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Abstract
QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure
calculations and materials modeling, based on density-functional theory, plane waves, and
pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym
ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation,
and Optimization. It is freely available to researchers around the world under the terms of the
GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured
electronic-structure codes that have been developed and tested by some of the original authors
of novel electronic-structure algorithms and applied in the last twenty years by some of the
leading materials modeling groups worldwide. Innovation and efficiency are still its main focus,
with special attention paid to massively parallel architectures, and a great effort being devoted
to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent
and interoperable codes in the spirit of an open-source project, where researchers active in the
field of electronic-structure calculations are encouraged to participate in the project by
contributing their own codes or by implementing their own ideas into existing codes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The combination of methodological and algorithmic in-
novations and ever-increasing computer power is deliver-
ing a simulation revolution in materials modeling, starting
from the nanoscale up to bulk materials and devices [1].
Electronic-structure simulations based on density-functional
theory (DFT) [2–4] have been instrumental to this revolution,
and their application has now spread outside a restricted
core of researchers in condensed-matter theory and quantum
chemistry, involving a vast community of end users with
very diverse scientific backgrounds and research interests.
Sustaining this revolution and extending its beneficial effects
to the many fields of science and technology that can capitalize
on it represents a multifold challenge. In our view it is also a
most urgent, fascinating and fruitful endeavor, able to deliver
new forms for scientific exploration and discovery, where a
very complex infrastructure—made of software rather than
hardware—can be made available to any researcher, and whose
capabilities continue to increase thanks to the methodological
innovations and computing power scalability alluded to above.

Over the past few decades, innovation in materials
simulation and modeling has resulted from the concerted
efforts of many individuals and groups worldwide, often
of small size. Their success has been made possible by
a combination of competences, ranging from the ability to
address meaningful and challenging problems, to a rigorous
insight into theoretical methods, ending with a marked
sensibility to matters of numerical accuracy and algorithmic
efficiency. The readiness to implement new algorithms that
utilize novel ideas requires total control over the software being
used—for this reason, the physics community has long relied
on in-house computer codes to develop and implement new
ideas and algorithms. Transitioning these development codes
to production tools is nevertheless essential, both to extensively
validate new methods and to speed up their acceptance by the
scientific community. At the same time, the dissemination
of codes has to be substantial, to justify the learning efforts

of PhD students and young postdocs who would soon be
confronted with the necessity of deploying their competences
in different research groups. In order to sustain innovation
in numerical simulation, we believe there should be little, if
any, distinction between development and production codes;
computer codes should be easy to maintain, to understand
by different generations of young researchers, to modify and
extend; they should be easy to use by the layman, as well as
general and flexible enough to be enticing for a vast and diverse
community of end users. One easily understands that such
conflicting requirements can only be tempered, if anything,
within organized and modular software projects.

Software modularity also comes as a necessity when
complex problems in complex materials need to be tackled
with an array of different methods and techniques. Multiscale
approaches, in particular, strive to combine methods with
different accuracy and scope to describe different parts of a
complex system, or phenomena occurring at different time
and/or length scales. Such approaches will require software
packages that can perform different kinds of computations on
different aspects of the same problem and/or different portions
of the same system, and that allow for interoperability or joint
usage of the different modules. Different packages should,
at the very least, share the same input/output data formats;
ideally they should also share a number of mathematical and
application libraries, as well as the internal representation of
some of the data structures on which they operate. Individual
researchers or research groups find it increasingly difficult to
meet all these requirements and to continue to develop and
maintain in-house software projects of increasing complexity.
Thus, different and possibly collaborative solutions should be
sought.

A successful example comes from the software for
simulations in quantum chemistry, that has often (but not
always) evolved towards commercialization: the development
and maintenance of most well-known packages is devolved
to non-profit [5–8] or commercial [9–12] companies. The
software is released (for purchase) under some proprietary
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license that may impose several restrictions to the availability
of sources (computer code in a high-level language) and
to what can be done with the software. This model has
worked well, and is also used by some of the leading
development groups in the condensed-matter electronic-
structure community [13, 14], while some proprietary
projects allow for some free academic usage of their
products [14–19]. A commercial endeavor also brings the
distinctive advantage of a professional approach to software
development, maintenance, documentation, and support.

We believe however that a more interesting and fruitful
alternative can be pursued, and one that is closer to the spirit
of science and scientific endeavor, modeled on the experience
of the open-source software community. Under this model,
a large community of users has full access to the source
code and the development material, under the coordination
of a smaller group of core developers. In the long term,
and in the absence of entrenched monopolies, this strategy
could be more effective in providing good software solutions
and in nurturing a community engaged in providing those
solutions, as compared to the proprietary software strategy.
In the case of software for scientific usage, such an approach
has the additional, and by no means minor, advantage to be
in line with the tradition and best practice of science, that
require reproducibility of other people’s results, and where
collaboration is no less important than competition.

In this paper we will shortly describe our answer
to the above-mentioned problems, as embodied in our
QUANTUM ESPRESSO project (indeed, ESPRESSO stands for
opEn Source Package for Research in Electronic Structure,
Simulation, and Optimization). First, in section 2, we describe
the guiding lines of our effort. In section 3, we give an
overview of the current capabilities of QUANTUM ESPRESSO.
In section 4, we provide a short description of each software
component presently distributed within QUANTUM ESPRESSO.
In section 5 we give an overview of the parallelization
strategies followed and implemented in QUANTUM ESPRESSO.
Finally, section 6 describes current developments and offers a
perspective outlook. The appendix sections discuss some of
the more specific technical details of the algorithms used, that
have not been documented elsewhere.

2. The QUANTUM ESPRESSO project

QUANTUM ESPRESSO is an integrated suite of computer codes
for electronic-structure calculations and materials modeling
based on density-functional theory, plane waves basis sets
and pseudopotentials to represent electron–ion interactions.
QUANTUM ESPRESSO is free, open-source software distributed
under the terms of the GNU General Public License
(GPL) [20].

The two main goals of this project are to foster
methodological innovation in the field of electronic-structure
simulations and to provide a wide and diverse community
of end users with highly efficient, robust, and user-
friendly software implementing the most recent innovations
in this field. Other open-source projects [21–25] exist,

besides QUANTUM ESPRESSO, that address electronic-
structure calculations and various materials simulation
techniques based on them. Unlike some of these projects,
QUANTUM ESPRESSO does not aim at providing a single
monolithic code able to perform several different tasks by
specifying different input data to the same executable. Our
general philosophy is rather that of an open distribution,
i.e. an integrated suite of codes designed to be interoperable,
much in the spirit of a Linux distribution, and thus built
around a number of core components designed and maintained
by a small group of core developers, plus a number of
auxiliary/complementary codes designed, implemented, and
maintained by members of a wider community of users. The
distribution can even be redundant, with different applications
addressing the same problem in different ways; at the end,
the sole requirements that QUANTUM ESPRESSO components
must fulfil are that: (i) they are distributed under the same
GPL license agreement [20] as the other QUANTUM ESPRESSO
components; (ii) they are fully interoperable with the other
components. Of course, they need to be scientifically
sound, verified and validated. External contributors are
encouraged to join the QUANTUM ESPRESSO project, if they
wish, while maintaining their own individual distribution
and advertisement mode for their software (for instance,
by maintaining individual web sites with their own brand
names [154]). To facilitate this, a web service called
qe-forge [27], described in the next subsection, has been
recently put in place.

Interoperability of different components within QUANTUM

ESPRESSO is granted by the use of common formats for the
input, output, and work files. In addition, external contributors
are encouraged, but not by any means forced, to use the
many numerical and application libraries on which the core
components are built. Of course, this general philosophy must
be seen more as an objective to which a very complex software
project tends, rather than a starting point.

One of the main concerns that motivated the birth of
the QUANTUM ESPRESSO project is high performance, both
in serial and in parallel execution. High serial performance
across different architectures is achieved by the systematic use
of standardized mathematical libraries (BLAS, LAPACK [28],
and FFTW [29]) for which highly optimized implementations
exist on many platforms; when proprietary optimizations
of these libraries are not available, the user can compile
the library sources distributed with QUANTUM ESPRESSO.
Optimal performance in parallel execution is achieved through
the design of several parallelization levels, using sophisticated
communication algorithms, whose implementation often does
not need to concern the developer, being embedded and
concealed in appropriate software layers. As a result the
performance of the key engines, PWscf (section 4.1) and
CP (section 4.2), may scale efficiently on massively parallel
computers up to thousands of processors.

The distribution is organized into a basic set of modules,
libraries, installation utilities, plus a number of directories,
each containing one or more executables, performing specific
tasks. The communications between the different executables
take place via data files. We think that this kind of approach
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lowers the learning barrier for those who wish to contribute to
the project. The codes distributed with QUANTUM ESPRESSO,
including many auxiliary codes for the post-processing of the
data generated by the simulations, are easy to install and
to use. The GNU configure and make utilities ensure
a straightforward installation on many different machines.
Applications are run through text input files based on Fortran
namelists, that require the users to specify only an essential,
usually small, subset of the many control variables available;
a specialized graphical user interface (GUI), that is provided
with the distribution, facilitates this task for most component
programs. It is foreseen that in the near future the design of
special APIs (application programming interfaces) will make it
easier to glue different components of the distribution together
and with external applications, as well as to interface them to
other, custom-tailored, GUIs and/or scripting interfaces.

The QUANTUM ESPRESSO distribution is written, mostly,
in Fortran-95, with some parts in C or in Fortran-77. Fortran-
95 offers the possibility to introduce advanced programming
techniques without sacrificing performance. Moreover Fortran
is still the language of choice for high-performance computing
and it allows for easy integration of legacy codes written in this
language. A single source tree is used for all architectures, with
C preprocessor options selecting a small subset of architecture-
dependent code. Parallelization is achieved using the message-
passing paradigm and calls to standard MPI (message-passing
interface) [30] libraries. Most calls are hidden in a few routines
that act as an intermediate layer, accomplishing e.g. the
tasks of summing a distributed quantity over processors,
of collecting distributed arrays or distributing them across
processors, and of performing parallel three-dimensional fast
Fourier transforms (FFT). This allows the straightforward and
transparent development of new modules and functionalities
that preserve the efficient parallelization backbone of the
codes.

2.1. QE-forge

The ambition of the QUANTUM ESPRESSO project is not
limited to providing highly efficient and user-friendly software
for large-scale electronic-structure calculations and materials
modeling. QUANTUM ESPRESSO aims at promoting active
cooperation among a vast and diverse community of scientists
developing new methods and algorithms in electronic-structure
theory and of end users interested in their application to the
numerical simulation of materials and devices.

As mentioned, the main source of inspiration for the model
we want to promote is the successful cooperative experience of
the GNU/Linux developers’ and users’ community. One of the
main outcomes of this community has been the incorporation
within the GNU/Linux operating system distributions of third-
party software components, which, while being developed and
maintained by autonomous, and often very small, groups of
users, are put at the disposal of the entire community under
the terms of the GPL. The community, in turn, provides
positive feedback and extensive validation by benchmarking
new developments, reporting bugs, and requesting new
features. These developments have largely benefited from

the SourceForge code repository and software development
service [31], or by other similar services, such as RubyForge,
Tigris.org, BountySource, BerliOS, JavaForge, and GNU
Savannah.

Inspired by this model, the QUANTUM ESPRESSO
developers’ and users’ community has set up its own web
portal, named qe-forge [27]. The goal of qe-forge
is to complement the traditional web sites of individual
scientific software projects, which are passive instruments of
information retrieval, with a dynamical space for active content
creation and sharing. Its aim is to foster and simplify the
coordination and integration of the programming efforts of
heterogeneous groups and to ease the dissemination of the
software tools thus obtained.

qe-forge provides, through a user-friendly web in-
terface, an integrated development environment, whereby
researchers can freely upload, manage and maintain their own
software, while retaining full control over it, including the right
of not releasing it. The services so far available include source-
code management software (CVS or SVN repository), mailing
lists, public forums, bug tracking facilities, up/down-load
space, and wiki pages for projects’ documentation. qe-forge
is expected to be the main tool by which QUANTUM ESPRESSO
end users and external contributors can maintain QUANTUM

ESPRESSO-related projects and make them available to the
community.

2.2. Educational usage of QUANTUM ESPRESSO

Training on advanced simulation techniques using the
QUANTUM ESPRESSO distribution is regularly offered at
SISSA to first-year graduate students within the electronic-
structure course. The scope of this course is not limited to
the opportunities that modern simulation techniques based on
electronic-structure theory offer to molecular and materials
modeling. Emphasis is put onto the skills that are necessary
to turn new ideas into new algorithms and onto the methods
that are needed to validate the implementation and application
of computer simulation methods. Based on this experience,
the QUANTUM ESPRESSO developers’ group offers, on a
regular basis, training courses to graduate students and young
researchers worldwide, also in collaboration with the Abdus
Salam International Centre for Theoretical Physics, which
operates under the aegis of UNESCO and IAEA agencies of
the UNO.

The QUANTUM ESPRESSO distribution is used not only
for graduate, but also for undergraduate training. At MIT,
for example, it is one of the teaching tools in the class
Introduction to Modeling and Simulations—an institute-wide
course offered to undergraduates from the School of Science
and the School of Engineering. The challenge here is to
provide students of different backgrounds with an overview
of numerical simulations methods to study properties of real
materials. For many undergraduates, this represents the first
experience of computers used as scientific tools. To facilitate
the access and use of QUANTUM ESPRESSO, a user-friendly
web interface has been developed at MIT, based on the
GenePattern portal, that allows direct access to the code, thus

4



J. Phys.: Condens. Matter 21 (2009) 395502 P Giannozzi et al

Figure 1. Snapshot of the web interface used for undergraduate teaching at MIT. The software has been developed at the MIT’s Office of
Educational Innovation and Technology.

removing the need to use a Unix/Linux environment or the
details of the job queuing and submission procedure. The user
utilizes a web browser (see figure 1) to build input files and
view the outputs of simulations, and to perform calculations
from wherever Internet access is available. The calculations
run on dedicated computer clusters where the code has been
previously installed and tested.

Using a web interface to easily access computational
resources and share them among different users naturally
points to the concept of cloud computing, and the previous
model was tested at MIT in Spring 2009, wholly based on
a cluster of virtual machines on Amazon’s Elastic Compute
Cloud (EC2) web service. Our experience shows that,
when compared to the cost of purchasing, maintaining
and administering computer clusters, the use of web-based
computational resources becomes a very appealing and
affordable option. It is particularly suited for classroom
instruction, where advanced computational performance is not
required, and it allows for easy transferability of this resource
across universities.

3. Short description of QUANTUM ESPRESSO

QUANTUM ESPRESSO implements a variety of methods and
algorithms aimed at a chemically realistic modeling of
materials from the nanoscale upwards, based on the solution
of the density-functional theory (DFT) [2, 3] problem, using a
plane waves (PWs) basis set and pseudopotentials (PPs) [32]
to represent electron–ion interactions.

The codes are constructed around the use of periodic
boundary conditions, which allows for a straightforward
treatment of infinite crystalline systems, and an efficient
convergence to the thermodynamic limit for aperiodic but
extended systems, such as liquids or amorphous materials.

Finite systems are also treated using supercells; if required,
open-boundary conditions can be used through the use of the
density-countercharge method [33]. QUANTUM ESPRESSO
can thus be used for any crystal structure or supercell, and
for metals as well as for insulators. The atomic cores
can be described by separable [34] norm-conserving (NC)
PPs [35], ultrasoft (US) PPs [36], or by projector-augmented
wave (PAW) sets [37]. Many different exchange–correlation
functionals are available in the framework of the local-density
(LDA) or generalized-gradient approximation (GGA) [38],
plus advanced functionals like Hubbard U corrections and
a few meta-GGA [39] and hybrid functionals [40–42]. The
latter is an area of very active development, and more details
on the implementation of hybrid functionals and related Fock
exchange techniques are given in appendix A.5.

The basic computations/simulations that can be performed
include:

• calculation of the Kohn–Sham (KS) orbitals and
energies [43] for isolated or extended/periodic systems,
and of their ground-state energies;

• complete structural optimizations of the microscopic
(atomic coordinates) and macroscopic (unit cell) degrees
of freedom, using Hellmann–Feynman forces [44, 45] and
stresses [46];

• ground state of magnetic or spin-polarized systems,
including spin–orbit coupling [47] and noncollinear
magnetism [48, 49];

• ab initio molecular dynamics (MD), using either
the Car–Parrinello Lagrangian [50] or the Hellmann–
Feynman forces calculated on the Born–Oppenheimer
(BO) surface [51], in a variety of thermodynamical
ensembles, including N PT variable-cell [52, 53] MD;

• density-functional perturbation theory (DFPT) [54–56], to
calculate second and third derivatives of the total energy at
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any arbitrary wavelength, providing phonon dispersions,
electron–phonon and phonon–phonon interactions, and
static response functions (dielectric tensors, Born effective
charges, infrared spectra, Raman tensors);

• location of saddle points and transition states via
transition-path optimization using the nudged elastic band
(NEB) method [57–59];

• ballistic conductance within the Landauer–Büttiker theory
using the scattering approach [60];

• generation of maximally localized Wannier functions
[61, 62] and related quantities;

• calculation of nuclear magnetic resonance (NMR)
and electronic paramagnetic resonance (EPR) parame-
ters [63, 64];

• calculation of K-edge x-ray absorption spectra [65].

Other more advanced or specialized capabilities are described
in the next sections, while ongoing projects (e.g. time-
dependent DFT and many-body perturbation theory) are
mentioned in section 6. Selected applications were described
in [66]. Several utilities for data post-processing and
interfacing to advanced graphic applications are available,
allowing e.g. to calculate scanning tunneling microscopy
(STM) images [67], the electron localization function
(ELF) [68], Löwdin charges [69], the density of states (DOS),
and planar [70] or spherical averages of the charge and spin
densities and potentials.

3.1. Data file format

The interoperability of different software components within
a complex project such as QUANTUM ESPRESSO relies on
the careful design of file formats for data exchange. A
rational and open approach to data file formats is also essential
for interfacing applications within QUANTUM ESPRESSO with
third-party applications, and more generally to make the results
of lengthy and expensive computer simulations accessible to,
and reproducible by, the scientific community at large. The
need for data file formats that make data exchange easier than
it is now is starting to be widely appreciated in the electronic-
structure community. This problem has many aspects and
likely no simple, ‘one-size-fits-all’, solution. Data files should
ideally be

• extensible: one should be able to add some more
information to a file without breaking all codes that read
that file;

• self-documenting: it should be possible to understand the
contents of a file without too much effort;

• efficient: with data size in the order of GBytes for large-
scale calculations, slow or wasteful I/O should be avoided.

The current trend in the electronic-structure community seems
to be the adoption of one of the following approaches:

• structured file formats, notably Hierarchical Data For-
mat (HDF) [71] and network Common Data Form
(netCDF) [72], that have been widely used for years in
other communities;

• file formats based on the Extensible Markup Language
(XML) [73].

It is unlikely that a common, standardized data format will
ever prevail in our community. We feel that we should focus,
rather than on standardization, on an approach that allows an
easy design and usage of simple and reliable converters among
different data formats. Prompted by these considerations,
QUANTUM ESPRESSO developers have opted for a simple
solution that tries to combine the advantages of both the above-
mentioned approaches. A single file containing all the data
of a simulation is replaced by a data directory, containing
several files and subdirectories, much in the same way as
it is done in the Mac OS X operating system. The ‘head’
file contains data written with ordinary Fortran formatted I/O,
identified by XML tags. Only data of small size, such as atomic
positions, parameters used in the calculation, one-electron and
total energies, are written in the head file. Data of potentially
large size, such as PW coefficients of KS orbitals, charge
density, and potentials, are present as links to separate files,
written using unformatted Fortran I/O. Data for each k-point
are written to a separate subdirectory. A lightweight library
called iotk, standing for Input/Output ToolKit [74], is used to
read and write the data directory.

Another problem affecting interoperability of PW–PP
codes is the availability of data files containing atomic PPs—
one of the basic ingredients of the calculation. There are
many different types of PPs, many different codes generating
PPs (see e.g. [75–77]), each one with its own format. Again,
the choice has fallen on a simple solution that makes it
easy to write converters from and to the format used by
QUANTUM ESPRESSO. Each atomic PP is contained in a
formatted file (efficiency is not an issue here), described by
an XML-like syntax. The resulting format has been named
Unified Pseudopotential File (UPF). Several converters from
other formats to the UPF format are available in QUANTUM

ESPRESSO.

4. QUANTUM ESPRESSO packages

The complete QUANTUM ESPRESSO distribution is rather
large. The current 4.1 version includes about 310 000 lines
of Fortran-90 code, 1000 lines of Fortran-77 code, 1000 lines
of C code, 30000 lines of Tcl code, plus parts of external
libraries such as FFTW, BLAS, LAPACK and the external
toolkit iotk [74]. In addition, there are approx. 10 000 lines
of specific documentation (not counting different formats),
more than 100 different examples and more than 100 tests of
the different functionalities. Overall the complete distribution
includes more than 3000 files, organized into 200 directories,
and takes 22 Mb in compressed format.

With such a sizable code basis, modularization becomes
necessary. QUANTUM ESPRESSO is presently divided into
several executables, performing different types of calculations,
although some of them have overlapping functionalities.
Typically there is a single set of functions/subroutines or a
single Fortran 90 module that performs each specific task
(e.g. matrix diagonalizations, or potential updates), but there
are still important exceptions to this rule, reflecting the
different origin and different styles of the original components.
QUANTUM ESPRESSO has in fact been built out of the
merging and re-engineering of different packages, that had
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been previously developed independently. In the following, the
main components are briefly described.

4.1. PWscf

PWscf implements an iterative approach to reach self-
consistency, using at each step iterative diagonalization tech-
niques, in the framework of the plane-wave pseudopotential
method. An early version of PWscf is described in [78].

Both separable NC PPs and US PPs are implemented;
recently, also the projector-augmented wave method [37]
has been added, largely following the lines of [79] for its
implementation. In the case of US PPs, the electronic
wavefunctions can be made smoother at the price of having
to augment their square modulus with additional contributions
to recover the actual physical charge densities. For this reason,
the charge density has much finer spatial variations around the
nuclei than the square of the wavefunctions, and requires a
larger energy cutoff for its plane-wave expansion (typically,
6–12 times larger; for a NC-PP, a factor of 4 would be
mathematically sufficient). Hence, different real-space Fourier
grids are introduced—a ‘soft’ one to represent the square of
electronic wavefunctions, and a ‘hard’ one to represent the
charge density [80, 81]. The augmentation terms can be
added either in reciprocal space (using an exact but expensive
algorithm) or directly in real space (using an approximate
but faster algorithm that exploits the local character of the
augmentation charges).

PWscf can use the well established LDA and GGA
exchange–correlation functionals, including spin-polarization
within the scheme proposed in [82] and can treat noncollinear
magnetism [48, 49] as e.g. induced by relativistic effects (spin–
orbit interactions) [83, 84] or by complex magnetic interactions
(e.g. in the presence of frustration). DFT + Hubbard U
calculations [85] are implemented for a simplified (‘no-
J ’) rotationally invariant form [86] of the Hubbard term.
Other advanced functionals include TPSS meta-GGA [39],
functionals with finite-size corrections [87], and the PBE0 [40]
and B3LYP [41, 42] hybrids.

Self-consistency is achieved via the modified Broyden
method of [88], with some further refinements that are detailed
in appendix A.1. The sampling of the Brillouin zone (BZ) can
be performed using either special [89, 90] k-points provided
in input or those automatically calculated starting from a
uniform grid. Crystal symmetries are automatically detected
and exploited to reduce computational costs, by restricting
the sampling of the BZ to the irreducible wedge alone (see
appendix A.4). When only the � point (k = 0) is used,
advantage is taken of the real character of the KS orbitals,
allowing one to store just half of the Fourier components.
BZ integrations in metallic systems can be performed using
a variety of smearing/broadening techniques, such as Fermi–
Dirac, Gaussian, Methfessel–Paxton [91], and Marzari–
Vanderbilt cold smearing [92]. The tetrahedron method [93] is
also implemented. Finite-temperature effects on the electronic
properties can be easily accounted for by using the Fermi–
Dirac smearing as a practical way of implementing the Mermin
finite-temperature density-functional approach [94].

Structural optimizations are performed using the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm [95–97] or
damped dynamics; these can involve both the internal,
microscopic degrees of freedom (i.e. the atomic coordinates)
and/or the macroscopic ones (shape and size of the unit
cell). The calculation of minimum-energy paths, activation
energies, and transition states uses the nudged elastic band
(NEB) method [57]. Potential energy surfaces as a function of
suitably chosen collective variables can be studied using Laio–
Parrinello metadynamics [98].

Microcanonical (NVE) MD is performed on the BO
surface, i.e. achieving electron self-consistency at each time
step, using the Verlet algorithm [99]. Canonical (NV T )
dynamics can be performed using velocity rescaling, or
Anderson’s or Berendsen’s thermostats [100]. Constant-
pressure (N PT ) MD is performed by adding additional
degrees of freedom for the cell size and volume, using either
the Parrinello–Rahman Lagrangian [101] or the so-called
invariant Lagrangian of Wentzcovitch [53].

The effects of finite macroscopic electric fields on the
electronic structure of the ground state can be accounted
for either through the method of [102, 103] based on the
Berry phase, or (for slab geometries only) through a sawtooth
external potential [104, 105]. A quantum fragment can be
embedded in a complex electrostatic environment that includes
a model solvent [106] and a counterion distribution [107], as is
typical of electrochemical systems.

4.2. CP

The CP code is the specialized module performing Car–
Parrinello ab initio MD. CP can use both NC PPs [108] and
US PPs [80, 109]. In the latter case, the electron density
is augmented through a Fourier interpolation scheme in real
space (‘box grid’) [80, 81] that is particularly efficient for
large-scale calculations. CP implements the same functionals
as PWscf, with the exception of hybrid functionals; a simplified
one-electron self-interaction correction (SIC) [110] is also
available. The Car–Parrinello Lagrangian can be augmented
with Hubbard U corrections [111], or Hubbard-based penalty
functionals to impose arbitrary oxidation states [112].

Since the main applications of CP are for large systems
without translational symmetry (e.g. liquids, amorphous
materials), Brillouin zone sampling is restricted to the �

point of the supercell, allowing for real instead of complex
wavefunctions. Metallic systems can be treated in the
framework of ‘ensemble DFT’ [113].

In the Car–Parrinello algorithm, microcanonical (NVE)
MD is performed on both electronic and nuclear degrees
of freedom, treated on the same footing, using the Verlet
algorithm. The electronic equations of motion are accelerated
through a preconditioning scheme [114]. Constant-pressure
(N PT ) MD is performed using the Parrinello–Rahman
Lagrangian [101] and additional degrees of freedom for
the cell. Nosé–Hoover thermostats [115] and Nosé–Hoover
chains [116] allow simulations to be performed in the different
canonical ensembles.

CP can also be used to directly minimize the electronic
energy functional to self-consistency while keeping the
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nuclei fixed, or to perform structural minimizations of
nuclear positions, using the ‘global minimization’ approaches
of [117, 118], and damped dynamics or conjugate-gradients on
the electronic or ionic degrees of freedom. It can also perform
NEB and metadynamics calculations.

Finite homogeneous electric fields can be accounted for
using the Berry-phase method, adapted to systems with the
� point only [102]. This advanced feature can be used
in combination with MD to obtain the infrared spectra of
liquids [102, 119], the low- and high-frequency dielectric
constants [102, 120] and the coupling factors required for
the calculation of vibrational properties, including infrared,
Raman [121–123], and hyper-Raman [124] spectra.

4.3. PHonon

The PHonon package implements density-functional perturba-
tion theory (DFPT) [54–56] for the calculation of second- and
third-order derivatives of the energy with respect to atomic
displacements and to electric fields. The global minimization
approach [125, 126] is used for the special case of normal
modes in finite (molecular) systems, where no BZ sampling is
required (Gamma code). In the general case a self-consistent
procedure [55] is used, with the distinct advantage that the
response to a perturbation of any arbitrary wavelength can
be calculated with a computational cost that is of the same
order as that of the unperturbed system. Thus, the response
at any wavevector, including very small (long-wavelength)
ones, can be inexpensively calculated. This latter approach,
and the technicalities involved in the calculation of effective
charges and interatomic force constants, are described in detail
in [55, 127] and implemented in the PH code.

Symmetry is fully exploited in order to reduce the amount
of computation. Lattice distortions transforming according to
irreducible representations of small dimensions are generated
first. The charge-density response to these lattice distortions is
then sampled at a number of discrete k-points in the BZ, which
is reduced according to the symmetry of the small group of
the phonon wavevector q. The grid of the q points needed
for the calculation of interatomic force constants reduces
to one wavevector per star: the dynamical matrices at the
other q vectors in the star are generated using the symmetry
operations of the crystal. This approach allows us to speed
up the calculation without the need to store too much data for
symmetrization.

The calculation of second-order derivatives of the energy
works also for US PPs [128, 129] and for all GGA
flavors [130, 131] used in PWscf and in CP. The extension of
PHonon to PAW [132], to noncollinear magnetism and to fully
relativistic US PPs which include spin–orbit coupling [133]
will be available by the time this paper is printed.

Advanced features of the PHonon package include the
calculation of third-order energy derivatives and of electron–
phonon or phonon–phonon interaction coefficients. Electron–
phonon interactions are straightforwardly calculated from
the response of the self-consistent potential to a lattice
distortion. This involves a numerically-sensitive ‘double-
delta’ integration at the Fermi energy, that is performed using
interpolations on a dense k-point grid. Interpolation techniques

based on Wannier functions [134] will considerably speed
up these calculations. The calculation of the anharmonic
force constants from third-order derivatives of the electronic
ground-state energy is described in [135] and is performed
by a separate code called d3. Static Raman coefficients
are calculated using the second-order response approach
of [136, 137]. Both third-order derivatives and Raman-
coefficients calculations are currently implemented only for
NC PPs.

4.4. Atomic

The atomic code performs three different tasks: (i) solution
of the self-consistent all-electron radial KS equations (with a
Coulomb nuclear potential and spherically symmetric charge
density); (ii) generation of NC PPs, US PPs, or PAW data-
sets; (iii) test of the above PPs and data-sets. These three
tasks can be either separately executed or performed in a single
run. Three different all-electron equations are available: (i) the
nonrelativistic radial KS equations, (ii) the scalar relativistic
approximation to the radial Dirac equations [138], (iii) the
radial Dirac-like equations derived within relativistic density-
functional theory [139, 140]. For (i) and (ii) atomic magnetism
is dealt with within the local spin-density approximation,
i.e. assuming an axis of magnetization. The atomic code uses
the same exchange and correlation energy routines of PWscf
and can deal with the same functionals.

The code is able to generate NC PPs directly in separable
form (also with multiple projectors per angular momentum
channel) via the Troullier–Martins [141] or the Rappe–Rabe–
Kaxiras–Joannopoulos [142] pseudization. US PPs can be
generated by a two-step pseudization process, starting from
NC PPs, as described in [143], or using the solutions of
the all-electron equation and pseudizing the augmentation
functions [80]. The latter method is used also for the PAW
data-set generation. The generation of fully relativistic NC and
US PPs including spin–orbit coupling effects is also available.
Converters are available to translate pseudopotentials encoded
in different formats (e.g. according to the Fritz–Haber [75] or
Vanderbilt [76] conventions) into the UPF format adopted by
QUANTUM ESPRESSO.

Transferability tests can be made simultaneously for sev-
eral atomic configurations, with or without spin-polarization,
by solving the nonrelativistic radial KS equations generalized
for separable nonlocal PPs and for the presence of an overlap
matrix.

4.5. PWcond

The PWcond code implements the scattering approach
proposed by Choi and Ihm [60] for the study of coherent
electron transport in atomic-sized nanocontacts within the
Landauer–Büttiker theory. Within this scheme the linear
response ballistic conductance is proportional to the quantum-
mechanical electron transmission at the Fermi energy for
an open quantum system consisting of a scattering region
(e.g., an atomic chain or a molecule with some portions of
left and right leads) connected ideally from both sides to
semi-infinite metallic leads. The transmission is evaluated
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by solving the KS equations, with the boundary conditions
that an electron coming from the left lead and propagating
rightwards gets partially reflected and partially transmitted by
the scattering region. The total transmission is obtained by
summing all transmission probabilities for all the propagating
channels in the left lead. As a by-product of the method,
the PWcond code provides the complex band structure of the
leads, which includes, besides propagating Bloch waves, also
states with complex kz in the direction of transport, describing
wavefunctions exponentially growing or decaying in the z
direction. The original method formulated with NC PPs has
been generalized to US PPs both in the scalar relativistic [144]
and in the fully relativistic forms [145].

4.6. GIPAW

The GIPAW code allows for the calculation of physical
parameters measured in (i) nuclear magnetic resonance (NMR)
spectroscopy in insulators (the electric-field-gradient (EFG)
tensors and the chemical shift tensors), and by (ii) electronic
paramagnetic resonance (EPR) spectroscopy for paramagnetic
defects in solids or in radicals (the hyperfine tensors and the g-
tensor). The code also computes the magnetic susceptibility
of nonmagnetic insulators. GIPAW is based on the PW–
PP method, and uses many subroutines of PWscf and of
PHonon. The code is currently restricted to NC PPs. All
the NMR and EPR parameters depend on the detailed shape
of the electronic wavefunctions near the nuclei and thus
require the reconstruction of the all-electron wavefunctions
from the pseudo wavefunctions. For the properties defined
at zero external magnetic field, namely the EFG and the
hyperfine tensors, such reconstruction is performed as a post-
processing step of a self-consistent calculation using the PAW
reconstruction, as described for the EFG in [146] and for the
hyperfine tensor in [147]. The g-tensor, the NMR chemical
shifts and the magnetic susceptibility are obtained from the
orbital linear response to an external uniform magnetic field. In
the presence of a magnetic field the PAW method is no longer
gauge- and translationally invariant. Gauge and translational
invariances are restored by using the gauge including projector-
augmented wave (GIPAW) method [63, 64] both (i) to describe
in the PP Hamiltonian the coupling of orbital degrees of
freedom with the external magnetic field, and (ii) to reconstruct
the all-electron wavefunctions, in the presence of the external
magnetic field. In addition, the description of a uniform
magnetic field within periodic boundary conditions is achieved
by considering the long-wavelength limit of a sinusoidally
modulated field in real space [148, 149]. The NMR chemical
shifts are computed following the method described in [63],
the g-tensor following [150] and the magnetic susceptibility
following [63, 148]. Recently, a ‘converse’ approach to
calculate chemical shifts has also been introduced [151], based
on recent developments on the Berry-phase theory of orbital
magnetization; since it does not require a linear response
calculation, it can be straightforwardly applied to arbitrarily
complex exchange–correlation functionals, and to very-large
systems, albeit at a computational cost that is proportional to
the number of chemical shifts that need to be calculated.

4.7. XSPECTRA

The XSPECTRA code allows for the calculation of K-edge
x-ray absorption spectra (XAS). The code calculates the XAS
cross-section including both dipolar and quadrupolar matrix
elements. The code uses the self-consistent charge density
produced by PWscf and acts as a post-processing tool. The
all-electron wavefunctions are constructed using the PAW
method and its implementation in the GIPAW code. The
presence of a core–hole in the final state of the x-ray absorption
process is simulated by using a pseudopotential for the
absorbing atom with a hole in the 1s state. The calculation
of the charge density is performed on a supercell with one
absorbing atom. From the self-consistent charge density, the x-
ray absorption spectra are obtained using the Lanczos method
and a continued fraction expansion [65, 152]. The advantage
of this approach is that, once the charge density is known,
it is not necessary to calculate empty bands to describe very
high energy features of the spectrum. Correlation effects
can be simulated in a mean-field way using the Hubbard U
correction [86] that has been included in the XSPECTRA code
in [153]. Currently the code is limited to collinear magnetism.
Its extension to noncollinear magnetism is under development.

4.8. Wannier90

Wannier90 [26, 154] is a code that calculates maximally
localized Wannier functions in insulators or metals—according
to the algorithms described in [61, 62]—and a number of
properties that can be conveniently expressed in a Wannier
basis. The code is developed and maintained independently
by a Wannier development group [26] and can be taken as
a representative example of the philosophy described earlier,
where a project maintains its own individual distribution
but provides full interoperability with the core components
of QUANTUM ESPRESSO, in this case PWscf or CP. These
codes are in fact used as ‘quantum engines’ to produce
the data onto which Wannier90 operates. The need to
provide transparent protocols for interoperability has in turn
facilitated the interfacing of Wannier90 with other quantum
engines [14, 21], fostering a collaborative engagement with the
broader electronic-structure community that is also in the spirit
of QUANTUM ESPRESSO.

Wannier90 requires as input the scalar products between
the periodic parts of wavefunctions at neighboring k-points,
where these latter form uniform meshes in the Brillouin zone.
Often, it is also convenient to provide scalar products between
wavefunctions and trial, localized real-space orbitals—these
are used to guide the localization procedure towards a desired,
physical minimum. As such, the code is not tied to a
representation of the wavefunctions in any particular basis—
for PWscf and CP a post-processing utility is in charge
of calculating these scalar products using the plane-wave
basis set of QUANTUM ESPRESSO and either NC PPs or US
PPs. Whenever � sampling is used, the simplified algorithm
of [155] is adopted.

Besides calculating maximally-localized Wannier func-
tions, the code is able to construct the Hamiltonian matrix
in this localized basis, providing a chemically accurate, and
transferable, tight-binding representation of the electronic
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Figure 2. Snapshot of the PWgui application. Left: PWgui’s main window; right: preview of specified input data in text mode.

structure of the system. This, in turn, can be used to construct
Green’s functions and self-energies for ballistic transport
calculations [156, 157], to determine the electronic structure
and DOS of very large-scale structures [157], to interpolate
accurately the electronic band structure (i.e. the Hamiltonian)
across the Brillouin zone [157, 158], or to interpolate any
other operator [158]. These latter capabilities are especially
useful for the calculation of integrals that depend sensitively
on a submanifold of states; common examples come from
properties that depend sensitively on the Fermi surface, such
as electronic conductivity, electron–phonon couplings, Knight
shifts, or the anomalous Hall effect. A related by-product
of Wannier90 is the capability of downfolding a selected,
physically significant manifold of bands into a minimal but
accurate basis, to be used for model Hamiltonians that can be
treated with complex many-body approaches.

4.9. PostProc

The PostProc module contains a number of codes for post-
processing and analysis of data files produced by PWscf and
CP. The following operations can be performed:

• Interfacing to graphical and molecular graphics applica-
tions. Charge and spin density, potentials, ELF [68] and
STM images [67] are extracted or calculated and written
to files that can be directly read by most common plotting
programs, such as xcrysden [159] and VMD [160].

• Interfaces to other codes that use DFT results from
QUANTUM ESPRESSO for further calculations, such as
e.g.: pw2wannier90, an interface to the wannier90
library and code [26, 154] (also included in the QUANTUM

ESPRESSO distribution); pw2casino.f90, an interface
to the casino quantum Monte Carlo code [161];
wannier ham.f90, a tool to build a tight-binding
representation of the KS Hamiltonian to be used by

the dmft code [163] (available at the qe-forge site);
pw export.f90, an interface to the GW code SaX [162];
pw2gw.f90, an interface to code DP [164] for dielectric
property calculations, and to code EXC [165] for excited-
state properties.

• Calculation of various quantities that are useful for the
analysis of the results. In addition to the already
mentioned ELF and STM, one can calculate projections
over atomic states (e.g. Löwdin charges [69]), DOS and
Projected DOS (PDOS), planar and spherical averages,
and the complex macroscopic dielectric function in the
random-phase approximation (RPA).

4.10. PWgui

PWgui is the graphical user interface (GUI) for the PWscf,
PHonon, and atomic packages as well as for some of the
main codes in PostProc (e.g. pp.x and projwfc.x). PWgui
is an input file builder whose main goal is to lower the
learning barrier for the newcomer, who would otherwise have
to struggle with the input syntax. Its event-driven mechanism
automatically adjusts the display of required input fields
(i.e. enables certain sets of widgets and disables others) to the
specific cases selected (see figure 2, left panel). It enables a
preview of the format of the (required) input file records for
a given type of calculation (see figure 2, right panel). The
input files created by PWgui are guaranteed to be syntactically
correct (although they can still be physically meaningless).
It is possible to upload previously generated input files for
syntax checking and/or to modify them. It is also possible to
run calculations from within the PWgui. In addition, PWgui
can also use the external xcrysden program [159] for the
visualization of molecular and/or crystal structures from the
specified input data and for the visualization of properties
(e.g. charge densities or STM images).
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Table 1. Summary of parallelization levels in QUANTUM ESPRESSO.

Group Distributed quantities Communications Performance

Image NEB images Very low Linear CPU scaling,
Fair to good load balancing;
Does not distribute RAM

Pool k-points Low Almost linear CPU scaling,
Fair to good load balancing;
Does not distribute RAM

Plane-wave Plane waves, G-vector High Good CPU scaling,
coefficients, R-space Good load balancing,
FFT arrays Distributes most RAM

Task FFT on electron states High Improves load balancing
Linear algebra Subspace Hamiltonians Very high Improves scaling,

and constraints matrices Distributes more RAM

As the QUANTUM ESPRESSO codes evolve, the input
file syntax expands as well. This implies that PWgui has
to be continuously adapted. To effectively deal with such
issue, PWgui uses the GUIB concept [166]. GUIB builds on
the consideration that the input files for numerical simulation
codes have a rather simple structure, and it exploits this
simplicity by defining a special meta-language with two
purposes: the first is to define the input file syntax, and the
second is to simultaneously automate the construction of the
GUI on the basis of such a definition.

A similar strategy has been recently adopted for the
description of the QUANTUM ESPRESSO input file formats. A
single definition/description of a given input file serves (i) as a
documentation per-se, (ii) as a PWgui help documentation, and
(iii) as a utility to synchronize the PWgui with up-to-date input
file formats.

5. Parallelization

Keeping pace with the evolution of high-end supercomputers is
one of the guiding lines in the design of QUANTUM ESPRESSO,
with a significant effort being dedicated to porting it to the
latest available architectures. This effort is motivated, not only
by the need to stay at the forefront of architectural innovation
for large to very-large scale materials science simulations,
but also by the speed at which hardware features specifically
designed for supercomputers find their way into commodity
computers.

The architecture of today’s supercomputers is char-
acterized by multiple levels and layers of inter-processor
communication: the bottom layer is the one affecting the
instruction set of a single core (simultaneous multithreading,
hyperthreading); then one has parallel processing at the
processor level (many CPU cores inside a single processor
sharing caches) and at the node level (many processors
sharing the same memory inside the node); at the top
level, many nodes are finally interconnected with a high-
performance network. The main components of the QUANTUM

ESPRESSO distribution are designed to exploit this highly
structured hardware hierarchy. High performance on massively
parallel architectures is achieved by distributing both data and
computations in a hierarchical way across available processors,
ending up with multiple parallelization levels [167] that can be

tuned to the specific application and to the specific architecture.
This remarkable characteristic makes it possible for the main
codes of the distribution to run in parallel on most or all parallel
machines with very good performance in all cases.

In more detail, the various parallelization levels are
geared into a hierarchy of processor groups, identified by
different MPI communicators. In this hierarchy, groups
implementing coarser-grained parallel tasks are split into
groups implementing finer-grained parallel tasks. The first
level is image parallelization, implemented by dividing
processors into nimage groups, each taking care of one or
more images (i.e. a point in the configuration space, used by
the NEB method). The second level is pool parallelization,
implemented by further dividing each group of processors
into npool pools of processors, each taking care of one or
more k-points. The third level is plane-wave parallelization,
implemented by distributing real- and reciprocal-space grids
across the nPW processors of each pool. The final level is task
group parallelization [168], in which processors are divided
into ntask task groups of nFFT = nPW/ntask processors, each
one taking care of different groups of electron states to be
Fourier transformed, while each FFT is parallelized inside a
task group. A further parallelization level, linear algebra,
coexists side-to-side with plane-wave parallelization, i.e. they
take care of different sets of operations, with different data
distribution. Linear algebra parallelization is implemented
both with custom algorithms and using ScaLAPACK [169],
which on massively parallel machines yields much superior
performance. Table 1 contains a summary of the five levels
currently implemented. With the recent addition of the
two last levels, most parallelization bottlenecks have been
removed, while both computations and data structures are fully
distributed.

This being said, the size and nature of the specific
application set quite natural limits to the maximum number
of processors up to which the performances of the various
codes are expected to scale. For instance, the number of k-
points sets a natural limit to the size of each pool, or the
number of electronic bands sets a limit for the parallelization
of the linear algebra operations. Moreover some numerical
algorithms scale better than others. For example, the use of
norm-conserving pseudopotentials allows for a better scaling
than ultrasoft pseudopotentials for the same system, because
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Figure 3. Scalability for medium-size calculations (CP code). CPU time (s) per electronic time step (left panel) and speedup with respect to
32 processors (right panel) as a function of the number of processors and for different numbers ntask of task groups, on an IBM BlueGene/P
(BG/P) and on an SGI Altix. The system is a fragment of an Aβ-peptide in water containing 838 atoms and 2311 electrons in a
22.1 × 22.9 × 19.9 Å

3
cell, ultrasoft pseudopotentials, � point, 25 and 250 Ry cutoff for the orbitals and the charge density respectively.

Figure 4. Scalability for large-scale calculations: wall time (left panel) and speedup (right panel) as a function of the number of processors.
PSIWAT: PWscf code, npool = 4, ntask = 4, on a Cray XT 4. The system is a gold surface covered by thiols in interaction with water, 4

k-points, 10.59 × 20.53 × 32.66 Å
3

cell, 587 atoms, 2552 electrons. CNT (1): PWscf code, ntask = 4, on a Cray XT 4. The system is a
porphyrin-functionalized nanotube, � point, 1532 atoms, 5232 electrons. CNT (2): CP code on a Cray XT3, same system as for CNT (1),
Times for PSIWAT and CNT (1) are for 10 and 2 self-consistency iterations, respectively; times for CNT (2) are for 10 electronic steps plus 1
Car–Parrinello step, divided by 2 so that they fall in the same range as for CNT (1).

larger plane-wave basis set and a larger real- and reciprocal-
space grids are required in the former case. On the other hand,
using ultrasoft pseudopotentials is generally faster because the
use of a smaller basis set is obviously more efficient, even
though the overall parallel performance may not be as good.

Simulations on systems containing several hundreds of
atoms are by now quite standard (see figure 3 for an
example). Scalability does not yet extend to tens of
thousands of processors as in especially-crafted codes like
QBox [170], but excellent scalability on up to 4800 processors
has been demonstrated (see figure 4), even for cases where
coarse-grained parallelization does not help, using only MPI
parallelization. We remark that the results for CNT (2) in
figure 4 were obtained with an earlier version of the CP code
that did not use ScaLAPACK; the current version performs
better in terms of scalability.

The efforts of the QUANTUM ESPRESSO developers’ team
are not limited to the performance on massively parallel

architectures. Special attention is also paid to optimize the
performances for simulations of intermediate size (on systems
ranging from several tens to a few hundreds of inequivalent
atoms), to be performed on medium-size clusters, readily
available to many groups [81]. In particular, the QUANTUM

ESPRESSO developers’ team is now working to better exploit
new hardware trends, particularly in the field of multicore
architectures. The current version implements a partial but
fully functional OpenMP parallelization [171] that is especially
suitable for modern multicore CPUs. Mixing OpenMP with
MPI also allows scalability to be extended towards a higher
number of processors, by adding a parallelization level on
top of what can already be achieved using MPI. Preliminary
tests on realistic physical systems demonstrate scalability up
to 65 536 cores, so far.

Looking ahead, future developments will likely focus on
hybrid systems with hardware accelerators (GPUs and cell co-
processors).
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6. Perspectives and outlook

Further developments and extensions of QUANTUM ESPRESSO
will be driven by the needs of the community using it and
working on it. Many of the soon-to-come additions will
deal with excited-state calculations within time-dependent
DFT (TDDFT [172, 173]) and/or many-body perturbation
theory [174]. A new approach to the calculation of optical
spectra within TDDFT has been recently developed [175],
based on a finite-frequency generalization of density-
functional perturbation theory [54, 55], and implemented
in QUANTUM ESPRESSO. Another important development
presently under way is an efficient implementation of
GW calculations for large systems (whose size is of the
order of a few hundreds of inequivalent atoms) [176].
The implementation of efficient algorithms for calculating
correlation energies at the RPA level is also presently under
way [177–179]. It is foreseen that by the time this paper
appears, some of these developments will have been publicly
released.

It is hoped that many new functionalities will be made
available to QUANTUM ESPRESSO users by external groups
who will make their own software compatible/interfaceable
with QUANTUM ESPRESSO. At the time of the writing of the
present paper, third-party scientific software compatible with
QUANTUM ESPRESSO and available to its users’ community
include: yambo, a general-purpose code for excited-state
calculations within many-body perturbation theory [180];
casino, a code for electronic-structure quantum Monte Carlo
simulations [161]; want, a code for the simulation of ballistic
transport in nanostructures, based on Wannier functions [181];
xcrysden, a molecular graphics application, especially suited
for periodic structures [159]. The qe-forge portal is
expected to boost the production and availability of third-
party software compatible with QUANTUM ESPRESSO. Among
the projects already available, or soon-to-be available, on
qe-forge, we mention: SaX [162], an open-source project
implementing state-of-the-art many-body perturbation theory
methods for excited states; dmft [163], a code to perform
dynamical mean-field theory calculations on top of a tight-
binding representation of the DFT band structure; qha, a set of
codes for calculating thermal properties of materials within the
quasi-harmonic approximation [182]; pwtk, a fully functional
Tcl scripting interface to PWscf [183].

Efforts towards better interoperability with third-party
software will be geared towards releasing accurate specifica-
tions for data structures and data file formats and providing
interfaces to and from other codes and packages used by the
scientific community. Further work will also be devoted to
the extension to the US PPs and PAW schemes of the parts
of QUANTUM ESPRESSO that are now limited to NC PPs.

The increasing availability of massively parallel machines
will likely lead to an increased interest towards large-scale
calculations. The ongoing effort in this field will continue.
Special attention will be paid to the requirements imposed by
the architecture of the new machines, in particular multicore
CPUs, for which a mixed OpenMP-MPI approach seems to
be the only viable solution yielding maximum performances.

Grid computing and the commoditization of computer clusters
will also lead to great improvements in high-throughput
calculations for materials design and discovery.

The new trend towards distributed computing is exempli-
fied by the recent development of the VLab cyber infrastructure
(CI) [184, 185], a service-oriented architecture (SOA) that uses
QUANTUM ESPRESSO as the back-end computational package
plus a web portal [186]. This SOA consists of scientific work-
flows for calculations of high-pressure (P) and temperature (T )
properties of materials [187], programmed as a collection of
web services running in distributed environments, plus analysis
tools to monitor workflow execution and visualization tools.
Comprehensive or systematic studies of the high PT properties
of minerals are essential for the interpretation of seismic data
and as input for geodynamic simulations. The VLab-CI was
developed to: (1) handle massive job submissions created by
the large number of points (102–104) in the parameter space
(pressures, strains, phonon q-points, composition) sampled by
these calculations, each point consisting of a first-principles
task (PWscf or PHonon execution); (2) handle the information
flow between multi-leveled groups of tasks, with outputs
from one level used to generate inputs for the next level;
(3) harness the scalable aggregated throughput power of
scattered computational resources.
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Appendix

This appendix contains the description of some algorithms
used in QUANTUM ESPRESSO that have not been documented
elsewhere.

A.1. Self-consistency

The problem of finding a self-consistent solution to the KS
equations can be recast into the solution of a nonlinear problem

x = F[x], x = (x1, x2, . . . , xN ), (A.1)

where vector x contains the N Fourier components or real-
space values of the charge density ρ or the KS potential
V (the sum of Hartree and exchange–correlation potentials);
F[x(in)] is a functional of the input charge density or potential
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x(in), yielding the output vector x(out) via the solution of
KS equations. A solution can be found via an iterative
procedure. PWscf uses an algorithm based on the modified
Broyden method [88] in which x contains the components of
the charge density in reciprocal space. Mixing algorithms
typically find the optimal linear combination of a few x(in) from
previous iterations, that minimizes some suitably defined norm
||x(out) − x(in)||, vanishing at convergence, that we will call in
the following ‘scf norm’.

Ideally, the scf norm is a measure of the self-consistency
error on the total energy. Let us write an estimate of the latter
for the simplest case: an insulator with NC PPs and simple
LDA or GGA. At a given iteration we have

(
− h̄2

2m
∇2 + Vext(r)+ V (in)(r)

)
ψi (r) = εiψi (r), (A.2)

where εi and ψi are KS energies and orbitals respectively,
i labels the occupied states, Vext is the sum of the PPs of
atomic cores (written for simplicity as a local potential), the
input Hartree and exchange–correlation potential V (in)(r) =
VHxc[ρ(in)(r)] is a functional of the input charge density ρ(in).
The output charge density is given by

ρ(out)(r) =
∑

i

|ψi (r)|2. (A.3)

Let us compare the DFT energy calculated in the standard way:

E =
∑

i

∫
ψ∗

i (r)
(

− h̄2

2m
∇2 + Vext(r)

)
ψi (r) dr

+ EHxc[ρ(out)], (A.4)

where EHxc is the Hartree and exchange–correlation energy,
with the Harris–Weinert–Foulkes functional form, which does
not use ρ(out):

E ′ =
∑

i

∫
ψ∗

i (r)
(

− h̄2

2m
∇2 + Vext(r)+ V (in)(r)

)
ψi (r) dr

−
∫
ρ(in)V (in)(r)+ EHxc[ρ(in)]. (A.5)

Both forms are variational, i.e. the first-order variation of
the energy with respect to the charge density vanish, and
both converge to the same result when self-consistency is
achieved. Their difference can be approximated by the
following expression, in which only the dominant Hartree term
is considered:

E − E ′ � e2

2

∫
�ρ(r)�ρ(r′)

|r − r′| dr dr′

= 1

2

∫
�ρ(r)�VH (r′)dr, (A.6)

where �ρ = ρ(out) − ρ(in) and �VH is the Hartree potential
energy distribution generated by �ρ. Moreover it can be
shown that, when exchange and correlation contributions to
the electronic screening do not dominate over the electrostatic
ones, this quantity is an upper bound to the self-consistent error
incurred when using the standard form for the DFT energy. We

therefore take this term, which can be trivially calculated in
reciprocal space, as our squared scf norm:

||ρ(out) − ρ(in)||2 ≡ 4πe2

	

∑
G

|�ρ(G)|2
G2

, (A.7)

where G are the vectors in reciprocal space and	 is the volume
of the unit cell.

Once the optimal linear combination of ρ(in) from previous
iterations (typically 4 to 8) is determined, one adds a step in
the new search direction that is, in the simplest case, a fraction
of the optimal �ρ or, taking advantage of some approximate
electronic screening [188], a preconditioned �ρ. In particular,
the simple, Thomas–Fermi, and local Thomas–Fermi mixing
described in [188] are implemented and used.

The above algorithm has been extended to more
sophisticated calculations, in which the x vector introduced
above may contain additional quantities: for DFT + U ,
occupancies of atomic correlated states; for meta-GGA, kinetic
energy density; for PAW, the quantities

∑
i〈ψi |βn〉〈βm |ψi 〉,

where the β functions are the atomic-based projectors
appearing in the PAW formalism. The scf norm is modified
accordingly in such a way to include the additional variables in
the estimated self-consistency error.

A.2. Iterative diagonalization

During self-consistency one has to solve the generalized
eigenvalue problem for all N occupied states

Hψi = εi Sψi , i = 1, . . . , N (A.8)

in which both H (the Hamiltonian) and S (the overlap
matrix) are available as operators (i.e. Hψ and Sψ products
can be calculated for a generic state ψ). Eigenvectors
are normalized according to the generalized orthonormality
constraints 〈ψi |S|ψ j 〉 = δi j . This problem is solved using
iterative methods. Currently PWscf implements a block
Davidson algorithm and an alternative algorithm based on
band-by-band minimization using conjugate gradient.

A.2.1. Davidson. One starts from an initial set of
orthonormalized trial orbitals ψ(0)i and of trial eigenvalues
ε
(0)
i = 〈ψ(0)i |H |ψ(0)i 〉. The starting set is typically obtained

from the previous scf iteration, if available, and if not,
from the previous time step, or optimization step, or from a
superposition of atomic orbitals. We introduce the residual
vectors

g(0)i = (H − ε
(0)
i S)ψ(0)i , (A.9)

a measure of the error on the trial solution, and the correction
vectors δψ(0)i = Dg(0)i , where D is a suitable approximation
to (H − ε

(0)
i S)−1. The eigenvalue problem is then solved in

the 2N-dimensional subspace spanned by the reduced basis
set φ(0), formed by φ(0)i = ψ

(0)
i and φ(0)i+N = δψ

(0)
i :

2N∑
k=1

(H jk − εi S jk)c
(i)
k = 0, (A.10)
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where

H jk = 〈φ(0)j |H |φ(0)k 〉, Sjk = 〈φ(0)j |S|φ(0)k 〉. (A.11)

Conventional algorithms for matrix diagonalization are used in
this step. A new set of trial eigenvectors and eigenvalues is
obtained:

ψ
(1)
i =

2N∑
j=1

c(i)j φ
(0)
j , ε

(1)
i = 〈ψ(1)i |H |ψ(1)i 〉 (A.12)

and the procedure is iterated until a satisfactory convergence is
achieved. Alternatively, one may enlarge the reduced basis set
with the new correction vectors δψ(1)i = Dg(1)i , solve a 3N-
dimensional problem, and so on, until a prefixed size of the
reduced basis set is reached. The latter approach is typically
slightly faster at the expense of a larger memory usage.

The operator D must be easy to estimate. A natural choice
in the PW basis set is a diagonal matrix, obtained keeping only
the diagonal term of the Hamiltonian:

〈k + G|D|k + G′〉 = δGG′

〈k + G|H − εS|k + G〉 (A.13)

where k is the Bloch vector of the electronic states under
consideration, |k + G′〉 denotes PWs, ε an estimate of the
highest occupied eigenvalue. Since the Hamiltonian is a
diagonally dominant operator and the kinetic energy of PWs is
the dominant part at high G, this simple form is very effective.

A.2.2. Conjugate gradient. The eigenvalue problem of
equation (A.8) can be recast into a sequence of constrained
minimization problems:

min

[
〈ψi |H |ψi〉 −

∑
j�i

λ j
(〈ψi |S|ψ j 〉 − δi j

)]
, (A.14)

where the λ j are Lagrange multipliers. This can be solved
using a preconditioned conjugate-gradient algorithm with
minor modifications to ensure constraint enforcement. The
algorithm here described was inspired by the conjugate-
gradient algorithm of [189], and is similar to one of the variants
described in [190].

Let us assume that eigenvectors ψ j up to j = i − 1
have already been calculated. We start from an initial guess
ψ(0) for the i th eigenvector, such that 〈ψ(0)|S|ψ(0)〉 = 1 and
〈ψ(0)|S|ψ j 〉 = 0. We introduce a diagonal precondition matrix
P and auxiliary functions y = P−1ψ and solve the equivalent
problem

min[〈y|H̃ |y〉 − λ(〈y|S̃|y〉 − 1)], (A.15)

where H̃ = P H P , S̃ = P S P , under the additional
orthonormality constraints 〈y|PS|ψ j 〉 = 0. The starting
gradient of equation (A.15) is given by

g(0) = (H̃ − λS̃)y(0). (A.16)

By imposing that the gradient is orthonormal to the starting
vector: 〈g(0)|S̃|y(0)〉 = 0, one determines the value of the
Lagrange multiplier:

λ = 〈y(0)|S̃ H̃ |y(0)〉
〈y(0)|S̃2|y(0)〉 . (A.17)

The remaining orthonormality constraints are imposed on
Pg(0) by explicit orthonormalization (e.g. Gram-Schmid) to
the ψ j . We introduce the conjugate gradient h(0), which for
the first step is set equal to g(0) (after orthonormalization),
and the normalized direction n(0) = h(0)/〈h(0)|S̃|h(0)〉1/2. We
search for the minimum of 〈y(1)|H̃ |y(1)〉 along the direction
y(1), defined as: [189]

y(1) = y(0) cos θ + n(0) sin θ. (A.18)

This form ensures that the constraint on the norm is correctly
enforced. The calculation of the minimum can be analytically
performed and yields

θ = 1

2
atan

(
a(0)

ε(0) − b(0)

)
, (A.19)

where a(0) = 2 Re〈y(0)|H̃ |n(0)〉, b(0) = 〈n(0)|H̃ |n(0)〉, and
ε(0) = 〈y(0)|H̃ |y(0)〉. The procedure is then iterated; at each
step the conjugate gradient is calculated from the gradient and
the conjugate gradient at the previous step, using the Polak–
Ribière formula:

h(n) = g(n) + γ (n−1)h(n−1), (A.20)

γ (n−1) = 〈g(n) − g(n−1)|S̃|g(n)〉
〈g(n−1)|S̃|g(n−1)〉 . (A.21)

h(n) is subsequently re-orthogonalized to y(n). We remark that
in the practical implementation only Pg and Ph need to be
calculated and that only P2—the analogous of the D matrix in
the Davidson algorithm—is actually used. A kinetic-only form
of P2 has proved satisfactory:

〈k + G|P2|k + G′〉 = 2m

h̄2(k + G)2
δGG′. (A.22)

A.3. Wavefunction extrapolation

In molecular dynamics runs and in structural relaxations,
extrapolations are employed to generate good initial guesses
for the wavefunctions at time t + dt from wavefunctions at
previous time steps. The extrapolation algorithms used are
similar to those described in [189]. The alignment procedure,
needed when wavefunctions are the results of a self-consistent
calculation, is as follows. The overlap matrix Oi j between
wavefunctions at consecutive time steps:

Oi j = 〈ψi (t + dt)|S(t + dt)|ψ j (t)〉, (A.23)

can be used to generate the unitary transformation U [191] that
aligns ψ(t + dt) to ψ(t): ψ‖

i (t + dt) = ∑
j Ui jψ j (t + dt).

Since O is not unitary, it needs to be made unitary via e.g. the
unitarization procedure

U = (O† O)−1/2 O†. (A.24)

The operation above is performed using a singular value
decomposition: let the overlap matrix be O = vDw, where
v and w are unitary matrices and D is a diagonal non-negative
definite matrix, whose eigenvalues are close to 1 if the two
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sets of wavefunctions are very similar. The required unitary
transformation is then simply given by U � w†v†. This
procedure is simpler than the original proposal and prevents the
alignment algorithm from breaking in the occasional situation
where, due to level crossing in the band structure between
subsequent time steps, one or more of the eigenvalues of the
D matrix vanish.

A.4. Symmetry

Symmetry is exploited almost everywhere, with the notable
exception of CP. The latter is devised to study aperiodic
systems or large supercells where symmetry is either absent
or of little use even if present.

In addition to lattice translations, the space group of a
crystal contains symmetry operations Ŝ combining rotations
and translations that leave the crystal unchanged: Ŝ ≡ {R|f},
where R is a 3 × 3 orthogonal matrix, f is a vector (called
fractional translation) and symmetry requires that any atomic
position, τs is transformed into an equivalent one, Ŝτs ≡
R(τs + f) = τŜ(s). The rotational part of these operations
defines the crystal point group.

As a consequence of symmetry, roto-translated KS orbitals
are KS orbitals with the rotated Bloch vector: Ŝψi,k(r) ≡
ψi,k(R−1r − f) = ψi,Rk(r), where, strictly speaking, the
resulting wavefunction at Rk does not necessarily have the
same band index as the original one but could be some unitary
transformation of states at Rk that share with it the same
single-particle eigenvalue. Since quantities of physical interest
are invariant for unitary rotations among degenerate states this
additional complication has no effect on the final result.

This is the basis for the symmetrization procedure used
in PWscf. One introduces a non-symmetrized charge density
(labeled by superscript (ns)) calculated on the irreducible BZ
(IBZ):

ρ(ns)(r) =
∑

i

∑
k∈IBZ

wk|ψi,k(r)|2. (A.25)

The factors wk (‘weights’) are proportional to the number of
vectors in the star (i.e. inequivalent k vectors among all the
{Rk} vectors generated by the point-group rotations) and are
normalized to 1:

∑
k∈IBZwk = 1. Weights can either be

calculated or deduced from the literature on the special-point
technique [89, 90]. The charge density is then symmetrized as:

ρ(r) = 1

Ns

∑
Ŝ

Ŝρ(ns)(r) = 1

Ns

∑
Ŝ

ρ(ns)(R−1r − f) (A.26)

where the sum runs over all Ns symmetry operations.
The symmetrization technique can be extended to all

quantities that are expressed as sums over the BZ. Hellmann–
Feynman forces Fs on atom s are thus calculated as follows:

Fs = 1

Ns

∑
Ŝ

ŜF(ns)
s = 1

Ns

∑
Ŝ

RF(ns)

Ŝ−1(s)
, (A.27)

where Ŝ−1(s) labels the atom into which the sth atom trans-
forms (modulo a lattice translation vector) after application of
Ŝ−1, the symmetry operation inverse of Ŝ. In a similar way one

determines the symmetrized stress, using the rule for matrix
transformation under a rotation:

σαβ = 1

Ns

∑
Ŝ

3∑
γ,δ=1

Rαγ Rβδσ
(ns)
γ δ . (A.28)

The PHonon package supplements the above technique
with a further strategy. Given the phonon wavevector q,
the small group of q (the subgroup Ŝq of crystal symmetry
operations that leave q invariant) is identified and the reducible
representation defined by the 3Nat atomic displacements
along Cartesian axis is decomposed into nirr irreducible
representations (irreps) γ (q)j , j = 1, . . . , nirr. The dimensions
of the irreducible representations are small, with ν j � 3 in
most cases, up to 6 in some special cases (zone-boundary
wavevectors q in nonsymmorphic groups). Each irrep, j ,
is therefore defined by a set of ν j linear combinations of
atomic displacements that transform into each other under
the symmetry operations of the small group of q. In the
self-consistent solution of the linear response equations, only
perturbations associated to a given irrep need to be treated
together and different irreps can be solved independently.
This feature is exploited to reduce the amount of memory
required by the calculation and is suitable for coarse-grained
parallelization and for execution on a Grid infrastructure [192].

The wavefunction response,�ψ( j,α)
k+q,i (r), to displacements

along irrep j , γ (q)j,α (where α = 1, . . . , ν j labels different
partners of the given irrep), is then calculated. The lattice-
periodic unsymmetrized charge response, �ρ(ns)

q, j,α(r), has the
form:

�ρ
(ns)
q, j,α(r) = e−iq·r4

∑
i

∑
k∈IBZ(q)

wkψ
∗
k,i (r)�ψ

( j,α)
k+q,i (r),

(A.29)
where the notation IBZ(q) indicates the IBZ calculated
assuming the small group of q as symmetry group, and the
weights wk are calculated accordingly. The symmetrized
charge response is calculated as

�ρq, j,α(r) = 1

Ns (q)

∑
Ŝq

e−iqf
ν j∑
β=1

D(Ŝq)βα�ρ
(ns)
q, j,β(R

−1r − f)

(A.30)
where D(Ŝq) is the matrix representation of the action of the
symmetry operation Ŝq ≡ {R|f} for the j th irrep γ (q)j . At the
end of the self-consistent procedure, the force constant matrix
Csα,tβ(q) (where s, t label atoms, α, β Cartesian coordinates)
is calculated. Force constants at all vectors in the star of q are
then obtained using symmetry:

Csα,tβ(Rq) =
∑
γ,δ

RαδRβγCŜ−1(s)δ,Ŝ−1(t)γ (q), (A.31)

where Ŝ ≡ {R|f} is a symmetry operation of the crystal group,
but not of the small group of q.

A.5. Fock exchange

Hybrid functionals are characterized by the inclusion of a
fraction of exact (i.e. nonlocal) Fock exchange in the definition
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of the exchange–correlation functional. For a periodic system,
the Fock exchange energy per unit cell is given by:

Ex = −e2

N

∑
kv
k′v′

∫
ψ∗

kv(r)ψk′v′(r)ψ∗
k′v′(r′)ψkv(r′)

|r − r′| dr dr′,

(A.32)
where an insulating and nonmagnetic system is assumed for
simplicity. Integrals and wavefunction normalizations are
defined over the whole crystal volume, V = N	 (	 being the
unit cell volume), and the summations run over all occupied
bands and all N k-points defined in the BZ by Born–von
Kármán boundary conditions. The calculation of this term
is performed exploiting the dual-space formalism: auxiliary
codensities, ρk′ ,v′

k,v
(r) = ψ∗

k′,v′(r)ψk,v(r) are computed in real

space and transformed to reciprocal space by FFT, where
the associated electrostatic energies are accumulated. The
application of the Fock exchange operator to a wavefunction
involves additional FFTs and real-space array multiplications.
These basic operations need to be repeated for all the occupied
bands and all the points in the BZ grid. For this reason the
computational cost of the exact exchange calculation is very
high, at least an order of magnitude larger than for non-hybrid
functional calculations.

In order to limit the computational cost, an auxiliary grid
of q-points in the BZ, centered at the� point, can be introduced
and the summation over k′ be limited to the subset k′ =
k + q. Of course convergence with respect to this additional
parameter needs to be checked, but often a grid coarser than the
one used for computing densities and potentials is sufficient.

The direct evaluation of the Fock energy on regular
grids in the BZ is however problematic due to an integrable
divergence that appears in the q → 0 limit. This problem
is addressed resorting to a procedure, first proposed by Gygi
and Baldereschi [193], where an integrable term that displays
the same divergence is subtracted from the expression for
the exchange energy and its analytic integral over the BZ is
separately added back to it. Some care must still be paid [177]
in order to estimate the contribution of the q = 0 term in
the sum, which contains a 0/0 limit that cannot be calculated
from information at q = 0 only. This term is estimated
[177] assuming that the grid of q-points used for evaluating
the exchange integrals is dense enough that a coarser grid,
including only every second point in each direction, would also
be equally accurate. Since the limiting term contributes to the
integral with different weights in the two grids, one can extract
its value from the condition that the two integrals give the same
result. This procedure removes an error proportional to the
inverse of the unit cell volume 	 that would otherwise appear
if this term were simply neglected.
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