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Abstract. We report Molecular Dynamics simulations for a new model of tetrahedral

network glass-former, based on short-range, spherical potentials. Despite the simplicity

of the forcefield employed, our model reproduces some essential physical properties of

silica, an archetypal network-forming material. Structural and dynamical properties,

including dynamic heterogeneities and the nature of local rearrangements, are

investigated in detail and a direct comparison with models of close-packed, fragile

glass-formers is performed. The outcome of this comparison is rationalized in terms

of the properties of the Potential Energy Surface, focusing on the unstable modes

of the stationary points. Our results indicate that the weak degree of dynamic

heterogeneity observed in network glass-formers may be attributed to an excess of

localized unstable modes, associated to elementary dynamical events such as bond

breaking and reformation. On the contrary, the more fragile Lennard-Jones mixtures

are characterized by a larger fraction of extended unstable modes, which lead to a

more cooperative and heterogeneous dynamics.
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1. Introduction

Network-forming amorphous materials are of great interest for technological

applications, as well as of fundamental importance for the theoretical understanding

of the glass transition. At a microscopic scale, the structure of network glass-formers, in

both the amorphous and highly viscous regime, is characterized by strong chemical

ordering and atomic arrangements that usually form an open tetrahedral network.

Upon cooling from high temperature, transport coefficients and structural relaxation

times τ of network liquids display a mild temperature dependence, often describable by

the Arrhenius law τ ≈ τ∞ exp(E/T ). Network glass-formers are thus “strong” in the

Angell’s classification scheme [1]. In contrast, other classes of glass-formers, including

molecular, polymeric, and bulk metallic liquids, show super-Arrhenius temperature

dependence of τ , i.e., “fragile” behaviour.

Ever since the introduction of the Angell’s classification, the nature of the

distinction between fragile and strong liquids has been highly debated. While the

degree of fragility of a liquid correlates quantitatively with other macroscopic physical

properties, the existence of qualitative differences between strong and fragile systems

has been questioned. Evidence of a “fragile-to-strong” crossover in simulated network

liquid [2] and numerical investigations of dynamic heterogeneities in model glass-

formers [3] suggest that network liquids may just be an extreme case of the class of

fragile systems [4]. In contrast, theoretical work on kinetically constrained models of

glassy dynamics [5] indicates that strong behaviour may arise from the different nature

of dynamical constraints. Moreover, the energy landscape description of supercooled

liquids [6, 7] shows that the organization and connectivity of stationary points in the

Potential Energy Surface (PES) may be qualitatively different in fragile and strong

glass-formers. In this two latter scenarios, fragile and strong liquids would thus belong

to different “universality classes” of glass-formers.

Silica is often considered as a prototypical network glass-former. In recent years,

several authors have studied structural and dynamical properties of this system through

numerical simulations, employing both Molecular Dynamics (MD) and Monte Carlo

techniques. One of the most realistic and popular models of silica available for molecular

simulations is the BKS model introduced by Van Beest et al [8]. In this model, the

interaction between Si and O atoms is described by a long-ranged Coulombic interaction,

plus a short range repulsion of the Born-Mayer type. Various physical aspects of the

supercooled and glassy regime of the BKS model have been analysed, including the phase

diagram [9, 10], structural [11], dynamical [12, 13, 3, 4], and vibrational [14, 15, 16]

properties. Investigations of the energy landscape of the BKS model have also been

performed [17, 18, 19, 20]. Because of the long-ranged nature of the interactions,

however, simulations using the BKS model are computationally demanding. Hence,

development of simpler force-fields, capturing the basic features of network liquids, is

highly desirable. Recently, in fact, simplified models for silica have been proposed,

including short-ranged variants of the original BKS potential [21, 22] and primitive
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models based on patchy interactions [23, 24]. Other models of tetrahedral network

liquids (not directly related to silica) based on spherical, patchy interactions have also

been studied recently [25] and in the past [26].

In this work, we present a new model of network glass-former, based on spherical,

short-ranged potentials. Our model allows efficient simulations and can be tuned to

reproduce some relevant properties of amorphous silica. It does not aim at a realistic

description of liquid and amorphous silica, yet it captures to a good extent the essential

physics of network glass-formers. Moreover, being able to describe both network and

“simple” glass-forming liquids [27, 28] with similar efficiency via the same family of

interactions, we can get an unusually detailed and systematic comparison between the

microscopic origins of their structural relaxation. In particular, we trace back the

distinct dynamic features of network glass-formers (e.g. strong behaviour, weak dynamic

heterogeneity, bond breaking and reformation processes) to the properties of the PES,

contrasting our findings with the case of the more fragile, close-packed Lennard-Jones

(LJ) mixtures [27, 28]. Our results emphasize the role of the unstable modes of the

PES, as a key to rationalize the different dynamic behaviours of glass-forming liquids.

The paper is organized as follows: in section 2 we introduce our model of network

glass-former; in section 3 we describe its structural and dynamical properties, while in

section 4 we analyse the properties of the stationary points of the PES, focusing on the

unstable modes. Finally, in section 5 we draw our conclusions.

2. Model

Our model of network glass-former, called NTW herein, is a binary mixture of classical

particles interacting through the following forcefield

uαα(r) = 4ǫαα

(σαα

r

)12

(1)

uαβ(r) = 4ǫαβ

[

(σαβ

r

)12

−
(σαβ

r

)6
]

α 6= β (2)

where α,β=1,2 are indexes of species. In the following, we will use σ11, ǫ11 and
√

m1σ2
11/ǫ11 as reduced units of distance, energy and time respectively. Keeping an eye

on silica, we identify large particles (species 1) with Si atoms and small particles (species

2) with O atoms, and we fix the number concentrations at x1 = 0.33, x2 = 0.67. We also

use the same mass ratio of O and Si atoms: m2/m1 = 0.57. A smooth cut-off scheme

is used to ensure continuity of uαβ(r) at r = 2.2σαβ up to the second derivative [29].

The size of the samples considered in this work is N = N1 +N2 = 500. The presence of

finite size effects have been checked through simulations of larger systems (N = 2048,

8000) and will be briefly discussed in section 3. We performed MD simulations in the

NVE ensemble using quenching protocols and equilibration criteria similar to the ones

of previous simulations of LJ mixtures [27, 28]. Equilibration and production runs

were performed using Berendsen rescaling and velocity-Verlet algorithm, respectively.

The time step δt was varied between 0.001 (at high T ) and 0.004 (at low T ). The
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Figure 1. Partial pair correlation functions gαβ(r) for the NTW model (solid lines)

and the BKS model for silica (open points). The thermodynamic state shown for BKS

silica is ρ = 2.37g/Å
3

, T = 2750K and the one of NTW is ρ = 1.655, T = 0.39 in

reduced units. The BKS data refer to the MD simulations by Horbach and Kob [30].

absence of major systematic aging effects was checked by comparing thermodynamic,

structural, and dynamical properties in different parts of the production runs. At the

lowest temperatures, simulations involved up to 3.5 × 107 and 7 × 107 steps for the

equilibration and production runs, respectively. Thanks to the short range of the

potentials and to the open local structure of the system, these long runs took a few

days on a 3.4 GHz Xeon processor.

To reproduce the open, tetrahedral local structure of network glasses, two main

physical ingredients must enter in the forcefield of our model: highly non-additive

interaction radii and strong attraction between unlike species. Building on previous

experience [26], we determined the following optimal set of interaction parameters:

σ12/σ11 = 0.49 σ22/σ11 = 0.85

ǫ12/ǫ11 = 6.00 ǫ22/ǫ11 = 1.00

To optimize the parameters above, we performed a series of preliminary simulations at

reduced density ρ = ρexpt ≈ 1.53, which corresponds to the density of amorphous silica

in normal experimental conditions. The parameters were adjusted by requiring that the
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Figure 2. Vibrational density of states (VDOS) obtained from local minima of

the potential energy at ρ = 1.53, T = 0.30 for the NTW model (solid line),

compared to experimental VDOS of amorphous silica (filled points, from [31]). The

experimental data are convoluted with a correction function that alters their features

only quantitatively [16].

ratio between the positions of the first peaks in g12(r) and g11(r) was equal to that of

Si-O and Si-Si interatomic distances of amorphous silica. We also checked that at low

temperature the average coordination numbers, obtained from the integral of the radial

distribution functions, were close to the ideal tetrahedral ones, i.e., Z12 = 4, Z21 = 2.

The physical units of our model can be be fixed to reproduce some relevant

properties of experimental and realistic models of silica, such as the BKS model. We

fixed the length scale σ11 so that the position of the first peak of g11(r) matched

the mean Si-Si distance (i.e., 3.12Å) of amorphous silica. In this way we obtained

σ11 = 2.84Å. To fix the energy scale ǫ11, we compared the shape of the radial distribution

functions gαβ(r) to the ones obtained by Horbach and Kob [30] for BKS silica at the

state point ρ = 2.37g/Å
3
, T = 2750K (see figure 1). The corresponding density in

reduced units is ρ = 1.655. A good overall agreement of the liquid structure is found

around T = 0.39, from which we estimate ǫ11 ≈ 7000K. Finally, we fixed the time

scale of our model by adjusting the mass scale m1 so as to reproduce typical vibrational

frequencies of amorphous silica. Following previous studies (see for instance [14, 15, 16]),

we determined the vibrational density of states (VDOS) through diagonalization of

the dynamical matrix calculated at local minima of the potential energy at ρ = 1.53,

T = 0.30. The choice m1 = 8.7× 10−23g ≈ 1.9mSi yields reasonable agreement between

the VDOS of our model and the experimental VDOS of amorphous silica [31] (see

figure 2, which is further discussed in section 3). From the value of m1 given above we

obtain the time unit t0 =
√

m1σ
2
11/ǫ11 = 2.0× 10−13s.

3. Structure and dynamics

In this section we further validate our model by analysing its structural and dynamical

properties. Our simulations spanned a wide range of densities: 1.250 ≤ ρ ≤ 2.300. At
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Figure 3. Partial structure factors S11(k) (solid line), S12(k) (dashed line), and S22(k)

(dotted line) at ρ = 1.655 and T = 0.29.

higher density (ρ = 2.800) we found clear signs of crystallization of our samples, but

we did not attempt to determine the crystallographic structure. At lower densities

(ρ ≤ 1.250) large voids are formed in the network structure, and liquid-gas phase

separation might occur. In the following, we will mostly focus on the isochore ρ = 1.655,

which corresponds to the density employed in several simulations of BKS silica, at

temperatures in the range 0.29 ≤ T ≤ 1.50.

3.1. Structure and vibrations

The fact that the radial distribution functions of our model agree rather well with those

of the more realistic BKS model (see figure 1) and the overall qualitative shape of the

VDOS (see figure 2), already suggest that the NTW model should capture some relevant

physical aspects of network glass-formers, at least for densities and temperatures where

tetrahedral local ordering is more pronounced. In this section we study in more details

the structural and vibrational properties of our model.

In figure 3 we show the partial structure factors Sαβ(k) obtained at the lowest

temperature attained in equilibrium conditions for ρ = 1.655. The pre-peak (also called

first sharp diffraction peak) at k ≈ 5.0 in S11(k) and S22(k) signals the formation of

intermediate range order. This is a typical feature apparent at low temperature in

network liquids. The positions of the pre-peak and main peak (k ≈ 8.0) in S11(k) are in

good agreement with those of SSiSi(k) in amorphous silica and simulated BKS silica [12].

Further insight into the structural properties of the NTW model is provided by the

distribution fαβγ(θ) of angles formed by a central particle of species β with neighbours

of species α and γ, where α, β, γ = 1, 2. Particles of species α and γ are considered

neighbours if their distance is less than the minimum of the radial distribution function

at the corresponding T . The normalized angular distribution functions f121(θ) and

f212(θ), shown in figure 4 for a few selected temperatures, reveal the typical features

associated to local tetrahedral ordering. The broad peak in f212(θ), located around
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Figure 4. Angular distribution functions fαβγ(θ) for T = 0.80 (dotted lines), 0.48

(dash-dotted lines), 0.36 (dashed lines), 0.29 (solid lines) at density ρ = 1.655.

θ = 108◦, reflects the presence of slightly distorted tetrahedra centered around particles

of species 1. The f121(θ) shows a peak around 180◦, which corresponds the links

formed by particles of species 2 connecting adjacent tetrahedra. Note that the peak

positions and the overall shape of these distribution functions change only mildly below

T ≈ 0.50. Thus, below this temperature, which we will identify in the next section as

the onset temperature of slow-dynamics [32], the NTW model displays a strong degree

of tetrahedral local ordering.

The angular distribution functions f111(θ) and f222(θ) (see two lower plots in

figure 4) provide information about the intermediate range order of our model. The
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1/T : P (Z12 = 4) (empty circles) and P (Z21 = 2) (filled circles) are shown for particles

of species 1 and 2, respectively. The vertical dotted line marks the onset of the slow-

dynamics regime.

f111(θ) displays a broad peak located at θ ≈ 105◦, associated to distorted corner-sharing

tetrahedra. The smaller peak around 60◦, due to three-fold rings [33], decreases in

height upon lowering the temperature. At higher density (ρ = 2.300, not shown here)

this small peak increases in intensity (at fixed T ), while the peak at θ ≈ 105◦ splits in two

sub-peaks. Similar variations upon compression were found in the angular distribution

functions of a more realistic model of silica [33]. Hence, we conclude that our simple

model is able to capture some non-trivial structural features of network glass-formers.

To highlight the formation of a nearly ideal tetrahedral network at low T , we show in

figure 5 the T -dependence of the fraction of particles with ideal coordination numbers,

i.e., P (Z12 = 4) and P (Z21 = 2) for particles of species 1 and 2, respectively. To

identify neighbouring particles we used the same criterion as for the angular distribution

functions discussed above. The fraction of ideally coordinated particles is already

substantial around T ≈ 0.5 [P (Z12 = 4), P (Z21 = 2) > 0.70] and approaches unity

at low T . This provides further indication that for the density considered here the

system is indeed in the optimal region of network formation [25].

A closer inspection of figure 2 shows that the VDOS of the NTW model reproduces

all the qualitative features of the experimental VDOS of amorphous silica. The

relative positions of the peaks in the VDOS of NTW match well enough those of the

experimental VDOS. Note that the absence of a peak at small frequencies (ω ≈ 4

THz) in the experimental data is due to insufficient experimental resolution [16, 34].

A careful comparison of simulated and experimental VDOS of silica can be found

in [16]. Here we only recall that the VDOS of the BKS model is somewhat unrealistic

at low and intermediate frequencies [16]. Similar deficiencies have also been found in

recent modifications of the original BKS model employing short-ranged potentials [22].

Specifically, the distinct peaks at 12 and 24 THz, as well as the small peak around 18

THz (D2 line), are missing in the VDOS of BKS silica. Given the simplicity of the
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Figure 6. Intermediate scattering functions Fs(k, t) (self part) at ρ = 1.655 for wave-

vector k = 5.0 (top panel) and k = 8.0 (bottom panel).

forcefield employed, the success of the NTW model in reproducing the main qualitative

vibrational features of amorphous silica is rather remarkable.

3.2. Relaxation dynamics

Our first step in the description of the dynamical properties of the NTW model consists

in the identification of the so-called “slow-dynamics regime” [32]. In this temperature

regime, the dynamical properties of glass-forming liquids assume all their distinct

features, including two-step relaxation, dynamic heterogeneities, etc. To detect the

onset of slow-dynamics, we study the variation with temperature of the incoherent

intermediate scattering functions

F α
s (k, t) =

1

Nα

Nα
∑

i=1

〈exp {ik · [ri(t)− ri(0)]}〉 (3)

where α = 1, 2 is an index of species. The t-dependence of F 1
s (k, t) is shown in figure 6

for temperatures in the range 0.29 ≤ T ≤ 1.50 at two different wave-numbers: k = 5.0,

close to the pre-peak in the static structure factors (upper panel) and k = 8.0 (lower

panel). Two-step relaxation develops around TO ≈ 0.50, which we take as the onset

temperature of the slow-dynamics regime. Distinct damped oscillations are observed in

F α
s (k, t) on the time scale of the early β-relaxation, i.e., on approaching the plateau. In

larger samples (not shown here), the amplitude of these oscillations is slightly smaller—a

well-known finite-size effect in model network liquids [30, 35].
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All quantities refer to particles of species 1. The modified VFT fit for τ1(k = 5.0)

[equation (4)] and the Arrhenius fit for 1/D1 are also shown as solid lines. The

dotted vertical line marks the onset of the slow dynamics regime. Lower panel: Ratios

τ1(k = 5.0)/τ2(k = 5.0) (filled squares) and D2/D1 (empty squares) as a function of

1/T .

We now analyse the T -dependence of the structural relaxation times extracted from

the intermediate scattering functions. Wave-number dependent relaxation times, τα(k),

for species α are defined by the condition F α
s (k, τα(k)) = 1/e. In the Angell plot in Fig. 7

we focus on the T -dependence of τ1. We focus here on the case τ ≡ τ1(k = 5.0). To fit

the T -dependence of the relaxation times we use the following modified Vogel-Fulcher

equation, previously employed in our study of LJ mixtures [27],

τ(T ) =

{

τ∞ exp [E∞/T ] T > T ∗

τ
′

∞
exp

[

1
K(T/T0−1)

]

T < T ∗
(4)

where

τ
′

∞
= τ∞ exp

[

E∞/T ∗ − 1
K(T ∗/T0−1)

]

(5)

Equation (4) describes the crossover from Arrhenius to Vogel-Fulcher T -dependence

of τ , ensuring continuity at T = T ∗. Its use in the case of a network glass-

formers is justified by the observation that network liquids display a mild super-



Dynamics and energy landscape in a tetrahedral network glass-former 11

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0 10 20 30 40 50 60

K

ρ

P

NTW
BMLJ
WAHN
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Arrhenius behaviour around and slightly below TO. As we can see from figure 7,

equation (4) fits rather well τ(T ) over about 5 decades. Note that the degree of super-

Arrhenius behaviour in τ(T ) is indeed rather modest and more visible at wave-numbers

corresponding to the first sharp diffraction peak (k = 5.0).

Also included in figure 7 are the partial diffusion coefficients D1(T ) obtained from

the usual Einstein relation. To describe the T -dependence of the diffusion coefficients,

we simply used the Arrhenius law, Dα = Dα
∞
exp(Eα/T ). By fitting the data at

low temperature (T < 0.4), we obtain activation energies E1 = 6.3 ≈ 3.8eV and

E2 = 5.9 ≈ 3.6eV, which are in reasonable agreement with those obtained in the

case of BKS silica for silicon and oxygen atoms, respectively [30]. The difference in the

diffusion coefficients between the two species is analysed in the lower panel of figure 7,

where the ratio D1/D2 is shown as a function of 1/T . This ratio becomes ∼ 2 at the

lowest temperatures. A smaller separation of time scales is found when inspecting the

ratio τ2/τ1.

The fragility index K of the NTW model obtained from fits to equation (4) is shown

in figure 8 as a function of ρ. The system is slightly stronger (smallerK) at densities close

to the experimental density of silica. In this range of density (1.5 < ρ < 1.8), tetrahedral

local order becomes nearly ideal at low T . Hence, our results provide support for the

link between structure and dynamic behaviour in network liquids demonstrated in [24]

for patchy colloidal particles. Interestingly, the fragility of the NTW model seems to

increase outside the density range mentioned above both at high and low density. Further

investigations at low density would be required to clarify the nature of this behaviour

and its possible connection with a reversibility window [36, 37], whose existence for silica

has been suggested by recent work [38].

The use of a common functional form to describe τ = τ(T ) of NTW and LJ models

allows a direct comparison of their Angell’s fragility. To this end, we also included

in figure 8 the values of K obtained in [27] for the mixture of Kob and Andersen
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(BMLJ [39]) and the mixture of Wahnström (WAHN [40]). Clearly, both LJ mixtures

have larger fragility indexes. Furthermore, the fragility index of NTW, K = 0.09,

obtained at ρ = 1.655 is lower by around a factor of 3 than the lowest values found for LJ

mixtures (K = 0.24 for AMLJ-0.60 [27]). The fact that the fragility index was obtained

at constant density for the NTW and constant pressure for the LJ mixtures does not

affect substantially our conclusions. Moreover, even when considering the variation of

K with ρ, the largest fragility index of the NTW model (K = 0.20 at ρ = 2.300) is

comparable to the lowest ones found in LJ mixtures [27]. Thus, despite the presence

of super-Arrhenius behaviour around the onset of slow dynamics, our network glass-

former is stronger than all LJ mixtures studied in [27], a fact which fits naturally in the

Angell classification scheme. Moreover, our analysis does not exclude the occurrence, at

low temperatures, of a fragile-to-strong transition—a scenario which has recently found

support on the basis of an energy landscape approach [20].

3.3. Dynamic heterogeneity

Figure 8 shows that NTW, BMLJ, and WAHN may be considered as models of strong,

intermediate, and fragile glass-formers, respectively. This offers the opportunity to

investigate the main trends of variations of the dynamics in liquids with different

fragility. In this section, we focus on the degree of dynamic heterogeneity of the above

mentioned models.

As a simple measure of the degree of heterogeneity of the dynamics we will use the

non-Gaussian parameter

α2(t) =
3〈 r4(t) 〉

5〈 r2(t) 〉2
− 1 (6)

which measures the deviation of the distribution of particles’ displacements r(t) from

a Gaussian distribution. Upon cooling the liquid below TO, in fact, the distribution of

particles’ displacements deviates progressively from a Gaussian and the amplitude of

α2 increases. Within the late β-relaxation time scale, the non-Gaussian parameter of

typical glass-forming liquids displays a broad peak, whose the position t∗ and the height

α∗ increase by decreasing temperature. The trends of variation of the maximum of the

non-Gaussian parameter α∗

2 have been found to follow qualitatively the behaviour of

more refined dynamic indicators [3], such as those obtained from four-point correlations

functions [41, 42].

We computed the non-Gaussian parameter α2(t) in equation (6) separately for

species 1 and 2. The results obtained for NTW, BMLJ, WAHN models along isochoric

quenches are shown in Fig. 9 and 10 for species 1 and 2, respectively. The degree of

dynamic heterogeneity, as measured from the height α∗

2 of the peak, is least pronounced

in the case of the NTWmodel close to the ideal density for tetrahedral network structure.

This is consistent with the analysis of Vogel et al [3], who found in fact that BKS silica

had a lower degree of dynamic heterogeneity than other simple glass-formers, including

the BMLJ model. Our results thus indicate a broad correlation between fragility and
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Figure 9. Non-Gaussian parameter α2(t) for particles of species 1 along isochoric

quenches for NTW at ρ = 1.655 (top), BMLJ at ρ = 1.2 (middle), and WAHN at

ρ = 1.297 (bottom).

the degree of dynamic heterogeneity in glass-forming liquids. In particular, within the

slow-dynamics regime, both the local structure and the local dynamics appear more

homogeneous in network than in close-packed glass-formers.

3.4. Local rearrangements

We now turn to a closer inspection of the nature of local rearrangements in our model

network glass-former. In particular, we want to identify the structural modifications

that accompany relaxation events. This is motivated by the current interest in

investigating the link between structure and dynamics in glass-forming liquids [43, 44].

We will contrast the results for the NTW model to those previously obtained for LJ

systems [45, 27, 28].

In a first attempt to characterize the local dynamics of the NTW model and to

establish a connection with its local structural properties, we computed the “propensity
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Figure 10. Same as Fig. 9 but for particles of species 2.

of motion” of particles, according to the definition of Widmer-Cooper et al [43].

In this approach, time-dependent atomic displacements ∆r(t), relative to a reference

configuration, are averaged over several trajectories generated by independent initial

sets of velocities (“iso-configurational ensemble”). The resulting spatial distribution

of average displacements 〈∆r(t)〉ic, where 〈. . .〉ic denotes an average in the iso-

configurational ensemble, is thus strictly associated to the initial configuration, and can

be used, in principle, to identify the local structural features responsible for relaxation

events.

The spatial distribution of the particles with large propensity of motion for a

representative configuration sampled at T = 0.31 is shown in figure 11 for t = 200 < t∗

(left panel) and for t = 1000 ≈ t∗ (right panel). Mobile particles, depicted in figure 11

as large dark spheres, are identified as the ones having the 30% largest propensities of

motion among those of the same chemical species. The overall picture does not change

upon small variation of the fraction of particles displayed. There is no substantial

clustering of mobile particles on either time scales. Some clustering is observed at
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Figure 11. Snapshots of particles having large propensity of motion 〈∆r(t)〉ic for

t = 200 (left panel) and t = 1000 ≈ t∗ (right panel). For both times, the 30% most

mobile particles of either species are shown as large dark spheres, irrespectively of

chemical species. The remaining particles are shown as small light spheres.

t = 1000 but the size of the clusters remains rather modest (less than ∼ 10 neighbouring

particles). This is strikingly different from the results obtained in LJ systems [45] within

the slow-dynamics regime. In LJ systems, a pronounced clustering of particles with large

propensity of motion has been observed for times on the order of the late β-relaxation

(t ≈ t∗). Our results confirm that the degree of dynamic heterogeneity of network

liquids is much less pronounced than in close-packed LJ systems, and show that the

origin of the weak dynamic heterogeneity observed within the α-relaxation time scale is

essentially kinetic, rather than structural.

The results above do not imply, however, that there is no link at all between local

structure and dynamics in network liquids. Such a link is more subtle and requires

a different type of investigation. The breaking and reformation of bonds involved

in typical relaxation events [30] occurs, in fact, on a very short time scale and the

averaging introduced by the iso-configurational ensemble washes out this information.

To overcome this problem we calculated, following Ladadwa and Teichler [46], the

instantaneous mobility of particles from a smoothed atomic trajectory

r̄i(t) =

∫

∞

−∞

ri(t
′)φ(t′, t)dt′ (7)

where φ(t′, t) is a smoothing function normalized to 1. Rather than a Gaussian [46],

we used a simple window smoothing function of length 2∆t, which equals 1/(2∆t) for

t − ∆t < t′ < t − ∆t and 0 otherwise. From the smoothed trajectories, we computed

the instantaneous atomic mobility [46]

µi(t)
2 =

∫

∞

−∞

[r̄i(t)− r̄i(t
′)]2φ(t′, t)dt′

=
1

2∆t

∫ t+∆t

t−∆t

[r̄i(t)− r̄i(t
′)]2dt′
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Figure 12. Instantaneous mobility µi(t) in arbitrary units (dashed line) for two

representative particles of species 1 (two upper panels) and species 2 (two lower panels)

at T = 0.29. Also shown are the instantaneous coordination numbers Z12(t) and Z21(t)

for particles of species 1 and 2, respectively (solid lines).

using ∆t = 10. The time dependence of µi(t) is shown in figure 12 for representative

particles of species 1 and 2 at T = 0.29. At this low temperature, atomic mobilities

show intermittent behaviour, with long periods of inactivity (vibrations) followed by

displacements occurring on a very short time scale. To establish the connection with the

changes in the local structure, we also plot, for the same time interval, the instantaneous

coordination number Z(t). A clear correlation between intermittent dynamical events

and bond breaking and reformation processes is observed. In particular, defective

local environments (Z12 6= 4 and Z21 6= 2), either created instantaneously by thermal

fluctuations or associated to long-lived defective configurations, are closely associated

to dynamical events. Interestingly, this shows that in network liquids the link between

structure and dynamics can be understood at a single-particle level. Such a link has

been demonstrated in LJ systems only at a coarse-grained spatial level [47].
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Figure 13. Animations of representative elementary dynamical events at T = 0.29

(see http://www-dft.ts.infn.it/media/gp/1/ for the corresponding MPG files,

realized with VMD [48]). White large spheres and small red spheres correspond to

particles of species 1 and 2, respectively. The particles involved in the elementary

dynamical events are surrounded by a yellow halo. Atomic positions have been

averaged over a time window of 4.2 reduced time units (700 time steps) to remove

thermal motion and help visualization. Left panel: four small particles (indicated

by arrows in the figure) in the central-upper part of the figure perform a correlated,

rotational motion in neighbouring tetrahedra (file movie1.mpg; size: 1.4 Mb). Right

panel: the central particle (indicated by an arrow) explores its low density environment

with a sequence of two jumps, associated to bond breaking and reformation (file:

movie2.mpg; size: 1.7 Mb).

Finally, we describe qualitatively the typical local rearrangements observed

at low temperature in the NTW model. By inspection of animated atomic

trajectories, we identified two typical relaxation processes, closely related to the ones

occurring in BKS silica. See figure 13 and supplementary materials (available at

http://www-dft.ts.infn.it/media/gp/1/) for two representative events. A first class

of rearrangements involves correlated rotations of tetrahedra formed by small particles

around nearly immobile large particles. The overall process resembles the “rotational

period” recently described by Heuer and coworkers [49], in which oxygens perform

permutation of the tetrahedral positions around a fixed silicon atom. A second class

of rearrangements is closely related to the ones described by Horbach and Kob [30].

One large particle jumps out from one of the faces of the tetrahedron surrounding it

and attaches itself to an under-coordinated (Z21 = 1) small particle. At the same

time, a slight recoil movement of the small particles forming the involved tetrahedron is

observed, together with the formation of a new dangling bond. Contrary to rotational

rearrangements, which often involve a few neighbouring tetrahedra, this second class

of elementary dynamical events is strongly localized around the involved tetrahedron.

On longer time scales, however, sequences of independent events are also observed (see

right panel of figure 13).

http://www-dft.ts.infn.it/media/gp/1/
http://www-dft.ts.infn.it/media/gp/1/
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4. Stationary points and unstable modes

Summarising our previous analysis, two key features characterize the dynamical

behaviour of our model network liquid: strong behaviour in the Angell’s classification

scheme and a significant homogeneity of atomic displacements within the late β-

relaxation time scale. In this section, we rationalize these features in terms of the

properties of the Potential Energy Surface (PES). In particular, we first provide an

estimate of the average energy barriers in the PES of the NTW model, and then analyse

the localization properties and real-space structure of the unstable modes associated to

stationary points of the PES.

4.1. Energy barriers

The nature and distribution of barriers connecting stationary points of the PES have

been long recognized as key aspects for understanding the dynamics of fragile and strong

liquids [6, 7]. Recently, sophisticated analysis of transitions between meta-basins for

model glass-forming liquids [50] have provided even further quantitative evidence of the

importance of the PES. In this section, we employ a simple definition of average energy

barriers [51, 28] to quantify the roughness of the potential energy surface of the NTW

model.

Our analysis of the PES is based on the procedure described in [28]. For each

state point, we perform minimizations of the mean square total force W to locate the

closest stationary points along the dynamical trajectory. Typically, between 100 and 400

configurations per state point are considered as starting points for W -minimizations.

It is well known that W -minimizations often locate points with a low value of W

(W ≈ 10−2 ÷ 10−4) that are not true stationary points. These points, usually called

quasi-saddles, contain nonetheless relevant information about the dynamics [52, 53]. In

the following, we will include these points in our analysis, without further distinction

between true stationary points and quasi-saddles. Having located the stationary points,

we diagonalize the Hessian matrix of the potential energy surface and thus obtain a set

of 3N eigenfrequencies ωα and eigenvectors {eα
i }. The unstable eigenvectors (ω2

α < 0)

are of particular interest for our discussion, because they are more directly related to

the dynamical behaviour of the system [45]. As in previous work [28], we will report

the imaginary branch of the frequency spectrum along the real negative axis.

To estimate the average potential energy barriers we follow the definition given by

Cavagna [51]

Es =
1

3

des
dfu

(8)

where es = es(fu) is the average energy of stationary points having a fraction of unstable

modes fu = nu/3N . As in [28], we evaluate Es from the slope obtained by linear

regression of es vs. fu of individual stationary points sampled at temperature T . The

procedure is illustrated in the upper panel of figure 14, where fu is shown as a function of
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Figure 14. Upper plot: fraction of unstable modes fu as a function of the energy es
of individual stationary points sampled at the indicated temperatures. Also included

are linear fits, from which the average energy barriers Es are obtained. Lower panel:

average energy barriers Es as a function of the average energy of stationary points

es = es(T ) for various T .

es for stationary points sampled at selected temperatures (T < TO). The energy barriers

obtained for individual state points are collected in the bottom panel as a function of

the average energy of stationary points es = es(T ).

From the comparison of the results above with those obtained in [28] for LJ

mixtures, we draw two main conclusions, which highlight the peculiarity of the network

liquids: (i) energy barriers in the NTW model are large compared to typical thermal

energies already for T ≈ TO, and (ii) their increase is very weak (less than 20%) with

decreasing temperature below TO. At least at a qualitative level, (ii) confirms our

conjecture [28] that the fragility of a glass-forming liquid is related to the increase

of average energy barriers Es upon cooling below TO. It also supports the overall

picture that the energy landscape of network liquids has a uniformly rough structure,

with barriers whose average amplitude is nearly independent of the energy level.

Organization of stationary points into meta-basin structures, while present even in

network liquids [54], should be of much more limited extent than in the more fragile,

close-packed glass-formers.

4.2. Localization properties

We now investigate the localization properties and the real-space structure of the

unstable eigenvectors of the stationary points sampled in the slow-dynamics regime.

In particular, we aim at explaining the more “homogeneous” character of atomic
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Figure 15. Average gyration radius Lc of modes of frequency ω calculated at ρ = 1.655

and T = 0.31 using different procedures (see text for definitions): straightforward

calculation using equation (9) (dotted line), method (i) (dashed line), and method (ii)

(solid line).

displacements observed in NTW, compared to the more fragile LJ mixtures.

One possible measure of the degree of mode localization, used in a number of

previous investigations [55, 56, 57], is provided by the gyration radius

Lα
c =

N
∑

i=1

|eαi |
2|ri − rc|

2 (9)

where rc =
∑N

i=1 ri|e
α
i |

2 is the “centre of mass” of the mode. Extended modes should

have Lc ≈ 1.0, while Lc < 1.0 for localized modes. It turns out, however, that the

definition in equation (9) is inappropriate for systems with periodic boundary conditions.

The centre of mass of the mode, in fact, is not well defined in a periodic system, and the

value of Lc thus depends on the choice of the origin of the frame of coordinates. As it will

be clear in the following, this shortcoming is particularly evident in the case of strongly

localized modes. To overcome this problem, we employ two alternative definitions of

the gyration radius, obtained by redefining the origin of the system coordinates: (i) the

position of the particle that has the largest displacement on mode α is used as the origin

of the system coordinates for the calculation of Lα
c ; (ii) the gyration radius is determined

by minimization of Lα
c over all possible origins of the system coordinates chosen on a

grid of points subdividing the cubic cell.

In figure 15 we show the average gyration radius Lc of modes with frequency ω

obtained for NTW at T = 0.31, using the original definition and the two alternatives

(i) and (ii). The original definition substantially overestimates the extension of strongly

localized modes, while discrepancies are somehow less pronounced for extended modes.

For extended modes, smaller discrepancies are apparent between methods (i) and (ii).

In the following, we will employ definition (ii). Only minor quantitative differences in

the following analysis appear when using definition (i).

We now focus on the unstable modes, which have been found to contain direct

information on the dynamics of a glass-forming liquid [45]. In figure 16 we show the
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Figure 16. Distribution of Lc for unstable modes sampled in the slow-dynamics

regime: in NTW at ρ = 1.655, T = 0.31 (upper panel), in BMLJ at ρ = 1.2, T = 0.45

(middle panel), in WAHN at ρ = 1.297, T = 0.54 (lower panel).

distribution of Lc for the NTW model at T = 0.29. For comparison, we also show

analogous distributions obtained for BMLJ and WAHN at temperatures deep in the

slow-dynamics regime. The distribution of Lc for NTW is bimodal, with an excess

of localized unstable modes having Lc ∼ 0.2. A similar, yet much less pronounced,

excess peak at low Lc is observed in the distribution for BMLJ, while no such feature is

found for the very fragile WAHN model. Justified by the fact that the minimum of the

distribution of Lc for NTW is located around 0.5, we define a mode localized (extended)

if Lc is smaller (larger) than 0.5. The precise location of this cutoff is irrelevant for the

discussion below.

Information about the relevance of localized unstable modes in different glass-

formers is conveniently represented by the plot in figure 17, where the fraction of

localized unstable modes ful is shown as a function of fu. The NTW model has a

substantial fraction of localized unstable modes, independent of the energy level in

the PES. ful only weakly increases by lowering fu, i.e., as the systems explores lower
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Figure 17. Fraction of localized unstable modes ful in stationary points as a function

of the total fraction unstable modes fu in NTW at ρ = 1.655 (squares), BMLJ at

ρ = 1.2 (circles), and WAHN at ρ = 1.297 (triangles).

regions of the energy landscape. In contrast, in the very fragile WAHN ful is very

small and increases only on approaching the bottom of the energy landscape. The

BMLJ displays an intermediate trend, since a larger fraction of localized unstable modes

is present. These localized modes of the BMLJ mixture correspond to eigenvectors

where a small particle and few other neighbours have large displacements (see figure 13

in [28]). It is remarkable that the trend observed in the localization of unstable modes

follows the different dynamic character (strong, intermediate, fragile) of the models

studied (see also [58]). Moreover, our results provide a simple explanation of the weak

degree of dynamic heterogeneity in network liquids in terms of an excess of localized,

uncooperative unstable modes, which are absent, or at least rarer, in the more fragile

LJ mixtures.

Finally, we describe the nature of the rearrangements associated to localized and

extended unstable modes of the NTW model. The typical extensions of localized and

extended unstable modes are depicted in figure 18. From inspection of the real-space

structure of the atomic displacements we found that the unstable modes reproduce the

two classes of local relaxation processes described in section 3. Extended unstable modes

usually involve coupled rotations of tetrahedra and have a marked collective nature.

These modes are thus good candidates for explaining the rotational motions described

in section 3. Similar unstable modes have been found in the unstable branch of the

instantaneous normal mode spectrum of BKS silica [19]. On the other hand, localized

unstable modes correspond rather well to the second class of local rearrangements

described in section 3. The mode depicted in left panel of figure 18 shows the passage of a

large particle, initially at the centre of a tetrahedron, through the face of the tetrahedron,

while a neighbouring under-coordinated small particle moves in the opposite direction

to create a bond. In the intermediate stage along the reaction coordinate of the

mode the large particle is 5-fold coordinated. Our results indicate that both types of

elementary dynamical events should be taken into account for a complete description of
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Figure 18. Typical extension of localized (a) and extended (b) unstable modes of a

stationary point sampled at T = 0.29. Only particles with displacement |eαi | larger

than 0.04 are shown, and the eigenvectors are scaled logarithmically. Particles of

species 1 and 2 are shown as white large spheres and small dark spheres, respectively.

the dynamics in network liquids. Approaches that focus only on soft stablemodes [59, 60]

may not be able to capture the localized nature of the dynamics in network liquids. In

these systems, in fact, the low frequency portion of the VDOS encompasses collective

modes that typically involve coupled rotations of tetrahedra [61, 14].

5. Conclusions

In this work we have extended our previous analysis [27, 28] on the glass transition

of fragile Lennard-Jones mixtures by introducing a new model of tetrahedral network

glass-former based on short-ranged, spherical interactions. Remarkably, these simple

models of liquids, all based on pair potentials of the Lennard-Jones type, are able to

reproduce qualitatively a wide spectrum of dynamic behaviours, thus allowing extensive

and detailed investigations of the glass transition phenomenon.

Notwithstanding the problem of crystallization, which may occur in binary mixtures

during longer simulations [62, 63] but is not observed in our samples, we have found that

the fragile vs. strong behaviour of our models can be clearly identified and rationalized

even at relatively high T , but below the onset temperature of slow dynamics. Using

an appropriate parameterization of the T -dependence of relaxation times, we have

found that the model network glass-former is stronger at all studied densities than

all previously investigated LJ mixtures. Our results also confirm that the degree of

dynamic heterogeneity is less pronounced in network than in close-packed glass-formers.

An important aspect of the glass transition concerns the nature of atomic

rearrangements occurring within the α-relaxation time [64, 65]. The relation between

dynamical events and the nature of the local structure is of particular interest [43, 44].

The analysis of the propensity of motion of particles within the late β-relaxation time

scale, combined with a comparative study of the non-Gaussian parameter in different
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systems, has revealed a substantial homogeneity of atomic mobility in the model network

glass-former. However, contrary to the case of LJ mixtures, it is possible to establish a

relation between local structure and dynamics at the single-particle level by considering

individual atomic trajectories. Periods of high mobility are in fact clearly associated to

sequences of bond breaking and reformation, i.e. variations in the local structure.

The features described above and the variation of dynamic behaviour in systems

with different fragility can be rationalized well in terms of the features of the Potential

Energy Surface. We have focused on the properties of the unstable modes of saddles

and quasi-saddles sampled within the slow-dynamics regime. The amplitude of the

average energy barriers Es in the model network glass-former is always larger than

typical thermal energies below TO and depends very mildly on the energy level. This

contrasts the findings in the more fragile LJ mixtures, where Es rapidly increases upon

entering in the slow-dynamics regime [28]. The localization of the unstable modes offers

direct insight into the elementary dynamic events leading to relaxation. In general, as

the system explores lower and lower regions of the energy landscape, the unstable modes

soften and retain a cooperative character. In the NTW model, there is also a significant

fraction of localized unstable modes that persists in the whole slow-dynamics regime.

These localized modes typically describe bond breaking and reformation, i.e. elementary

rearrangements that characterize the dynamics of the model. On the contrary, close-

packed fragile liquids have a large fraction of extended unstable modes, which soften

and tend to localize only on approaching the bottom of the landscape. As a result, the

dynamics in the latter systems is inherently more cooperative than in network liquids.
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