manifold without affecting
the brane structure [39], for instance, cutting a hole and sewing and large
volume manifold in a region away from the branes 2. This approach is
in spirit quite similar to the bottom-up approach. A second possibility is
to consider lower-dimensional branes, for which transverse dimensions to
all branes do exist. Realistic examples with D5-branes and a string scale
as low as few TeV have been constructed in [40]. (See also [41] for other
examples with extra vector-like fermions.) In these models the effective
four-dimensional Planck mass reads

MPl =
2

λII
M4

s

√
V4V2, (17)

where V4,2 stand for the volume of the four-dimensional manifold where
the branes wrap and the volume of the two-dimensional one transverse to
all the branes and λII is the string coupling and Ms is the string scale.

2There is a conceptual difficulty in this construction that can be phrased as why in such
a large volume manifold, the relevant physics occurs in such a tiny region. This difficulty is
in one way or another always present in the large extra dimensions approach to the hierarchy
problem but, as we have emphasized, the vacuum degeneracy problem makes this possibility
at least conceivable in a stringy set-up.
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In this situation it is possible to have all scales of order TeV but the
transverse dimensions then have to be ∼ mm [1].

Gauge couplings can be simply computed from a dimensional reduction
of the Yang-Mills theory living on the world-volume of the stack of branes.
As expected, it is suppressed by the volume of the compact dimensions of
the brane,

1

g2a
=

M3
s

16π4λII
Va, (18)

where we have considered the case at hand, i.e. D6-branes wrapping
3-cycles on the compact space and considered the gauge coupling of an
SU(Na) group. Reasonable values for the couplings are obtained if the
relevant volume for the brane is Va ∼ M3

Pl ∼ TeV3. Contrary to the
original expectation, under certain mild assumptions, gauge coupling uni-
fication can be obtained [42] (see also [43] for a study of gauge threshold
corrections in intersecting brane models).

Models with intersecting branes therefore allow in principle for a very
low string scale, Ms ∼ 1 TeV, while keeping the Planck mass (17) and
the gauge couplings (18) at the observed values. Notice as well that in
the case of non-supersymmetric models, a low string scale is preferred to
avoid large corrections to the Higgs vev.

We have not elaborated on the details of the construction and their
consistency conditions such as the absence of Ramond-Ramond tadpoles
or the presence of unbroken supersymmetries. These conditions greatly
restrict the number of possibilities, usually requiring the presence of more
complicated spaces by further orbifolding the toroidal structure we have
discussed. See for instance [44] for a nice review of this and other related
topics.

Among the many phenomenological implications of low scale models,
flavour physics is one of the most pressing, so it is to flavour that we now
turn. Flavour experiments are typically able to probe mass scales much
higher than the energy of current experiments and as we will see shortly
this is particularly true in the case of intersecting brane models. The
flavour structure of these models is not restricted to Yukawa couplings
but flavour violating four-fermion contact interactions are also present at
the classical level, giving them a quite unique rich structure. Nonetheless,
since both sources of flavour violation are intimately related we shall start
with the description of Yukawa couplings.

5.1 Yukawa couplings

The leading contribution to Yukawa couplings between two fermions and
a scalar, each living at a different intersection, is due to world-sheet in-
stantons [26]. One can think of this as the classical action for a stretched
string leaving an intersection (with one end on each brane) and travelling
to the opposite corners of the Yukawa triangle. The action for a string
is the worldsheet area, and therefore the amplitude should depend on the
area the string sweeps out;

Yijk ∼ e−Aijk/α′

, (19)
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where Aijk is the area of the minimal area worldsheet with vertices at the
three intersections, bounded by the corresponding branes. (See Fig. 13.)
A more detailed study of Yukawa couplings, using calibrated geometry

Figure 13: World-sheet instanton contribution to the Yukawa couplings. At
each intersection a fermion or a scalar is localized.

[34], and confirmed later by conformal field theory techniques [45], showed
that when the compact space is a factorizable torus and the branes wrap
factorizable cycles, the relevant area is the sum of the projected areas of
the triangle over each sub-torus. The final result, including the quantum
part reads

Y =
√
2λII2π

3
∑

I=1

√

4πB(νI , 1− νI)

B(νI , θI)F (νI , 1− νI − θI)

∑

m

e−
AI (m)

2πα′ , (20)

where we have neglected the presence of non-zero B field and Wilson
lines and B is the Euler Beta function, I runs over the three tori, νI and
θI are the angles at the fermionic intersections, m runs over all possible
triangles connecting the three vertices on each of the three tori (there is
an infinite number of them due to the toroidal periodicity) and AI(m) is
the projected area of the m−th triangle on the I−th torus.

This exponential dependence has been claimed as a nice feature of
these models since it is expected to naturally give a hierarchical pattern
of fermion masses. As we shall see, in practice this does not hold, at least
in the simplest models. The reason is that in many cases, the dynamics of
left-handed and right-handed fermions turns out to occur in different tori
and the property that only the projected triangles are relevant translates
into a factorization of the Yukawa couplings. An example is the very
model we have been discussing in this section and displayed in detail
in Fig. 12. Left-handed quarks live at different points only in the second
torus while they live at the same unique intersection in the third one. The
opposite happens for right-handed quarks. This results in the following
factorizable form of the Yukawa couplings

Y u
ij = aib

u
j , Y d

ij = aib
d
j , (21)

where we have only explicitly written the classical part, including this
time the presence of non-zero B−field and Wilson lines. The coefficients
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are

ai ≡ ϑ

[

i
3
+ ǫ(2)

θ(2)

]

(3J(2)

α′

)

, (22)

buj ≡ ϑ

[

j
3
+ ǫ(3) + ǫ̃(3)

θ(3) + θ̃(3)

]

(3J(3)

α′

)

, (23)

bdj ≡ ϑ

[

j∗

3
+ ǫ(3) − ǫ̃(3)

θ(3) − θ̃(3)

]

(3J(3)

α′

)

, (24)

where i, j, j∗ = −1, 0, 1, J(k) denotes the complex Kähler structure of
the k−th torus, θ(2), θ(3), θ̃(3) parameterize the Wilson lines and ϑ is the
complex theta function with characteristics, defined as

ϑ

[

δ
φ

]

(κ) =
∑

lǫZ

exp[πi(δ + l)2κ+ 2πi(δ + l)φ]. (25)

This factorizable form of the Yukawa couplings, Eq. (21), is too simple
to lead to a realistic fermion spectrum. It is a rank one matrix with
one massive and two massless eigenvalues. There are of course different
ways out of this, either by using a more complicated (non-factorizable)
compact manifold or by looking for configurations of branes in which the
left and right dynamics occur at the same torus. An example of the
latter has been provided recently in [36], where a three Higgs model with
democratic rather than hierarchical Yukawas is studied. There is however
another feature of these very simple models that makes the naive assertion
above invalid when quantum corrections are taken into account. This new
feature is the presence of FCNCs that propagate through quantum loops
to the otherwise trivial structure of Yukawa couplings, providing them
with enough complexity to give rise to a realistic set of fermion masses
and mixing angles 3.

5.2 Flavour Changing Neutral Currents

We have emphasized in this review that, after the 2nd string revolution,
string theory greatly influenced (and in turn received some degree of inspi-
ration from) field theory investigations, particularly in the area of models
with extra dimensions. We shall see a salient example of the complemen-
tarity between string and field theory in extra dimensions in this section.
Models with intersecting D-branes are a stringy realization of the brane
world idea, in which four-dimensional fermions live in the boundaries of
extra dimensions where gauge bosons are allowed to propagate, these lat-
ter dimensions being a further restriction to a submanifold of the full
space-time where gravity lives [1, 47]. One well known property of brane
worlds in which the different fermions live in separate points of the extra
dimensions, the split fermion scenario [48], is the appearance of FCNCs
that tightly constraint the compactification scale MC & 102−3 TeV in
the case of flat extra dimensions [49] 4. (See also [51] for a model with

3Although not necessary for the generation of fermion masses, these FCNC also affect the
model in [36] as well, and therefore similar bounds on the string scale apply.

4The particular localization properties of KK modes in warped scenarios make the bounds
in that case milder [50]).
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light vector-like fermions, relevant for phenomenology despite this very
large compactification scale.) The origin of these FCNC can be simply
traced to the fact that Kaluza-Klein modes of the multi-dimensional gauge
bosons, having a non-trivial profile in the extra dimensions, couple in a
different way to the fermions localized at the different positions. Fam-
ily non-universal gauge bosons then induce FCNC in the fermion mass
eigenstate basis [52]. Gauge boson KK generated FCNC are therefore
expected from a purely field theory viewpoint in models with intersecting
D-branes. A string calculation of the tree level four-fermion amplitude,
which can be performed [45] using an extension of the conformal field
theory techniques developed for the heterotic orbifolds [53], indeed repro-
duces the field theory expectation. In addition, though, it reveals a new
purely stringy source of flavour violation in these models mediated by
string instantons [35]. These are simply worldsheets that directly connect
four fermions of different generations living at different intersections in the
same way that the Yukawas connected the higgs to two fermions. Again
the suppression goes roughly as the area, so that one would expect the
FCNC effect from this source to increase as the compactification length
and hence worldsheet area decrease.

The KK mediated flavour violating four fermion interactions are of the
form,

O
(~n)
LL =

(c
(~n)
LL)abcd
M2

n

(ψ̄aLγ
µψbL)(ψ̄cLγ

µψdL), (26)

with the following dependence of the coefficient

(c
(~n)
LL)abcd ∼ δ−M2

~n/M2
s

∑

ij

(U†
L)ai(UL)ib(U

†
L)cj(UL)jd cos

[

~M~n · (~yLi − ~yLj )
]

.

(27)
UL are the corresponding unitary matrices rotating current eigenstates
into mass eigenstates and δ is an order one (but always larger) number
that depends on the specific brane configurations and represents the string
smoothing of the KK contribution at high energies which is generally
divergent in the field theory calculation of the same effect. (Essentially,
the string smoothing arises because the branes have a finite width of order
the string length, and are therefore unable to excite modes of a shorter
wavelength than this.) We have only written the Left-Left contribution,
the case of Right-Right and Left-Right contributions is a straight-forward
generalization of that one. Note that in order to have FCNC it is essential
that current and mass eigenstates are not aligned (so that the rotation
matrices are non-trivial) and the different generations are localized at
separate points of the extra dimension (yi − yj 6= 0). The exponential
smoothing provided by the string dynamics, which is crucial in the case of
more than one extra dimensions where the sums over KK modes typically
diverge, has to be introduced by hand in a field-theory approach. This is
another example of the complementarity between string and field theory.
String theory automatically cuts-off the contribution of KK modes heavier
than the string scale. Therefore the larger the ratio Rc/Ls, the bigger the
number of KK modes that contribute and the larger the effect is.

On the other hand, string instanton FCNCs depend very much on the
chiralities of the external fermions (through the difference in the number
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of independent angles). Four-fermion interactions with all fermions of the
same chirality (either all LH or all RH) correspond to a parallelogram
with only one independent angle. Given the factorization property of the
model we are discussing, the only non-vanishing world-sheet area occurs
in one torus and the result is of the form

Ostr
LL =

(c
(~n)
LL)abcd
M2

s

(ψ̄aLγ
µψbL)(ψ̄cLγ

µψdL), (28)

with the following dependence of the coefficient

(cstrLL)abcd ∼ e
− A

2πL2
s

∑

i

(U†
L)ai(UL)(i+1)b(U

†
L)c(i+1)(UL)(i+2)d, (29)

where A is the area of the corresponding parallelogram (which is∼ (4π2R2
c)/3)

and Ls = 1/Ms is the string scale. Already in this chirality preserving
interaction we observe several differences with respect to the field theory
case. The first one is that there are FCNC even in the case of Yukawa
couplings aligned with gauge couplings (i.e. U = 1). Secondly, the ex-
ponential dependence on the ratio of string and compactification scales is
opposite to that coming from the KK modes, the larger the ratio Rc/LS ,
(i.e. the larger the area in string units) the stronger the suppression. No-
tice however that it is still necessary to have different generations living
at separate points in order to have FCNC. The opposite dependence of
the KK and string instanton contributions on the ratio of compactifica-
tion and string scales allows us to put a lower bound on the string scale,
independently of this ratio. An estimation of this bound [35], using the
KK contribution to |ǫK | and the string instanton contribution to τ → eeµ
and relatively small mixing angles, leads to the bound Ms & 100 TeV as
shown in Fig. 14.

The chirality changing four-fermion interactions, connecting two left-
handed and two right-handed fermions, is a bit more involved but far
more interesting. We will give the final expressions here and outline the
reasons for the new features without entering into the intricacies of the
calculation. The main new feature is the absence of L-R factorization
in the amplitude (except in some limiting cases). The reason is that
now in general there are non-zero contributions in more than one 2-torus
and the classical action is no longer the sum of the areas of each of the
quadrangles (incidentally, this does not happen for the Yukawa couplings
because in the three-point amplitude we can fix all three vertices using
SL(2, R) invariance whereas in the four-point one we have to integrate
over the position of the fourth vertex, see [54].) As we shall see soon, this
introduces enough flavour violation to generate, through loop corrections,
a semi-realistic pattern of fermion masses and mixing angles.

Another nice feature with possible important phenomenological impli-
cations is related to Higgs-mediated like processes. Let us consider the
situation displayed in Fig. 15. The Higgs mediated process can be ob-
tained as the field theory limit of a string propagating from the vertices
2 and 3 down to the Higgs vertex and then back to the vertices 1 and 4.
This contribution goes, in the t channel, like

e−A23H/2πL2
se−A14H/2πL2

s

t−M2
H

∼ Y23Y14

t−M2
H

, (30)
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Figure 14: Bound on the string scale as a function of the ratio Lc/Ls from the
KK contribution to |ǫK | and the string instanton contribution to τ → eeµ. A
global bound Ms & 100 TeV is found.

where MH is the Higgs mass. On the other hand there is another, purely
stringy contribution (not expected on field theory grounds) that can be
very much enhanced for a low string scale and corresponds to a string
sweeping out the area of the quadrangle between the four vertices 1,2,3,4
without going through the Higgs vertex (shaded area in the Figure). In
this case if all the flavour dynamics happens on a single torus the ampli-
tude goes as

e−A1234/2πL2
s

M2
s

∼ Y23/Y14

M2
s

. (31)

If the flavour dynamics happens in more than one torus the detailed re-
sult depends on the particular configuration due to the non-factorization
property of this four point amplitude alluded to above, but is roughly the
same. A more detailed study is necessary before making any statement
about the phenomenological implications of this property but it seems
that a general feature of models with intersecting branes is the presence
of Higgs-like processes enhanced (as opposite to the usual expected sup-
pression) by light Yukawas.

Let us now concentrate on the relevant amplitude for the generation
of fermion masses and mixing angles. In particular we will consider the
quark sector and are interested on the (q̄aLqbR)(q̄cRqdL) amplitude. The
full expressions are intricate and do not admit a simple analytical form.
In order to give some feeling of what happens we will consider a simplified
case in which the relevant angles are the same on each sub-torus. In this
case the classical action turns out to be [45]

Scl =
1

4πα′

sin πϑ2 sin πϑ3

sin(πϑ2 + πϑ3)

√

∑

m

(vm23 − vm14)
2
∑

n

(vn23 − vn14)
2, (32)
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Figure 15: Higgs vs string instanton mediation of the process (q̄aLqbR)(q̄cRqdL)

where θ2,3 are the (independent) angles at the corresponding intersections
and v23, v14 are the distances between the relevant intersections. From
this expression it is clear that only in the trivial case (when a = d or
b = c) or in the degenerate case (when distances in all sub-tori are equal)
the amplitude ∼ exp(−Scl) factorizes.

We have discussed the different tree-level contributions to the flavour
structure of models with intersecting branes. Let us consider now how
this highly non-trivial structure of flavour violation propagates, through
quantum corrections to the otherwise trivial (at tree level) Yukawa cou-
plings.

5.3 Yukawa couplings at one loop

=

+

Y

ij

a

i

b

j

�C

LR

ijkl

a

l

b

k

Figure 16: One loop threshold correction to Yukawa couplings. The black dot
represents the insertion of a flavour violating four-fermion contact interaction.

Let us recapitulate the main features of the model we are considering.
Tree level Yukawa couplings factorize in left and right parts, leading to a
rank one matrix of the form

Y u
ij = aib

u
j , Y d

ij = aib
d
j . (33)

On the other hand, four-fermion contact interactions violate flavour at tree
level. In particular there is a chirality changing contribution that does not
factorize except at particularly symmetric points. One then expects that
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this non-trivial flavour structure propagates at the quantum level to the
Yukawa couplings as sketched in Fig. 16. The expected one loop value or
the Yukawa couplings is

Yij ∼ aibj + αCLR
ijklalbk + . . . (34)

where we have loosely denoted by α the loop suppression and CLR
ijkl ∼

exp(−Scl) with the classical action similar to the one in Eq. (32).
Note that there is another one loop contribution to the Yukawa cou-

plings mediated by KK gauge bosons that we are neglecting for simplic-
ity 5. This and other, higher loop, corrections would be necessary in
the case that the LR string contribution factorized, the Yukawa coupling
would be in this case still a rank two matrix and therefore those correc-
tions would be essential to give masses to the first generation. In general
this contribution does not factorize though and we can generate the full
fermionic spectrum with just this leading effect. In order to get approxi-
mate analytical expressions we will assume that there is a small deviation
on CLR from factorization,

CLR
ijklalbk = cidj + ǫC̃LR

ij , (35)

where C̃LR is a general matrix and ǫ is a small parameter. The full Yukawa
matrix can then be written, at one loop order, as

Y u,d
ij = aib

u,d
j + αcid

u,d
j + αǫC̃u,dLR

ij . (36)

This matrix can be perturbatively diagonalized by the following unitary
matrices,

Lu,d = L0













1−
(

µ
u,d
12

µ
u,d
1

)2

ǫ2
µ
u,d
12

µ
u,d
1

ǫ αǫ
µ
u,d
13

|a||bu,d|

−µ
u,d
12

µ
u,d
1

ǫ 1−
(

µ
u,d
12

µ
u,d
1

)2

ǫ2 α
µ
u,d
2

|a||bu,d|

αǫ
µ
u,d
12 µ

u,d
2 /µ

u,d
1 −µ

u,d
13

|a||bu,d|
−α µ

u,d
2

|a||bu,d|
1













, (37)

and a similar rotation for the right handed fields. The order one rotation
reads

L0 =
( ~a ∧ ~c
|~a ∧ ~c| ,

(~a · ~c)~a− a2~c

|(~a · ~c)~a− a2~c| ,
~a

|a|
)

, (38)

and the resulting mass eigenstates are, to leading order,

Mu,d =
vu,d√

2





αǫµu,d
11

αµu,d
1

|a||bu,d|



 , (39)

where we have included the vev of the up or down Higgs, related by
tan β. Finally, the (12), (13) and (23) entries of the CKM miximg matrix,

5It is indeed expected to give a small correction given the fact that, in order to have a
large enough top Yukawa, the string scale has to be close to the compactification scale and
therefore the string suppression of KK couplings is very effective.
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V CKM = Lu †Ld, are

V CKM
12 =ǫ

[µd
12

µd
1

− µu
12

µu
1

]

,

V CKM
13 =αǫ

1

|a|
[µu

12µ
u
2 /µ

u
1 − µu

13

|bu| − µu
12µ

d
2/µ

u
1 − µd

13

|bd|
]

V CKM
23 =α

1

|a|
[ µd

2

|bd| −
µu
2

|bu|
]

.

The different coefficients in the previous equations are

µu,d
1 =

|~a ∧ ~c||~bu,d ∧ ~du,d|
|~a||~bu,d|

, µu,d
2 = −|~a ∧ ~c|(~bu,d · ~du,d)

|~a||~bu,d|
, (40)

and
µu,d
ij = (L†

0C̃
LRR0)ij , (41)

all expected to be order one. The hierarchical pattern of quark masses
and mixing angles found in nature [55]

mu ∼ 3× 10−3 GeV, mc ∼ 1.2 Gev, mt ∼ 174 GeV,

md ∼ 7× 10−3 GeV, ms ∼ 0.12 Gev, mb ∼ 4.2 GeV, (42)

V12 ∼ 0.22, V13 ∼ 0.0035, V23 ∼ 0.04,

can be explained by a hierarchy in the expansion coefficients, α and ǫ. In
fact reasonable values for all experimental data in Eq. (42), up to order
one coefficients, can be obtained using,

α ∼ 10−2, ǫ ∼ 0.1, (43)

but for the up quark for which some amount of cancelation seems neces-
sary.

5.4 Experimental bounds on the string scale

Once we have developed a semi-realistic theory of flavour in a concrete
model with intersecting branes we can estimate the contribution to flavour
violating processes (such as rare decays, meson oscillations, etc.) and
extract from them stringent experimental bounds on the string scale for
these models. Although a definite pattern for the fermion spectrum along
the lines outline above has not yet been fully developed, estimates using
the one and two loops KK contribution to the Yukawa couplings [56], leads
to the bounds on the string scale shown in Table 2.

In this table CP conserving quark observables are considered in the
upper left side. In the lower left side, we include quark CP violating ob-
servables whereas the right side is devoted to semileptonic observables.
The bounds should be taken with caution. First, a fully realistic example
of fermion masses and mixing angles generation along the lines above has
not been produced yet and the detailed value of the FCNC present in
the model depends as we saw on the rotation matrices and therefore on
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Quark sector Semileptonic Observables
Observable Ms & (TeV) Observable Ms & (TeV)

∆mK 4000 µ− e conversion 2700
∆mBd

1300 K → µµ 80
∆mBs

500 K → πµµ 200
∆mD 2000 Supernovi 10

|ǫK | 104

Hg EDM 10

Table 2: Bounds on the string scale from different observables in the quark
(left) and leptonic (right) sectors. The observables in the upper part are CP
preserving while the ones in the lower part of the table are CP violating.

the Yukawa couplings 6. Second, in the estimates of Ref. [56], only the
quark sector was considered, and CP violation was neglected. This means
that the very stringent bounds should be taken as estimates of the order
of magnitude of the result in a more realistic calculation, and are more
precise in the CP conserving quark sector than in the rest. Nevertheless
it is clear that the bounds are so constraining that it does not seem fea-
sible to have models of intersecting branes with a very low string scale.
Equivalently we can say that flavour observables are probing string scales
of the order of Ms & 103−4 TeV.

These bounds have been obtained for a very particular intersecting
brane model. The presence of FCNC is however quite general in these
models (unless we require all three families to live at the same intersec-
tion in which case we loose some of the nice features of these models such
as family replication of generations or hierarchical Yukawa couplings) and
although model dependent, it is natural to expect a bound on the string
scale of the same order of magnitude for a wide variety of models with
branes intersecting at non-trivial angles, because of the different origin
and moduli dependence of the various sources of flavour violation to-
gether with the fact that flavour-violating observables are so restricted
experimentally. Therefore we seem to be forced back to high string scales
solely on experimental grounds. A great deal of effort has been dedicated
to the study of realistic supersymmetric models (in order to protect the
hierarchy of scales) with a high string scale, of the order of the Planck or
GUT scales [23, 31] and it seems likely that it is to these that we must
now turn.

6 Conclusions

In this paper we have described in some detail the way in which string
theory has been able to accommodate the most esoteric of theoretical

6In Ref. [36] a detailed account of the fermionic spectrum is provided. The authors however
consider an intermediate string scale and therefore do not bother about FCNC which would
be anyway irrelevant in their case.
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ideas, that of large extra dimensions or low fundamental scales. Here the
approach we have taken is to show how string theory has developed along-
side the more generic ideas to do with extra dimensions that have been
proposed in a purely field theoretic set-up. Beginning with the Horava-
Witten set-up which incorporated a fundamental scale of ∼ 1016 GeV, the
construction of models involving D-branes has allowed set-ups first with
an intermediate fundamental scale of ∼ 1011 GeV and later with funda-
mental scales of ∼ 1 TeV. The latter realized in string theory the ideas
put forward in ref. [1] for solving the hierarchy problem. The large Planck
scale was in this scenario put down to the large volume of some compacti-
fied space rather than any fundamental hierarchies of scale. The question
of fine-tuning could then be shifted onto the various moduli fields that
describe how large the compact space is, where (it is hoped) one might be
able to exercise more control.

There are a number of aspects that we have touched on and that we
would like to reemphasize here. The most important we feel is the fact that
the stringy constructions have had to conform to the strictures imposed
upon them by the various dualities inherent in string theory. This makes
them far more constrained than might have been expected and certainly
more constrained than the field theory equivalents. For example we have
shown how flavour changing (FCNC) experiments in fact rule out the
low scale string models and actually probe models with string scales all
the way up to 107 GeV. In a sense this makes the string approach more
honest. In a field theoretic set-up it often seems to be possible to avoid
experimental bounds by retiring to some corner of parameter space. In
string theory such corners tend not to exist. A good example of this is the
FCNC effect of Kaluza-Klein modes that were considered. In field theory
one can reduce the size of the relevant dimensions to make the modes
heavy and turn this source of FCNC off. In string theory however this
merely introduces compensating FCNCs due to string instanton effects.

One further aspect we touched upon in the context of the intermedi-
ate models, is that stringy set-ups may introduce a reasonable explanation
for some parameters that are apparently fine-tuned (i.e. unnatural in the
sense of t’Hooft). The particular example we chose was the phenomenon
of Kinetic-Mixing leading to just the right mediation of D-term super-
symmetry breaking. Although this is encouraging, we think that one has
to be rather careful in the interpretation; there is no such thing as a free
lunch. What really happened in this case is that the fine-tuning of the
Kinetic-Mixing was tied to the volume suppression of the gravitational
interactions. In the end the number of fine-tunings is reduced but one is
still left with the problem of fine-tuning the large volume. This aspect
of large extra-dimensions and low fundamental scales has to wait until a
better understanding of the behaviour of moduli fields and in particular
supersymmetry breaking.
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