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Density functional calculations for the electronic conductance of single molecules are now common.
We examine the methodology from a rigorous point of view, discussing where it can be expected
to work, and where it should fail. When molecules are weakly coupled to leads, local and gradient-
corrected approximations fail, as the Kohn-Sham levels are misaligned. In the weak bias regime, XC
corrections to the current are missed by the standard methodology. For finite bias, a new method-
ology for performing calculations can be rigorously derived using an extension of time-dependent
current density functional theory from the Schrödinger equation to a Master equation.
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I. INTRODUCTION AND NOTATION

Single molecules used as building blocks such
as diodes, transistors, or switches have attracted
much interest as a basis for a future molecu-

lar electronics[1]. Many groups world-wide have
been performing either experiments or calcula-
tions. There has been tremendous progress, es-
pecially in the areas of metallic wires[2, 3, 4, 5, 6]
and nanotubes [7, 8, 9, 10, 11, 12, 13]. How-
ever, comparison between theory and experi-
ment has been much less successful for molecular
electronics, i.e., organic molecules between two
electrodes. Experimentally, obtaining consis-
tently reproducible results from device to device
has been problematic[14, 15]. Theoretically, the
challenge is finding a method to quantitatively
determine device characteristics with neither
empirical input nor over-parameterization[16,
17, 19, 20].

In recent years, density functional the-
ory (DFT) calculations of electronic transport
through single molecules have been published by

http://arxiv.org/abs/cond-mat/0703591v2
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an ever increasing number of research groups.
We focus here on purely electronic transport cal-
culated with DFT-based methods. The most
prominent method is the Landauer–type scat-
tering formalism [21, 22, 23, 24], formulated in
terms of Greens functions in combination with
ground state DFT. It can be derived using the
Keldysh non-equilibrium Greens-function for-
malism [25, 27]. In the following, we will call
this method the standard approach. It can also
be obtained from elementary scattering theory
(e.g. [17, 26]), or using the Kubo linear response
formula[28, 29, 113]. However, such derivations
are limited to at best Hartree-interacting elec-
trons, as we discuss. Apart from calculating
the current–voltage characteristics of a coher-
ent molecular junction in the Landauer scat-
tering picture [17, 26, 27, 30, 31, 32, 33, 35,
36, 37, 38, 39, 40], several additional aspects
such as electron–phonon coupling[41, 52, 53],
conformation–induced switching[54, 55, 56, 57,
58], or interaction with light[55] have also been
addressed within these methods. Questions dis-
cussed also include the influence of electrode-
molecule bond geometry[17, 30, 59, 60, 61, 62]
or effects of a gate electrode[19, 42, 58, 63].

Whereas ground state DFT has become quite
reliable for calculating the electronic structure
and other properties of molecules and solids[64],
this success has not extended to transport calcu-
lations through organic molecules[17, 19]. While
these calculations were originally greeted with
much enthusiasm, researchers in the many-body
community have always been skeptical[65, 66,
67]. A simple question to ask is, can such cal-
culations correctly describe the Coulomb block-
ade regime? That the answer is patently no has
raised doubts about the validity of this approach
among that community. These doubts have been
further compounded by the fact that calculations
within this scattering framework usually over-
estimate the experimentally measured conduc-
tance of organic molecules by about one order of
magnitude [17, 19]. Only for transport through
atomic metallic wires[2, 3, 4, 5], do calculations
yield results in agreement with experiment, but
this is not a true test of the method, as the same
result is found in any calculation yielding a unit

of conductance per channel.

The performance of this standard approach is
the main subject of this review. As we describe
below, neither of the traditional tests of DFT
calculations, i.e., direct comparison with exper-
iment or benchmark testing against more ac-
curate theoretical methods for smaller systems,
are generally available for this problem. On the
one hand, the experimental situation is often not
well-characterized, while on the other, these are
transport calculations with systems of up to sev-
eral hundred atoms. Alternative treatments are
either prohibitively expensive or of such a mod-
elistic nature as to not allow meaningful tests.
Thus, at present, there is no simple way to know
when the standard approach is accurate or reli-
able. Instead, we examine carefully DFT treat-
ments, and show that the standard approach is
an approximation to a more general approach
using time-dependent DFT, and from this per-
spective, its limitations can be deduced.

Ground-state DFT is based on rigorous theo-
rems and so, if correctly applied to a problem,
using a sufficiently accurate approximate func-
tional, will produce an accurate result. The pur-
pose of the present article is to ask two simple
questions: (a) is the present standard approach

formulation derivable from the basic theorems of
ground-state DFT, and (b) if so, are our present
approximations sufficiently accurate for conduc-
tance calculations? The answers show a variety
of deficiencies (e.g. inadequacy of the ground-
state approximation, approximations made by
using local functionals) in the present theory and
we do not yet know how important these draw-
backs are. We don’t know how frequently situa-
tions are encountered in which these limitations
are quantitatively significant.

We discuss here three major issues that need
to be resolved to improve on the present state
of transport calculations. (i) The first involves
the accuracy of ground-state functionals. The
functionals presently used in the Landauer and
Kohn-Sham approximations might not capture
enough of the physics to be useful and more im-
portantly they might not give good qualitative
or quantitatively accurate results. The worst
defect we have found is due to lack of deriva-
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tive discontinuity in LDA and GGA functionals,
which leads to an artificial level broadening and
can greatly overestimate the conductance [19],
due to incorrect positions of the resonances if the
molecule is weakly coupled to the leads[68, 80].
(ii) The second issue is the missing exchange-
correlation (XC) contribution in the Landauer
formula. Present calculations entirely miss this
contribution to the current. Some groups have
sought to improve on the issues delineated in (i)
and (ii) by calculating the XC corrections to the
current via the gradient expansion corrections
in the Vignale-Kohn approximation [20] and the
exact exchange Kohn-Sham potential with the
Optimized Effective Potential (OEP) [80]. The
exact exchange potential can also be estimated
with self-interaction corrections (SIC) [68, 69]
where the self-interaction errors in LDA DFT
calculations are subtracted out. Furthermore, in
the weak bias limit, a careful application of the
Kubo response equation coupled with the DFT
formulation, can be used to find the exact an-
swer [19]. (iii) The third issue we address is
an exact theory for finite bias, since transport
experiments are often conducted under a finite
voltage drop. Thus, an exact formula couched in
DFT terms must be derived for these conditions.

In the last few years, the DFT computa-
tional transport community has become aware
of these issues[17, 19, 20, 68], and a variety of
approaches to overcome them have been sug-
gested. Many are looking to alternative for-
mulations, such as configuration-interaction (CI)
in quantum chemistry[70] or GW in many-body
physics[71, 72], to include effects that are missed
in present (standard approach) DFT treatments.
Such calculations are sorely needed, to test the
DFT formulations against and learn their limita-
tions. Accurate wavefunction treatments are ex-
tensively used in both ground–state and TDDFT
as benchmarks and to provide insight into func-
tional development[73]. But since such calcula-
tions are typically far more expensive than DFT
calculations, and given the chemical complexity
of the devices that can be built, there remains
an over-riding need to develop a reliable DFT
approach.

Thus a variety of new DFT-based formula-

tions of the problem are being developed. One
discussed here includes using a Kohn-Sham ef-
fective single particle version of a Master equa-
tion formulation of transport[74] which will be
discussed in section V A 2. Using TDDFT, an-
other approach obtains the current by calculat-
ing the time evolution of a system consisting of
a molecule coupled to two finite metallic con-
tacts and turning on a potential step, resulting
in two different chemical potentials[75, 76]. A
third is to use large finite leads, and watch a
capacitance discharge[78]. All three methods es-
sentially begin from a static distribution, apply
some change, and allow the system to evolve to
a steady, but non-equilibrium distribution. For
non-interacting electrons in the weak bias limit,
all agree, both with each other and the stan-
dard approach, but likely disagree in the general
case of interacting electrons in finite bias. Under
certain limiting conditions, such as adiabatic ap-
proximations to TDDFT, and local approxima-
tions to ground-state DFT, they yield the same
results.

Because of the breadth of topics we cover
in this review, we have collected the notation
used in various formulas and expressions in Ta-
ble I for easy reference. We use atomic units
(e2 = h̄ = m = 1) throughout, unless oth-
erwise stated. So all energies are in Hartree
(1H = 27.2eV = 627kcal/mol) and distances in
Bohr-radii (0.529Å).

II. REVIEW OF THE STANDARD APPROACH

In this section, we first review standard cal-
culations that utilize a combination of ground–
state DFT and the Landauer scattering formu-
lation (the standard approach). We then look
at approximations commonly employed in the
course of calculating the conductance with this
method.

A. Landauer scattering formulation

The Landauer scattering formulation can be
easily understood in terms of a simple schematic
for a molecular tunneling device, as shown in
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TABLE I: Notation for formulas

symbol description
n(r) electron density as a function of position
vext(r) ext. potential due to nuclei and ext. fields
vXC(r) exchange-correlation potential
vH(r) Hartree potential
vtot(r) vext(r) + vH(r), total electrostatic potential
vS(r) KS potential= vext(r) + vH(r) + vXC(r)
χS(r, r

′, ω) KS density-density response function
χprop(r, r

′, ω) proper susceptibility
(density-density response function)

χ(r, r′, ω) many-body density-density response function
i occupied level index
a unoccupied level index
q transition index of transition i → a
Φq(r) Φ∗

i (r)Φa(r) = KS ground state orbitals
ωq ǫa − ǫi
α = L/R quantum numbers for (left/right) lead

electrons
i, j indices for KS orbitals of the device region
α, β cartesian indices
ǫkα energy of electron in lead α = L/R

with momentum k
Vkα,n coupling between leads and molecule

c†kα(ckα) creation (destruction) operator for electron
with momentum k in lead α

d†n(dn) creation (destruction) operator for electron
with quantum numbers n on the molecule

ρα(ǫ) density of states in lead α
fl/R(ǫ) Fermi-Dirac distribution functions in leads

Γ
L/R
i,j transition rate to left(right) lead

= 2π
P

αǫL/R ρα(ǫ)Vα,i(ǫ)V
∗
α,j(ǫ)

gr surface Green’s function for the leads
τ hopping matrix describing the coupling

between leads and molecule,
its elements are given by Vkα,n

P

R(
P

L) self-energy matrices = τgrτ †

Ga(r,>,<) full advanced (retarded, greater, lesser)
Green’s function for the extended molecule

g0 unperturbed KS Green’s function for device
ΨS TDDFT KS wavefunction of the entire system
Ψα TDDFT KS wavefunction projected on the

leads α = L,R
ΨC TDDFT KS wavefunction projected on the

central (molecule) region
Hαβ block of the TDDFT KS Hamiltonian with

α, β = L(left), R(right), C(center/molecule)
ǫres position of level in a resonant tunneling device
γ width of resonance in a resonant tunneling

device/ coupling to the leads
T (ǫ) transmission coefficient as a function of energy
n(ǫ) spectral density of states
f occupation of level
ǫF Fermi energy
ǫHOMO(ǫLUMO) HOMO (LUMO) level of device
σ(r, r′, ω) conductivity (current-current response

function)
ST density matrix for total system
S reduced density matrix

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

MoleculeLeft lead Right lead

µF

ǫLUMO

ǫHOMO

γ

µF

∆V

FIG. 1: Schematic of the potential of a resonant tunneling de-
vice with the LUMO level of the device molecule sandwiched
between the Fermi levels of the leads which are shifted relative
to each other by an applied bias voltage ∆V . When ∆V = 0,
the chemical potential is µF . The LUMO and HOMO levels
have a small width γ, indicating weak coupling to the leads.

Fig. 1. In this cartoon, the electrons are
non-interacting and the system is one dimen-
sional. The leads are featureless boxes, and the
‘molecule’ consists of states localized to the bar-
rier region. In the cartoon, µF is the chemical
potential of the entire system, i.e., in its ground
state and in the absence of a bias. The molecule
has been drawn so as to be weakly coupled to
the leads, so that the levels on the molecule are
only slightly broadened into resonances of width
γ.

In the Landauer picture, the applied bias raises
the potential on the left lead by an amount ∆V .
There is now an imbalance in the system. If one
waits a long enough time, eventually many elec-
trons would flow from the left to the right, and
re-establish equilibrium, with a common chemi-
cal potential. This is not the regime we are inter-
ested in. Instead, on an intermediate time-scale,
one assumes a steady current is established, that
is sufficiently small as to have no effect on the
reservoir levels.

The current can then be calculated from the
two-terminal Landauer formula[21] which, for
this case, is simply

I =
2

π

∫ ∞

−∞

dǫ∆f T (ǫ) (1)

where

∆f = f  L(ǫ) − fR(ǫ)
= f(ǫ− µF − ∆V ) − f(ǫ− µF). (2)

and T (ǫ) is the transmission coefficient at energy
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ǫ. The factor of two is for the two spin channels.
This can be easily understood as follows. Con-

sidered as a function of energy, only those states
in the window between µF and µF + ∆V can
carry a net current. Those below are occupied
on both sides, those above are unoccupied on
both sides. Each state of energy ǫ in the win-
dow will transmit an electron with probability
T (ǫ), yielding that contribution to the net cur-
rent. The schematic shown in Fig. 1 will yield
a current-bias curve like that shown in Fig. 2
The differential conductance, dI/d∆V , will be

εLUMO µ F ∆V

I

γ

FIG. 2: Schematic current-voltage characteristic of the reso-
nant tunneling device displayed in Fig. 1. The onset of the
current occurs around ǫLUMO − µF. The step is broadened by
the coupling γ.

strongly peaked in the position of the LUMO.
The result is even simpler in the zero bias limit,
as dV → 0. Then, df = δ(µF)dV , so that the
conductance becomes

G =
dI

dV
=

2T (µF)

π
. (3)

Thus for non-interacting electrons in a fixed
potential, the Landauer formula is easily under-
stood and justified.

B. Interacting Electrons

The Landauer formula for non-interacting (or
at most Hartree-interacting) electrons was later
generalized to interacting electrons by Meir and
Wingreen [25], who formulated an algorithm
for calculating the current using the full non-
equilibrium Green’s functions for the system.
They employ a second quantized Hamiltonian
description for the electrons in the leads, the

interacting region (molecule), and the coupling
between them. Initially uncoupled, the coupling
between the leads and the molecule is turned on
slowly via the Vka,n term in Eq. (4):

H =
∑

k,a ǫL,R

ǫkac
†
kacka + Hint({d

†
n}; {dn})

+
∑

k,a ǫL,R

(Vka,nc
†
kadn + H.c.). (4)

Here, k refers to the momentum of an electron
with energy ǫka in the left or right lead, labeled
by α. The creation and annihilation operators
are denoted by c†(c) and d†(d), referring to the
leads and the molecule, respectively. Then, us-
ing the continuity equation for the current, the
Keldysh formalism for the Green’s functions and
allowing the electrons in the device region to in-
teract while keeping the electrons in the leads
noninteracting, they find an expression for the
current when the leads are at different chemical
potentials:

I =
2

π

∫

dǫ(tr{[fL(ǫ)ΓL
i,j − fR(ǫ)ΓR

i,j](G
r
i,j −Ga

i,j)}

+ tr{(ΓL
i,j − ΓR

i,j)G
<
i,j}), (5)

and Γ
L/R
i,j = 2π

∑

a ǫ L/R ρa(ǫ)Va,i(ǫ)V
∗
a,j(ǫ) where

i, j indexes the states in the interacting region
and a indexes the states in the leads. Gr, Ga,
and G< refer respectively to the retarded, ad-
vanced, and lesser Green’s functions. Meir and
Wingreen[25] derived a simpler formula for the
case of proportional couplings (ΓR

i,j = αΓL
i,j)

I =
2

π

∫

dǫ [fL(ǫ) − fR(ǫ)] Im [tr {ΓGr}] , (6)

where Γ = ΓLΓR/(ΓL + ΓR). This however, is a
strong limitation due to their reliance on sym-
metric contacts which is never fulfilled for a re-
alistic system. Only an atomic point contact
could satisfy this condition since it requires that
each orbital on the device couples equally to the
left and right contact. This restriction can be
removed[17, 75], resulting in a general formula
for the current in terms of the non-equilibrium,
self-consistent Green’s function.
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FIG. 3: Landauer approach: schematic representation of a
benzene-1,4-di-thiol molecule between two gold contacts. The
molecule plus gold pyramids (55 atoms each) constitute the
extended molecule as used in the DFT calculations for the
standard approach.

C. The standard approach

Because of the difficulties involved in solv-
ing the full many-body problem for the non-
equilibrium Green’s functions exactly for an in-
teracting system of many electrons, the Green’s
function in Eq. (6) is usually approximated with
the ground–state Kohn-Sham effective single-
particle Green’s function (DFT-NEGF). This
complicates the simple picture of Fig. 1 some-
what, as the KS potential changes with the ap-
plied bias. A self-consistent KS potential must
be found, which will continuously change from
being raised by ∆V on the left, to being at its
equilibrium level on the right. These changes
will not be confined solely to the molecule, but
should die off within one or two Fermi wave-
lengths into the leads. Thus one must define an
extended molecule as in Fig. 3, which includes
those parts of the leads where the KS potential
differs from its non-biased value.

Also note that in most calculations, the
molecule is chemically bonded to the leads. Thus
its levels will be much broader than pictured in
Fig. 1, overlapping with one another, and delo-
calizing into the leads.

In addition, approximations to the self energy
matrix ΣR and ΣL are made (e.g. [26, 30, 32]).
The coupling between the right lead and the
device is described by the hopping matrix τR

(whose elements are just the coupling terms Vka,n

in Eq. (4)) and similarly for the coupling be-
tween the left lead and the device. There is no
direct coupling between the leads as this would
cause electrons from the left lead to run into the
right lead until a global equilibrium was reached.
Then, the self-energy that encapsulates the ef-
fects of coupling the left contact to the device
can be written as:

ΣL = τLg
r
L
τ †
L

(7)

where gR
L

is the surface Green’s function for the
left lead. An equivalent expression can be de-
rived for the right contact. The full Green’s func-
tion for the device region,G, can then be written
in terms of the unperturbed KS Green’s func-
tion, gr

0, for the extended molecule (molecule
plus small parts of the leads, Fig. 3) as

G−1 = g−1
0 + ΣL + ΣR. (8)

The coupling matrices ΓR(L) are given in terms
of the self-energy matrices as

ΓL(R) = −i(ΣL(R) −Σ
†

L(R)) = 2ℑΣL(R). (9)

This self-energy only describes hopping onto
and off the device from the leads, but ne-
glects the other processes that can occur in the
leads. The leads are thus assumed to be non-
interacting. In this situation, a Dyson equation
for the device region leads to the formula for the
current for the case of non-interacting electrons
derived from the more general expression given
in Eq. (5):

I =
2

π

∫

dǫ [fL(ǫ) − fR(ǫ)] tr {GaΓRGrΓL} .

(10)
Identifying the trace with a transmission coef-
ficient, this is identical to Eq. (1). This ap-
proach has been implemented successfully by
many groups by now (e.g. [18, 26, 27, 30, 31,
32, 33, 34, 35, 37, 38, 39, 40, 49, 82]), and cal-
culations have been performed for a large va-
riety of molecules, coupled to electrodes of dif-
ferent materials like gold, platinum and silicon.
Molecules studied vary from H2 to alkyl-chains,
to molecules built from aromatic subunits, or
metallo-organic complexes. With sucessful we
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refer to a calculation in which the described stan-
dard formalism has been implemented and ap-
plied in a correct way. Especially early DFT
based calculations of molecular conductance of-
ten had some shortcomings in the implementa-
tion or application, e.g. the coupling to the
macroscopic leads was not accounted for in an
appropriate way, which lead to strong deviations
in the calculated current. Sucessful implementa-
tions, when applied to the same molecular sys-
tem and contact geometry with the same func-
tional performed by different groups yield sim-
ilar results. However, the calculated conduc-
tances usually overestimate the experimentally
measured ones by about one order of magnitude
[17, 19]. By far the best studied molecule is
benzene-dithiol coupled to gold contacts via the
sulfur atoms[17, 32, 34, 40, 42, 43, 44, 45, 46,
47, 48, 49, 50, 59]. Fig.9 shows results from a
calculation[19] using the geometry in Fig. 3 and
comparing DFT with HF. Other calculations use
slightly different geometries, like e.g. planar gold
surfaces and a super cell. Using the latter geome-
try, calculations[51] employing the Master Equa-
tion approach yield a zero bias conductance of
≈ 0.4G0, in very good agreement with Transi-
esta calculations[34] (≈ 0.4G0) and the results
in Fig. 9 (0.3 G0), which both employed slightly
different geometries.

D. Limitations of the standard approach

Transport is inherently a time-dependent non-
equilibrium problem with current flow which is
not at all within the domain of validity of a
ground-state DFT description. Its natural de-
scription is found within time-dependent (cur-
rent) DFT. Therefore, using ground state DFT
to calculate the device Green’s function incor-
porates several uncontrolled approximations and
errors which will be investigated in sections III
and IV). The time-dependent (TD) XC po-
tential can be very different from its ground–
state counterpart. First, the step from time-
dependent DFT to ground state DFT misses all
dynamic effects, i.e., the adiabatic approxima-
tion of section IV B. Also, for example, the par-

titioned system is assumed to be in equilibrium
and disconnected from the leads at some initial
time. Slowly, a finite voltage is turned on which
shifts the chemical potentials of the leads. This
necessarily drives the system out of equilibrium
and so the electron distribution in the leads do
not follow the equilibrium Fermi distributions.
This effect is probably small, but its presence
points to the many problems with this approach.

Other problems with this approach include the
incorrect placement of energy levels due to the
missing derivative discontinuity when a local ap-
proximation to the XC-functional is employed.
This leads to an error in the location of the res-
onance peaks (section III). The failure of local
functionals to reproduce the derivative disconti-
nuity also produces resonance peaks that are too
wide in energy which results in a general overes-
timation of the conductance.

III. INADEQUACY OF GROUND-STATE

APPROXIMATIONS

In this section, we take the standard approach

prescription at face value, and assume it would
give the correct conductance if implemented
with the exact ground-state density functional.
(In the next sections, we will show that this
is unlikely to be true in general.) But we ask
the simple question: using present standard den-
sity functional approximations (LDA, GGA, hy-
brids), will we get accurate results? To answer
this question, we must first review some facts
that are well-known in the DFT community.

A. Exact ground-state DFT

In the top panel of Fig. 4 we show the exact
density n(r) of the He atom, calculated by Um-
rigar et al.[83], using quantum Monte Carlo to
minimize the energy of a highly accurate wave-
function. In the bottom panel of Fig. 4 we plot
both the nuclear (i.e. external potential) poten-
tial, which is −Z/r in atomic units, and the
exact Kohn-Sham potential vS(r) for this sys-
tem. Two non-interacting electrons, inserted in
this potential, reproduce exactly the density of
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the top panel of Fig. 4. By the Hohenberg-
Kohn theorem[84], this potential (if it exists) is
unique. All modern Kohn-Sham density func-
tional calculations[85] are calculations of these
fictitious non-interacting electrons in a KS po-
tential. The goal of much research in DFT is to
provide ever more reliable approximations to the
exchange-correlation (XC) energy, EXC[n]. Its
functional derivative with respect to density pro-
vides the Kohn-Sham potential via

vS(r) = vext(r) + vH(r) + vXC(r), (11)

where vext(r) is the original external potential,
vH(r) is the Hartree (or classical or electrostatic)
potential, and vXC[n](r) = δEXC[n]/δn(r) is the
XC potential. In traditional ground-state DFT,

0 2 40

1

2

0 2 4-2

-1

0

4π
r2
n

(r
)

v
(r

)

r

−Z/r

KS

FIG. 4: Top panel – exact radial density for the He atom.
Bottom panel – external and exact KS potentials for the He
atom (atomic units).

the eigenvalues of the KS potential, ǫi, have no
formal meaning, except that the eigenvalue of
the highest occupied molecular orbital (HOMO)
is exactly the negative of the ionization en-
ergy (Koopman’s theorem), as can be shown by
studying the asymptotic decay of the density[86].
However, the lowest unoccupied molecular or-
bital (LUMO) eigenvalue does not in general

TABLE II: Exact Kohn-Sham energies for the He atom, i.e.
the orbitals for the KS potential of Fig. 4.

orbital energy [H]
1s −0.90372436
2s −0.15773164
2p −0.12656995
3s −0.06454705

match the negative of the electron affinity, i.e.,

ǫHOMO = −I, ǫLUMO 6= −A. (12)

In He, ǫ1s = ǫHOMO = −0.903H , but ǫ2s =
ǫLUMO = −0.158H , while the electron affinity
A = 0. Thus the fundamental gap, I − A, is
not equal to the KS gap, i.e, the HOMO-LUMO
energy difference, see Table II.

What happens then, as electrons are added to
the system? This question was answered more
than 20 years ago. Consider a Hydrogen atom,
far (say 10Å) from a featureless metal surface
(e.g., jellium), as shown in Fig. 5, and ask what

��������������

������ε

ε2sV(z)

ρ

Molecule

µ

Lead

z

1s

FIG. 5: Density and potential of a molecule-lead system where
resonance occurs when the chemical potential of the lead lines
up with ǫLUMO of the molecule.

happens to the KS potential as a function of the
global chemical potential of the system. Since we
chose the H atom far from the surface, its energy
levels pick up a tiny width γ, as they are broad-
ened into resonances. If µ matches the LUMO
energy, as shown in the cartoon, electrons would
occupy that level. But as soon as there’s even



9

an infinitesimal occupation, the level must move,
in such a way as to keep the exact Koopman’s
theorem satisfied. Since the density changes at
most infinitesimally, the only allowed change (in
the region of the atom) is a constant jump in the
KS potential, by exactly the amount needed to
restore Koopman’s theorem for the new HOMO.
This is shown in Fig. 6.

FIG. 6: Exact KS potentials for H and H with an extra in-
finitesimal electron, illustrating the derivative discontinuity.

B. DFT approximations

The success of most DFT calculations is based
on good approximations to the XC energy it-
self, as this determines so many properties of
the system. The most popular approximations,
such as LDA[85], GGA[87], and hybrids of ex-
act exchange and GGA, such as B3LYP[88] and
PBE0[89], have well-known successes and fail-
ures. But they have the following failures in
common, because they are density functionals:

• Self-interaction error: none are exact for a
one-electron system, in which

EX = −U, E=̧0 (1 electron) (13)

• They all have poorly behaving potentials
far from the nuclei. The true KS potential
decays as −1/r far from a neutral atom, and
this contribution is from the exchange po-
tential. In Fig. 7, we have also plotted the
LDA potential for the He atom. It decays

0 5-2

-1

0

v S
(r

)

r

exact

LDA

He atom

FIG. 7: Exact and LDA KS potentials for the He atom.

far too rapidly, and so its orbitals are far
too shallow. The HOMO is at -0.5704 H,
while the LUMO is not bound at all.

• None contain the derivative discontinuity,
so their potentials do not jump when the
particle number passes through an integer.

(Actually, hybrids have about 1/4 exact ex-
change, but this is not enough to cure these ills.)

On the other hand, orbital-dependent func-
tionals cure all these ills (at least, approxi-
mately). The original and simplest method
is the self-interaction correction of Perdew and
Zunger[90], and is often used with LDA for
strongly correlated systems. The corrected
exchange-correlation term is then given by:

ELDA−SIC
XC

[n] = ELDA
XC

[n]−
∑

i

(EH [ni]+ELDA
XC

[ni]),

(14)
where ni(r) = |φi(r)|

2. This functional is ex-
act for one electron, decays correctly at large
r, and its potential jumps discontinuously at
integer particle number. The dashed line in
Fig. 8 shows the huge improvement in the po-
tential compared to LDA for the He case. More
satisfactorily, there are now many implementa-
tions of exact exchange within DFT, in which
the orbital-dependent exchange is treated as an
implicit density functional[91]. Such optimized
effective potential (OEP) calculations are often
prohibitively expensive for large molecules, but
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FIG. 8: Perdew Zunger self-interaction corrected KS potential
for He (dashed line). Exact and LDA KS potentials for the
He atom for comparison.

are exact for one electron, have a potential that
decays as −1/r, and vS(r) jumps discontinuously
when a fraction of an electron is added.

Without some form of self-interaction correc-
tion, continuous density functionals allow elec-
trons to self-repel, yielding orbitals that are too
diffuse, in potentials that are too shallow.

C. Effect on transport

The missing orbital effects in approximate den-
sity functionals can have drastic consequences
for calculations of conductances. For example,
the missing derivative discontinuity in local ap-
proximations of DFT affects the magnitude of
the conductance and misplaces the resonance
peaks. This effect is strongest when the molecule
is coupled weakly to the leads. For the exact
Kohn-Sham potential as discussed above, the po-
tential is discontinuous, suddenly shifting by a
constant while the energy remains continuous, as
the next unoccupied level begins to be infinites-
imally occupied (see Fig. 6). The origin of this
discontinuity is due to the fact that ǫLUMO, the
Kohn-Sham LUMO (lowest unoccupied molecu-
lar orbital) for the N -electron system is not the
same as the Kohn-Sham HOMO (highest occu-
pied molecular orbital) for the N + 1-electron
system, as seen in sec. III A. In local approxi-
mations such as LDA and GGA, the fractionally

occupied level shifts and moves continuously to
the position of the HOMO of the N+1 system as
the next unoccupied level begins to be fraction-
ally populated. The effects for transport calcula-
tion are broad resonance peaks in transmission
which lead to finite conductance even at ener-
gies off resonance, yielding an overall increase in
conductance that is unphysical.

This was first illustrated in ref. [17], where Ev-
ers et al. performed a test calculation on a real-
istic system, finding transmission coefficients for
benzene-1,4-di-thiol covalently coupled to two
gold clusters using DFT with a GGA, and com-
paring to Hartree Fock (HF) methods. The cal-
culations were performed only at zero bias and
the results for the transmission (found from the
corresponding Green’s functions) are shown in
Fig. 9. The transmission coefficient at the Fermi

-6 -4
E [eV]

10
-4

10
-3

10
-2

10
-1

10
0

T
(E

) 
[2

e2 /h
] Hartree-Fock 

DFT (55)

E
 F

FIG. 9: Transmission coefficient over energy for benzene-1,4-
di-thiol using DFT in the standard approach within a semi-
local approximation (GGA) (solid line) compared with HF
results (dashed line). Fermi energy is ≈ −5.1 eV[17].

energy is reduced by a factor of 100 in the HF cal-
culation. This is likely due to the GGA orbitals
being too diffuse, due to the self-interaction er-
ror.

A more serious problem is due to the incorrect
positions of unoccupied levels. To probe an un-
occupied resonance at zero bias, we can apply
a gate voltage Vg to a double barrier resonant-
tunneling device (DBRTS) perpendicular to the
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leads, shifting the LUMO down to the Fermi
level ǫF (= µ at T = 0). In Fig. 1, this sim-
ply reduces all molecular levels by Vg. As a level
passes through ǫF as a function of the gate volt-
age, there will be a peak in the conductance.
When the resonance starts to overlap with ǫF ,
the exact KS ground-state potential in the region
of the molecule will differ significantly from the
off-resonant situation, as it depends on the occu-
pation, i.e. it will jump discontinuously by the
derivative discontinuity. This thereby greatly
changes the transmission characteristics. The
transmission peaks are not at the position of the
unoccupied resonances of the ungated situation.

For any sharp resonance, the transmission co-
efficient is given by

T (ǫ) =
(γ/2)2

(ǫ− ǫres)2 + (γ/2)2
(15)

where ǫres and γ are the position and width of the
resonance. In any self-consistent KS treatment
(including using the exact ground-state func-
tional), ǫR and γ depend on the ground-state
density, and therefore on the partial occupation,
0 ≤ f ≤ 1, of the resonant level.

 0

 0.5

 1

-0.5  0  0.5  1  1.5

T
S
(V

G
)

VG

FIG. 10: Double barrier resonant tunneling system with a
gate electrode. Zero-bias transmission over gate voltage:
dashed line is self-consistent approximate functional result,
dotted line is approximate result for coupling γ → 0, and solid
line is exact result. Here ǫLUMO(N) = 0, ǫHOMO(N + 1) = 1
and γ0 = 0.1[19].

We will now use a simple model to show how
the use of smooth, approximate density func-
tionals produces completely erroneous transmis-
sions (and hence conductances) as a function
of Vg[19]. Defining the KS spectral function
AS(ǫ) = ℑ(trGS(ǫ)) we can write expressions for

the spectral density of states, n(ǫ) = AS/π, as
well as for the transmission TS = γAS/2. This
yields a simple linear relationship between n(ǫ)
and the transmission of such a level, n(ǫ) =
2 TS(ǫ)/(γπ). The self-consistent occupation f
of the level is found from integrating over n(ǫ)
as

f =

∫ ǫF

−∞

dǫ n(ǫ) =
1

2
+

1

π
tan−1

{

2
ǫF − ǫres(f)

γ(f)

}

(16)
The transmission can be obtained by inverting
Eq. (16):

T−1(ǫF ) = 1 + tan2 {π(f(ǫF ) − 1/2)} . (17)

For simplicity, neglect any dependence of γ on
occupation f , i.e., γ(f) = γ0, as the actual de-
pendence is expected to be weak and to have
only little effect on the transmission peaks. The
transmission can alternatively be expressed in
terms of the gate voltage. Setting ǫF = 0 for
Vg = 0 and assuming a shift of the energy levels
by −Vg due to the applied gate voltage (gate ef-
ficiency=1), we can replace ǫF by Vg in Eq. (16)
and Eq. (17), thus describing the transmission
in terms of an applied gate voltage instead:

T−1(Vg) = 1 + tan2 {π(f(Vg) − 1/2)} . (18)

Any calculation that has a derivative disconti-
nuity would give the solid line in Fig. 10. In this
example ∆ǫ = ǫHOMO(N + 1) − ǫLUMO(N) is sev-
eral eV. The narrow resonance (width γ = 0.1)
is positioned at the energy of ǫHOMO(N + 1). On
the other hand, the dashed line is the result for
a smooth, (semi-)local density functional. As
the N + 1 level gets fractionally filled, the res-
onance moves continuously from ǫLUMO(N) to
ǫHOMO(N + 1), resulting in a smearing out of the
resonance width. It can be seen that the posi-
tion of the resonance is displaced in this case.
It is now centered inbetween the LUMO of the
N electron system and the HOMO of the N + 1
electron system, assuming ǫres = ǫLUMO + f∆ǫ
(i.e. a linear dependence of the potential on the
occupation for the smooth functional). The reso-
nance peak should be located at the true HOMO
of the N + 1 electron system (the solid line).

Even in the extreme limit of no width of the
level (γ → 0), the resonance in LDA remains
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broad. For weakly coupled leads where, at any
occupation, γ ≪ ∆ǫ, the Fermi level is pinned
to the resonance (ǫres(f) → ǫF ) for f 6= 0 or
1. This yields ǫF = ǫLUMO + f∆ǫ and using Eq.
(17) we obtain the dotted line in Fig. 10. Thus,
in a standard calculation using (semi)local func-
tionals, Eq. (17) always produces a broad peak
whose width is comparable to ∆ǫ, thereby over-
estimating the total conductance of the device
— even when γ → 0. For the case of a linear
relation as discussed here, this artificial width is
just ∆ǫ/2. In addition, the resonance position is
incorrect, being ∆ǫ/2 too low.

It is possible to recover the derivative discon-
tinuity and so avoid these artifacts with meth-
ods briefly described in section III B. The self-
interaction is effectively removed either approx-
imately from an LDA description via a self-
interaction correction (LDA-SIC) or through the
rather expensive, but more rigorous, OEP meth-
ods. In this method, the self interaction can
be removed explicitly, but it is computationally
more feasible to parameterize the self-interaction
in terms of its atomic components. What re-
sults is an orbital-dependent functional that in-
corporates non-local effects, yielding the deriva-
tive discontinuity.

Comparison of I-V curves between LDA and
LDA-SIC was performed by Toher et. al[68, 69]
using a tight-binding calculation within the stan-
dard approach. The differences in the I-V char-
acteristics were much less apparent for the case
of strong coupling, confirming that the missing
derivative discontinuity is most problematic in
the limit of weak coupling. A cartoon of this
effect can be seen in Fig. 11 where the cur-
rent versus applied bias voltage of a device ef-
fective single-particle energy level is plotted for
the LDA case (solid line), and the case for an
artificial step-like energy (dotted line) which em-
ulates the derivative discontinuity for the exact
Kohn-Sham potential. The plot on the left hand
side reflects the situation of weak coupling to the
leads (γ = 0.2eV), whereas the plot on the right
hand side reflects the situation of strong coupling
to the leads( γ = 1.2eV).
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FIG. 11: Current of a single energy level coupled to two metal-
lic leads as a function of bias. Left figure corresponds to the
case of weak coupling and right figure corresponds to the case
of strong coupling. Solid lines are results for LDA and the
dotted lines are results using self-interaction corrected LDA
(LDA-SIC). From Ref. [68].

IV. WEAK BIAS

In this section, we discuss — in the weak bias
limit — the errors made due to the standard ap-

proach scheme. In this limit, we can use Kubo
response theory to deduce the exact answer, and
compare with the standard approach. We also
give an estimate of the corrections in terms of the
Vignale-Kohn current density functional. Lo-
cal functionals not only miss the derivative dis-
continuity but also the XC contributions to the
electric field response, which leads to an addi-
tional overestimation of the conductance. In the
limit of low bias it is possible to describe trans-
port with the Kubo response formulation. See-
ing how the adiabatic local density approxima-
tion (ALDA) fails in this formulation provides
clues as to the source of the problem and how to
correct it. A more detailed discussion of calcu-
lations in this limit is given in section (V A 1).

A. Time-dependent DFT

The usefulness of ground-state DFT has been
augmented by the development and imple-
mentation of TDDFT[92]. The Runge-Gross
theorem[93] shows that, under appropriate con-
ditions, the time-dependent potential vext(r, t)
is a functional of the time-dependent density,
n(r, t). This allows one to construct time-
dependent Kohn-Sham equations, and use lin-
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ear response theory to find TDDFT corrections
to the KS transitions, making them the true ex-
citations of the system.

How the linear response theory works can be
seen in the density change to an applied per-
turbation varying as exp(iωt), which can be ex-
pressed exactly in different ways:

δn(rω) =

∫

d3r χ(r, r′, ω) δvext(r, ω) (MB)

=

∫

d3r χprop(r, r
′, ω) δvtot(r, ω) (EM)

=

∫

d3r χS(r, r
′, ω) δvS(r, ω) (DFT)

where vtot(rω) is the sum of the external and
induced (a.k.a. Hartree) potentials, while

δvS(r, ω) = δvext(r, ω) + δvH(r, ω) + δvXC(r, ω)
(19)

is the Kohn-Sham potential perturbation includ-
ing the XC contribution. Different susceptibili-
ties are used in different contexts: χ is the full
many-body (MB) response function, giving the
density change in response to the external per-
turbation; χprop is the proper or irreducible sus-
ceptibility, giving the response to the perturbing
potential of the total electric field, both exter-
nal and induced (Hartree), used in electromag-
netism (EM)[94]. Finally, χS is the Kohn-Sham

response function, constructed from KS energies
and orbitals of the ground-state KS potential:

χS(rr
′ω) = 2

∑

q

Φq(r) Φ∗
q(r

′)

ω − ωq + i0+

+ c.c.(ω → −ω),

(20)
and

〈q|f |q′〉 =

∫

d3r

∫

d3r′ Φq(r)f(r, r′)Φq′(r
′)

(21)
where q is a double index, representing a tran-
sition from occupied KS orbital i to unoccu-
pied KS orbital a, ωq = ǫa − ǫi, and Φq(r) =
φ∗
i (r)φa(r), where φi(r) is a KS orbital. Thus

χS is completely given by the ground-state KS
calculation. For example, it is the response of
the two non-interacting KS electrons sitting in
the KS potential of Fig. 2, and ωq are the

TABLE III: Singlet transition energies for He, comparison of
the true transitions with the Kohn-Sham transitions for the
exact KS potential[98].

transition KS value [eV]a true transition [eV]b

1s → 2p 21.146 21.221
1s → 2s 20.298 20.613
1s → 3s 22.834 22.923

bThe differences between the KS eigenvalues obtained using the
exact potential [98].
bAccurate non-relativistic calculations from Ref.[99].

differences of the orbital energies listed in Ta-
ble II. By definition, δvXC(r, ω) causes these
non-interacting electrons to have the same den-
sity response as the real electrons. Expand-
ing this around the original ground-state den-
sity, and requiring the same density response,
we find a Dyson-like equation relating the true
and KS susceptibilities[95]. This is just the RPA
equation well-known in other areas, but with the
Hartree interaction modified to include XC ef-
fects. One can further translate this problem
into an eigenvalue problem[96], whose approxi-
mate solution for transition frequencies is [97]:

ω ≈ ωq + 2〈q|
1

|r− r′|
+ fXC|q〉 (22)

where

fXC[n0](rr
′, t− t′) = δvXC(rt)/δn(r′t′)|n0 . (23)

is called the XC kernel. Thus, the effect of
TDDFT is to produce corrections to the KS
transitions to turn them into the true optical
transitions of the system. If we had the exact

fXC(r, r′, ω) for the He atom density, calculated
perhaps from a traditional wavefunction calcula-
tion, and inserted it in the full TDDFT response
equations, we would get exactly the results of
Table III.

B. TDDFT approximations

Most often, ground-state approximate XC-
functionals are used, even for the TD poten-
tial, which is called the adiabatic approxima-
tion. This often produces excellent excited-state
properties, and transition frequencies typically
within about 0.2 eV of the true numbers for
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molecules[100]. A simple example is the π → π∗

transition in benzene in which, in a LDA calcu-
lation, the KS transition is at about 5 eV, but
the TDDFT (ALDA) correction correctly shifts
it to about 7 eV[101].

TDDFT has been implemented in many stan-
dard quantum chemistry codes, and is run
routinely to extract electronic excitations of
molecules[100]. However, as the number of cal-
culations has grown very rapidly, the limitations
of the scheme with an adiabatic XC approxima-
tion are being felt. Even early on[102], it was
realized that Rydberg excitations would be miss-
ing within ALDA or AGGA, because of the poor
quality potentials of the underlying ground-state
approximation. The LDA potential of Fig. 7 is
shallow and short-ranged, and so has no Ryd-
berg series. Exact exchange or SIC function-
als take care of this [98]; Fig. 8 shows how
accurate the LDA-SIC potential is in compari-
son. Also, double-excitations can be shown to be
missing within any adiabatic approximation[96],
although frequency-dependent kernels can be
constructed that restore them[103]. Charge
transfer-type excitations also fail[104].

For solids, development has been slower, as the
local and semi-local nature of approximate func-
tionals means that their effect becomes negligible
in the thermodynamic limit. This can be seen
from the fact that the XC kernel in ALDA is in-
dependent of q, the wave vector in the Fourier
transform of r − r′, as q → 0, but the Hartree
term grows as 1/q2. One cure for this problem is
to use TD current DFT (TDCDFT)[105], whose
validity is established in the first part of the RG
theorem[93]. Related to this fact is the notion
that no local approximation exists in terms of
the density, but a gradient expansion in the cur-
rent was constructed by Vignale and Kohn[106]
for linear response. More recently, by compar-
ison with solutions of the Bethe-Salpeter equa-
tion, accurate many-body approximations to the
kernel have been constructed, yielding excellent
results for excitonic peaks, etc[107].

The VK approximation is the only current-
dependent approximation that is well-
established, and is often applied to problems
where non-locality and memory (i.e. beyond

adiabatic) effects are important. Most impor-
tantly, it often yields finite corrections where
ALDA gives nothing, such as to the (0,0)
component needed for the optical response of
solids[105, 108], or the over-polarizability of
long-chain conjugated polymers[73, 109]. But,
given that it is a simple gradient expansion, its
quantitative accuracy in any given situation is
open to question[109, 110, 111].

C. Constitutive relations

We can relate the conductivity σ with the sus-
ceptibility χ described in section (IV A) using
current continuity

dn

dt
= −∇ · j. (24)

Since δn(t) = δneiωt, we have:

δn = −
1

iω
∇ · δj. (25)

Then, using the relations between the vector po-
tential and the field:

δE =
∂δA

∂t
= iωδA, (26)

and the definitions of the current response:

δjα(rω) =

∫

d3r′
∑

β

χαβ(rr′ω)δAβ(r′ω)

=

∫

d3r′
∑

β

σαβ(rr′ω)δEβ(r′ω),

(27)

where χαβ is the current-current response func-
tion, a tensor, and σαβ is the conductivity
tensor[112]. We get an expression relating the
response functions for conductivity and suscep-
tibility:

σαβ =
1

iω
χαβ (28)

Also, going back to the definition of the density
response and using the relations given above in
equations (26-27), we obtain:

δn(rω) =
1

ω2

∫

d3r
∑

β

∂ασαβ(rr′ω)(−∂′
βv(rr′ω))

(29)
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which leads to the relation between the conduc-
tivity and susceptibility:

∑

αβ

∂α∂
′
β σ̂αβ(rr′ω) = −iωχ(rr′ω) (30)

As described in section IV A, in TDDFT, there
are three equivalent, exact formulas – usually
studied in reference to the polarizabilities of
atoms in strong fields – applied to different many
body descriptions and requiring different inputs,
to describe the density response to an applied
electric field.

There is an analogous response function for the
current response to an external electric field. As
with the density response formula, the response,
given by the conductivity σ in this case, is differ-
ent in each of the exact expressions. The many-
body, non-local conductivity σ(rr′ω) describes
the response to the external electric field δEext.
The proper conductivity σprop is in response to
the total field Etot = Eext + EH, and the single
particle Kohn-Sham conductivity σS yields the
response to the full expression for the electric
field, Eext + EH + EXC, including the unphysical
XC contributions EXC.

δj(rω) =

∫

dr σ(r, r′, ω) δEext(r, ω) (MB) (31)

=

∫

dr σprop(r, r
′, ω) δEtot(r, ω) (EM)

=

∫

dr σS(r, r
′, ω) δES(r, ω). (DFT)

D. DC transport from Kubo response

In the limiting case of weak bias, the response
can be expanded to first order in the electric
field. In this, we follow the logic of Kamenev
and Kohn [113]. To derive the DC transport
response, a frequency-dependent electric field is
applied, and the limit ω → 0 is taken while al-
ways ensuring that vF/ω << L, where L is the
circumference of the ring. As shown by Kamenev
and Kohn, this reproduces the Landauer formula
for weak bias for Hartree-interacting electrons.
Our work can be regarded as a simple extension
of this analysis to DFT. Note that extreme care

must be taken in the limiting procedure to ex-
tract the relevant results[114, 115, 116].

It can be shown that, as ω → 0, the conduc-
tivity can be rewritten as the transmission coef-
ficient familiar from the Landauer formulation.
This limit has to be performed carefully to ob-
tain the correct current. It has to be assured
that the excursion length of electrons in the de-
vice, given by lF = vF

ω
, is smaller than the region

of the density response, lρ, which in turn has to
be smaller than the device dimensions L of the
extended molecule in the DFT calculation (see
Fig. 3).

Using the (DFT) response equation for the
Kohn-Sham susceptibility and the full expression
for the field we can obtain the correct current.
We first rewrite the Kohn-Sham non-local con-
ductance as

σ̂S(rr
′ω) =

(

n0(r) δ
(3)(r− r′) 11 + R̂(rr′ω)

)

/(iω)

(32)
where

R̂(rr′ω) =
1

2

∑

q

Pq(r)P
∗
q(r

′)

ω + ωa + i0+
, (33)

defining Pq(r) = φ∗
i (r)∇φj(r) − φj(r)∇φ∗

i (r).
Here φi(r) and ǫi are the KS orbitals and eigen-
values, ωa = ǫi − ǫj , and q = (i, j). This result
can be written more compactly in terms of the
retarded KS Green’s function Gr

S
(rr′ǫ) and the

corresponding KS spectral density

AS(rr
′ǫ) = −ℑGr

S(rr
′ǫ)/π, (34)

just as the regular χS can be. Thus we find,
exactly,

R̂(rr′ω) =
1

2

∫

dǫf(ǫ){Gr
S(rr

′, ǫ + ω) (35)

+(Gr
S
)∗(rr′, ǫ− ω)}

↔

∇
↔

∇′AS(rr
′ǫ)

For small ω, only the imaginary component of
the KS Green’s function contributes to R̂. Ex-
pansion in powers of ω yields a term linear in ω,
and an integration by parts yields the DC con-
ductance entirely in terms of the spectral density
at the Fermi energy[113]:

σ̂S(ω → 0) = −πAS(ǫF , r, r
′)
↔

∇⊗
↔

∇′AS(ǫF , r, r
′).

(36)
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This result is true for the conductance of non-
interacting electrons in any single-particle poten-
tial. Next, we specialize to a 1d system, to avoid
complications. Then, Eq. (30) tells us that, as
ω → 0, σS becomes independent of position.
Thus, σS from Eq. (36) may be evaluated at any
choice of z and z′. An easy choice is z < 0 and
z′ > 0, and one finds [113]

σS(ω → 0) =
TS(ǫF)

π
. (37)

Since σS(ω → 0) is just a constant, it can be
taken outside the integral of Eq. (32), yielding

δI =
TS

π
(δVtot + δVXC) (38)

δI(ω → 0) =
TS(ǫF)

π

∫

d3r′(δEext(ω) (39)

+ δEH(r′ω) + δEXC(r′ω)) (40)

where δVtot =
∫

dz′ δEext(ω) + δEH(z′ω) is the
net drop in total electrostatic potential across
the device, and

δVXC =

∫ ∞

−∞

dz δEz,XC(z, ω → 0) (41)

is the corresponding drop (if any) in the XC-
potential.

Thus, Eq. (42) would be exact if the exact VXC

was properly included. But the implementation
commonly used in the Landauer formulation of
molecular electronics corresponds, as we will see
below in IV E, to only the Hartree response:

δI =
1

π

∫ µ+δV

µ

dǫ TS(ǫ, V )(fL(ǫ) − fR(ǫ))

=
TS(ǫF)

π
δVtot (LANDAUER) (42)

Equations (38) and (42) are identical, ex-
cept that the standard approach does not in-
clude the extra exchange-correlation term, δVXC.
This derivation has been recently generalized
to include correct averaging over the lateral
directions[117].

E. XC correction to current

The present implementation of the Landauer
formulation using local functionals includes the

Hartree piece of the potential and thus correctly
includes the charging effects, but it is missing
the XC piece. To see this, consider the XC
contribution to the voltage given by Equation
(41). Since δEXC = −▽ ·δvXC, this implies that
δVXC = δvXC(z → ∞) − δvXC(z → −∞). But
far from the barrier, δρ = 0, and so any local or
semi-local approximation necessitates that δvXC

equals zero far from the barrier. Thus δVXC = 0
when working within these approximations [19].
Thus ALDA and all other local or semi-local ap-
proximations miss the non-local interactions of
the exact XC functional.

Alternatively, integration of the second equa-
tion in expressions (32) would also give the exact
result since all three formulas are equivalent and
exact:

δI =
Tprop

π
δVtot (43)

but Tprop refers to the full proper transmission
coefficient which cannot be easily calculated for
a realistic system, and is not the transmission
through any single-particle potential.

TDDFT within a local or semi-local approx-
imation has been shown to produce erroneous
results when non-local effects become impor-
tant, such as in the optical response of solids.
The Vignale-Kohn functional is a non-local func-
tional in terms of current density that has been
successfully applied to situations where non-
locality cannot be ignored, such as in long conju-
gated polymers[73, 109, 118] where local approx-
imations give overestimates on the static polar-
izabilities. This non-locality also plays a role in
the non-equilibrium transport problem as seen in
sectionIV D. In the regime of weak bias, Koen-
topp et al. [19] estimate the size of the XC cor-
rection to the current in the Vignale-Kohn ap-
proximation. Since ALDA is a local approxima-
tion, it misses the non-local interactions of the
exact XC functional. Inclusion of the viscous
contribution to δVXC yields a correction to the
transmission coefficient that reduces its magni-
tude:

δVXC/V ≈ −(1 − T (ǫF))T (ǫF)/40π1/2k
3/2
F (44)

A more explicit expression for the XC correc-
tion can be calculated. Sai et al. [20] calculate
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the dynamical response contribution to current
flow using the Vignale-Kohn correction in TD-
CDFT. This dynamical contribution is a viscous
flow component from the XC field that is missing
in ground state DFT calculations and gives a fi-
nite correction to the conductance. A current
density functional theory is necessary because
functionals that are dependent on the density
alone don’t contain information about the con-
stant value of the current. The Vignale-Kohn
construction has an XC field that has both the
ALDA XC potential and a term dependent on
the XC stress tensor which in turn is dependent
on viscoelastic coefficients and velocity fields.

A dynamical resistance Rdyn arises from the
DC XC field which increases the total resistance
of the system, thus acting against the external
field.

Rdyn =
4

3e2Ac

∫ ∞

−∞

η
(∂zn)2

n4
dz (45)

where a and b are points inside the electrodes, Ac

is the cross sectional area, n is the density, and η
is the viscosity. A calculation that includes the
real part of the stress component of the electric
field yields a correction of 10%[20].

V. FINITE BIAS

Given the limitations of the standard approach

already discussed, it has been realized that a
more fundamental derivation of the conductance
formula is needed, especially one that lends itself
to a DFT treatment. For example, in DFT, one
is not allowed to turn off the coupling between
the molecule and leads, as the Hohenberg-Kohn
theorem does not apply in empty space, nor does
the RG theorem allow for time-dependent inter-
actions between electrons.

Several suggestions have been made as to
how to do this, that might appear quite differ-
ent. Here we discuss and compare just two of
these: the Master Equation approach, and the
TDDFT-NEGF approach. The Master Equa-
tion requires coupling to a dissipative bath,
such as the phonons, in order to achieve a
steady current, while the TDDFT-NEGF ap-
proach achieves a steady current via dephas-

ing into the continuum. Moreover, the Mas-
ter Equation allows for periodic boundary condi-
tions (PBC’s) whereas TDDFT-NEGF uses a lo-
calized system. Finally, because of this, the Mas-
ter Equation with periodic boundary conditions
requires TD current DFT, whereas TDDFT-
NEGF uses the density as the basic variable.

A. Master Equation

1. Periodic Boundary Conditions

The Landauer formulation, and indeed most
of the literature on transport, uses the con-
cept of different chemical potentials on the left-
and right-electrodes, and assumes some steady
current-carrying state between them.

Such a situation is not so easy to realize
within the basic theorems of density functional
theory, time-dependent or otherwise. Even
TDDFT requires starting from some initial
wavefunction[119], almost always the ground-
state wavefunction of some system. But the
ground state of any system of electrons has at
most one chemical potential, not two.

Thus useful DFT descriptions begin with a sys-
tem in its electronic ground-state, and a single
chemical potential. So far, only the situation
in which both electrodes are of the same metal
have been investigated. Furthermore, to avoid
the difficulties of having infinite potentials far in-
side the electrodes, a gauge transformation that
is standard in solid-state physics is applied and
a solenoidal magnetic field is imposed on a ring
of material. A vector potential that is linear in
time, a = Et then gives rise to a uniform electric
field on the ring, causing a current to flow.

The same approach is then applied to finite
bias, and again avoids the need for two different
chemical potentials. However, a new complica-
tion arises, as in the presence of the electric field,
as ω → 0, if L is kept finite, the electrons will
accelerate indefinitely around the ring, which is
not the situation we wish to model. Instead, if
some coupling to the phonons in the system is in-
troduced, there will be dissipation, and a steady
state can develop. It is possible to derive an ex-
tension of TDCDFT that includes dissipation in
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FIG. 12: Master Equation schematic - periodic boundary con-
ditions, magnetic field induces electric field on ring.

a time-dependent Kohn-Sham Master Equation.
Note that dissipation is unnecessary in the weak
bias limit of the previous section, as Joule heat-
ing is second-order in the perturbation[120].

2. Master Equation theory

A master equation approach has been con-
structed that introduces dissipation via a quan-
tum mechanical treatment of the Boltzmann
equation from statistical mechanics[74]. The
master equation describes the evolution of the
density of a system coupled to a heat bath
and has an analogue with the well-studied prob-
lems of optical interactions of laser fields with
matter[121] – atomic transitions in the presence
of electromagnetic fields. Among the advantages
of this approach is the elimination of the artif-
ical boundary and contact conditions necessary
in the Landauer formulation, the inclusion of in-
elastic processes, and applications beyond the
steady state situation.

With this approach, there are no reservoirs

corresponding to the left and right leads at dif-
ferent chemical potentials and the voltage drop
across the barrier is an output of the method
rather than an input as it is for the Landauer
approach. Instead of the open boundary con-
ditions employed by the Landauer approach as
illustrated in figure (3), periodic boundary con-
ditions are imposed [74] such that the system
is a closed circuit with no exchange of electrons
with semi-infinite reservoirs (see Fig. 12). This
geometry is a neat way to treat an open system,
avoiding partitioning an infinite system as in the
standard approach.

The approach employs a quantum Liouville
equation for the total Hamiltonian of the sys-
tem HT , which contains the device Hamiltonian
H0, the phonon bath R, and the electron-phonon
coupling potential V . ST is the density matrix
for the total system. Its time evolution is given
by

dST/dt = −i[HT , ST ]. (46)

After tracing out the bath degrees of freedom,
what results is the Liouville equation for the re-
duced density matrix S along with a term that
encapsulates the dissipation in the system C[S]:

dS/dt = −i[H,S] + C[S]. (47)

The dissipation term describes collisions with
the heat bath and is given by

C[S] = −
∑

m,n

Γmn(LnmLmnS + SLnmLmn

−2LmnSLnm), (48)

where L = c†ncm and Γmn are the transition prob-
abilities obtained through Fermi’s golden rule.
To derive explicit expression, the coupling po-
tential

V =
∑

m,n,α

γα
m,nc

†
ncma

†
α + h.c. (49)

is treated perturbatively to second order. The
creation and destruction operators for the elec-
trons/phonons are c†/c and a†/a respectively. In
the coupling matrix elements, γα

m,n, the indices
m and n refer to the electrons and α refers to
the phonons. Γmn is then given by:

D(ǫn − ǫm)|γmn|
2(n̄ǫn−ǫm + 1), ǫn > ǫm
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D(ǫm − ǫn)|γmn|
2n̄ǫm−ǫn , ǫm > ǫn. (50)

The electric field is imposed on the system
through the addition of a time dependent vec-
tor potential a(t) in the Hamiltonian. Gauge
transformations are then performed periodically
to set the vector potential to zero, otherwise
the Hamiltonian would grow indefinitely leading
to numerical instability in the implementation.
One of the problems with previous attempts to
use a Master Equation formulation within this
setup is the apparent current continuity viola-
tion. But it can be shown that current continuity
is maintained once the dissipative contribution
to the current is considered[74]. The equation
of motion for the time dependent density when
propagating the system under the Master Equa-
tion is given by

d〈n(r)〉

dt
|t=0 = −▽〈j(r)〉+Tr(n(r)C[S]S̄) (51)

The last term in this equation is the contribution
due to the dissipative part of the Master Equa-
tion and so the total current is then given by the
standard expression using the current operator
plus a dissipative part due to the propagation of
the system under the master equation:

〈jT (r)〉 = 〈j(r)〉 + 〈jD(r)〉 (52)

The general many particle formulation must be
simplified to an effective single particle form to
be of any use in practice. The many body den-
sity matrix S that satisfies the Liouville equa-
tion for a Hamiltonian H , must be rewritten in
an effective single-particle description such that
the resulting single particle density matrix SS is
in terms of the eigenstates of HS. These eigen-
states are the equilibrium single particle eigen-
states and are related to SS via the expression
SS =

∑

lm flm|l〉〈m|. The density functional for-
mulation which maps a system of interacting
particles into one of noninteracting particles with
the same density is a natural direction to pro-
ceed. In analogy with the Hohenberg-Kohn the-
orem for ground-state DFT and the Runge-Gross
theorem for TDDFT, it can be proven that for a
fixed electron-electron interaction, a given C[S]
and an initial density matrix S0, the potential

is uniquely determined by its time-dependent
density n(rt). A single particle form of equa-
tion (47) can be recovered by applying pertur-
bation theory for a weak interaction between
the non-interacting electrons and the phonons
in the bath, tracing out the irrelevant degrees
of freedom, and adding the Hartree potential to
the single particle Hamiltonian. What results
is a single particle form of the Master Equation
with a Kohn-Sham version of C[S] and a single
particle form of the density matrix expressed in
the basis of the equilibrium single-particle eigen-
states indexed by n,m. If the expansion coeffi-
cients are related to the many body density ma-
trix S via fnm = tr[Sc†mcn], then the single par-
ticle master equation can be written in terms of
the single particle eigenstates:

dfnm
dt

= −i
∑

p

[Hnp(t)fpm − fnpHpm(t)]

+ (δnm − fnm)
∑

p

(Γnp + Γmp)fpp

− fnm
∑

p

(Γpn + Γpm)(1 − fpp). (53)

In addition, the parameters in the dissipative
part of the Kohn-Sham Master Equation (see
equation (50)) can be in principal obtained from
ground–state DFT linear response calculations,
thereby eliminating the need for any empirical
parameters.

3. Master equation results

The master equation approach is currently un-
der development, but some initial results for test
systems have been calculated[122, 123]. The first
model tested with the master equation approach
was a simple 1-D double barrier resonant tunnel-
ing system (DBRTS). Well known results famil-
iar to the experimental community were derived
for a DBRTS and show that the effect of inelastic
collisions, accounted for in the master equation
formulation, is important in understanding the
behavior of these devices.

Among the approximations made for the
phonons in this model calculation are, that their
density of states has a parabolic dependence
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given by D(ω) ≈ ω2. Furthermore, the cou-
pling between levels m and n is set to a con-
stant γmn = γ0. In the top two panels of Fig. 13,
results for the potential in the absence of a field
and in the presence of a field with low dissipative
coupling γ0 are given. Results are similar to the
results from the Landauer formulation except for
the following important points.

The voltage drop across the device is an output
of the calculation rather than an input and there
can be seen a small voltage drop across the wire
as well, but this is soon neutralized by screening
effects.
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FIG. 13: Potential for the DBRTS. Top panel - no applied
external field, middle panel - external field for the case of low
dissipative coupling, γ0. The bottom panel shows the total
current (solid line), the Hamiltonian current (short dashed
line) and the dissipative current (dashed line).

The bottom panel of Fig. 13 displays the total
current derived. In keeping with the constraints
of current continuity, the total current (solid
line) is constant within numerical error due to
cancellation between the Hamiltonian current
(short dashed line) and the dissipative current
(long dashed line). It should also be noted that
the dissipative current is larger at the contact
points, indicating that these are the sites of lo-
cal Joule heating.

The Master equation approach also predicts
the hysteresis effects of a DBRTS as demon-
strated in Fig. 14. At low dissipative coupling
γ0, the hysteresis is much more evident than

at higher values of γ0. For stronger dissipative
coupling, the resonance peak also shifts towards
lower voltages.
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FIG. 14: Hysteresis effects for a DBRTS device as demon-
strated through I-V plots for two different values of dissipative
coupling γ0. Lower γ0 is associated with a more pronounced
hysteresis.

In Fig. 15, the electron occupation of the level
is plotted for different values of the applied bias.
At higher bias, the distribution deviates from
equilibrium and exhibits a bump in the tail that
points to charging of the resonant level. This
charging is the origin of the bistability and the
hysteresis observed in DBRTs. The bistability
arises from the non-linearity associated with the
Hartree potential. The finite current for voltages
above the resonance peak stems from the inclu-
sion of dissipation. In the absence of dissipative
effects the current would go down to zero the
moment the resonant level becomes fully occu-
pied and the broadened level no longer overlaps
with the Fermi level of the lead. When dissi-
pation is included, electrons can relax into the
leads leading to a finite current for bias voltages
above the resonance. The dissipative coupling
also controls the size of the hysteresis effect.

4. Chains of gold atoms

Further calculations within the Master Equa-
tion approach have studied electronic transport
through a 3-atom gold wire sandwiched between
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FIG. 15: Electron occupation of the resonant level in a
DBRTS as given by the diagonal elements of the density ma-
trix in the steady state. A higher bias leads to nonlinear
effects as evidenced by stronger deviations from the unper-
turbed Fermi-Dirac distribution.

FIG. 16: Three atom gold chain: supercell geometry show-
ing the atomic wire connected to two gold electrodes (Au111
surfaces). The dark atoms indicate the region where dissi-
pative coupling is present. Periodic boundary conditions are
applied in all directions. The lateral interaction between a
wire and the nearest periodic images has negligible effect on
the current.

two Au(111) surfaces[123]. Fig. 16 shows the
unit cell of the periodic system used in the cal-
culations. Four layers of gold atoms per side are
included as the contacts. Dissipation is applied
in the three outermost atomic layers only. Again,
the phonon density is assumed to be parabolic
and the coupling takes the form of γij = γ〈i|V |j〉
where γ sets the strength of the dissipation.

In this application, where a very small period-
ically separated cell was used, a very large dissi-
pative coupling was necessary to force a steady
state (this was obtained by imposing one quan-
tum of conductance at once specific value of the
applied bias). This leads to an unphysically large
dissipative current. The strength of the dis-
sipative coupling can be reduced with increas-
ing system size, eventually reaching its physical
value for cells that are large compared to the
electron-phonon mean free path. Under those

conditions the Hamiltonian current dominates.
It was found that a more physical behavior of
the I–V characteristics is obtained, when only
the Hamiltonian current is used to model the
physical current. Neglect of the dissipative cur-
rent in this system is further supported by the
fact that the current continuity violation of the
Hamiltonian current is weak (see Fig. 17).
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FIG. 17: Calculated I-V characteristics of a 3-atom gold wire.
The black dots are the Master Equation results. The dashed
line indicates the characteristics corresponding to one quan-
tum of conductance. The error bars reflect the fluctuations of
the Hamiltonian current in the supercell which measure devi-
ation from current continuity in the numerical calculation.

The calculated IV-characteristics, shown in
Fig. 17 reproduces well the linear behavior mea-
sured experimentally[2, 3, 5]. In Fig 18 we plot
the total (external plus induced) potential across
the device. The potential drops occurs mainly
across the length of the Au wire. Only a small
portion of the potential drop occurs inside the
leads. We would expect no potential drop at all
inside a perfect metal, the small observed drop
is due to the dissipation in the three outermost
atomic layers of the leads.

B. TDDFT-NEGF

Another method that avoids the use of two
external chemical potentials with an artificial
partitioning and manages to obtain a steady
current in transport calculations is the exact
non-equilibrium Green’s function approach us-
ing time-dependent density functional theory



22

0 5 10 15 20 25
Position [A]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Po

te
nt

ia
l [

eV
]

FIG. 18: 3-atom gold chain — potential: Total poten-
tial (including external potential, and induced Hartree and
exchange-correlation potential) averaged over planes perpen-
dicular to the wire. The external potential in the supercell is
given, for illustrative purposes, in the position gauge (which
does not satisfy the periodic boundary conditions). The black
dots indicate the position of the atomic planes in the slab,
whereas the red dots indicate the atoms of the wire. The
total potential is essentially flat in the electrodes. The large
drop across the wire is due to the contact resistance.

(TDDFT) [75, 76, 77, 124, 125]. The sys-
tem begins in thermodynamic equilibrium in its
ground-state and the leads and device are cou-
pled. A time-dependent perturbation is imposed
deep inside the leads, such that the potential ex-
hibits a step somewhere inside the molecule.

The method applies the NEGF Keldysh for-
mulation to the time-dependent KS equations,
i.e., to a set of non-interacting particles yielding
the correct density. The time evolution of the
system is then described by the KS equations of
TDDFT

iΨ̇S(r, t) = HS(r, t)ΨS(r, t), (54)

where HS(r, t) is the time-dependent KS-
Hamiltonian, and ΨS(r, t) is the KS wave-
function. Using the continuity equation
∂/∂t n(r, t) = −∇jS(r, t) for the KS current
density jS(r, t) this produces the correct time-
dependent current through the device:

I(t) = −

∫

d3r
d

dt
n(r, t) (55)

where the integral is over some cross-section
through the molecule. In NEGF, the density can

be expressed in terms of the lesser Green’s func-
tion:

n(r, t) = −2iG<(r, t; r, t) (56)

which in turn can be calculated from equations of
motion for the non-interacting system. To solve
the non-interacting problem, the system is parti-
tioned into the molecule(C), and left/right leads
(L,R) as in the standard approach (see Sec. II C).
The KS Hamiltonian can then be written as a
3x3 block matrix, yielding for the time evolution

i
∂

∂t





ΨL

ΨC

ΨR



 =





HLL HLC 0
HCL HCC HCR

0 HRC HRR









ΨL

ΨC

ΨR



 ,

(57)
where Ψα(r, t) is the KS wavefunction pro-

jected onto left/right lead (L,R) and the
molecule region(C), respectively.

For the left and right lead (α = L,R), we can,
using the lead Greens functions gα (see descrip-
tion in Sec. II C), obtain an explicit solution for
the projected wavefunctions:

Ψα(t) = igα(t, 0)Ψα(0)+

∫ t

0

dt′gα(t, t′)HαCΨC(t′).

(58)
gα is defined via (id/dt − Hαα(t))gα(t, t′) =
δ(t − t′) with the appropriate boundary condi-
tions gα(t†, t) = −i and gα(t, t†) = 0.

Using this, we can rewrite the expression for
the molecule region as

i
∂

∂t
ΨC(t) = HCC(t)ΨC(t) +

∫ t

0

dt′Σ(t, t′)ΨC(t′)

+i
∑

α=L,R

HCαgα(t, 0)Ψα(0). (59)

where

Σ(t, t′) = HCL(t) gL(t, t′)HLC(t′) (60)

+HCR(t) gR(t, t′)HRC(t′)

is the self energy accounting for coupling to the
leads as described in Sec. II C. Thus Eq. (59)
yields, in principle exactly, the time-evolution of
the molecular wavefunction in the presence of a
current through the leads. It is non-Hermitian,
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as it describes electrons flowing from left to right.
The solution for the wavefunction of the cen-
tral region is obtained by propagating an ini-
tial state, i.e. the ground-state of the extended
sytem in equilibrium, which is obtained in a fash-
ion analogous to the standard approach. For the
actual propagation, transparent boundary con-
ditions are imposed at the lead interfaces and a
generalized Cayley method is used (see [125] for
details).

The feasibility of the scheme has been tested
on simple 1d systems. These calculations
demonstrate the independence of the steady cur-
rent on the history, and show a variety of fea-
tures, such as non-monotonic dependence of cur-
rent on bias, and larger transient currents than
steady-state currents. First applications of this
approach include: (i) the study of the role of
bound-states in transport[126]. Here oscilla-
tions in the density and the TDDFT KS po-
tential have been observed, the system does not
evolve towards a steady state. (ii) The cou-
pling to nucleii[127]. However, these are all non-
interacting problems, and so have not tested the
procedure when interaction plays a roll.

An important issue of the formalism is whether
or not a steady current can arise in the absence
of any dissipation. For non-interacting electrons
(e.g. the electrons in the KS system), it has been
found a steady current develops if

1. the single-particle Hamiltonian becomes
time-independent as t → ∞

2. the electrodes form a continuum of states,
i.e., are infinite,

3. local density of states on the molecule is
smooth.

These all appear reasonable conditions. Further-
more, the steady current is independent of the
history of the turning-on of the potential step, if
the t → ∞ Hamiltonian is.

The crucial point for the steady current is
the second one. In the presence of a contin-
uum of states, even non-interacting electrons de-
phase and a steady current develops. This is
the mechanism for achieving a steady current in
this approach, and makes dissipation to phonons

or many-body scattering effects unnecessary. A
continuum of states requires infinite electrodes,
but these are then implicitly included in source
and sink terms in the resulting equations.

C. Master equation versus TDDFT-NEGF

Both the Master equation approach and the
TDDFT-NEGF approach go beyond the stan-

dard approach. Each begins from a situation
for which we have a basic theorem proving a
functional-dependence of the potential on the
density, and from which the Landauer formula
can be derived, at least in the case of non-
interacting electrons. They clearly yield differ-
ent results in cases where their conditions differ,
such as when dissipation is strong in the Mas-
ter equation, but it is as yet unknown if they
differ when applied to the same situation (and
if they do, which one is ‘correct’). In this sec-
tion, we compare and contrast the two different
approaches.

Basic variable: In the Master equation
approach, because the system experiences a
solenoidal magnetic field and periodic boundary
conditions are used, the basic variable is the cur-
rent density. In contrast, the TDDFT-NEGF
approach has been developed using the density
itself as the basic variable. While this is more
familiar within DFT, the current allows develop-
ment of simple approximations such as Vignale-
Kohn, yielding simple corrections to the conduc-
tance.

Boundary conditions: Almost all present cal-
culations are performed on localized systems em-
bedded between two electrodes, using localized
basis sets, and this is also true for TDDFT-
NEGF. The Master equation approach both re-
quires and allows use of plane-wave codes, and so
can make it much easier to adapt present solid-
state codes for use in transport calculations.

Fundamental theorems: TDDFT-NEGF is
based on the Runge-Gross theorem, which ap-
plies only to finite systems. Yet the leads must
be infinite to produce the required dephasing.
This is an inconsistency in the approach whose
implication is debatable. The Master equation,
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on the other hand, required proving the Runge-
Gross theorem for the Master equation instead
of the time-dependent Schrödinger equation, and
so requires introducing new functionals. These
may (or may not) reduce to the standard ones
of TDCDFT in the limit of weak dissipation.
Need for dissipation: The TDDFT-NEGF ap-

proach demonstrates that a steady current can
arise without explicit dissipation mechanisms,
once the leads are infinite. The Master equa-
tion approach may well reduce to the same result
in the limit in which the ring size is very large
and the dissipation small, but this has yet to be
demonstrated. If so, they become, in that limit,
simply two different procedures for finding the
same result. If not, one might well be correct for
molecular conductance, the other not.
Weak bias: With small dissipation, the Master

equation produces the same conductance in the
zero-bias limit as the Kubo response [74], and
therefore includes the XC corrections to the Lan-
dauer formula as seen in sectionIV D. A similar
result can be derived from the TDDFT-NEGF
formula[124], although couched in DFT terms.
Thus the formalisms agree in the limit of weak
bias and small dissipation, even for interacting
electrons. For the description of Joule heating ef-
fects and phonon scattering, which are not easily
incorporated into the TDDFT-NEGF approach,
the Master Equation formalism provides a nat-
ural framework.

VI. SUMMARY

In this brief, non-comprehensive review, we
have critically examined the present state-of-the-
art of DFT calculations of transport through sin-
gle molecules. Our findings are:

• Even the steady state of current flowing
through a molecule is not included by the
basic theorems establishing ground-state
DFT.

• The commonly used approximation of
ground-state DFT in the Landauer formula,
which we dub the standard approach, has
a variety of limitations, making it inexact,

even if the exact ground–state functional
were known and used.

• Standard density functional approxima-
tions, such as LDA, GGA, or hybrids, are
insufficiently accurate to treat molecules
weakly coupled to leads, and likely produce
large overestimates of the current. This ef-
fect might be the origin of the overestimates
relative to experiment. Orbital-dependent
functionals, such as exact-exchange or
self-interaction corrected LDA (LDA-SIC),
should perform much better.

• The standard approach is only a Hartree-
level theory for the conductance, and ne-
glects non-local XC corrections to the con-
ductance. This is demonstrable in the case
of weak bias. Either orbital-dependent or
current-dependent functionals are needed
to even estimate these corrections.

• For finite bias, several approaches have been
developed that are within time-dependent
DFT frameworks, thus addressing the prob-
lem of the inadequate ground-state ap-
proximation. Two of these have been de-
scribed in this review. (i) The Master equa-
tion approach which includes dissipation to
phonons. (ii) The TDDFT-NEGF formal-
ism whis does not have the need for dis-
sipation. Connections are being developed
between the two, and time will tell which is
more practical, reliable, or relevant.

Open questions for both new approaches and
any other DFT treatments include the following:

• Do they agree with the Kubo response
weak-bias limit discussed in Sec. IV D?
Both new formalisms do this.

• At finite bias, which effects are included or
not in each approach?

• At finite bias, in what limits do they agree
or disagree with each other and with the
standard approach? We already know that
within ALDA, all give the same answer
as the standard approach, but expect dif-
ferences with non-local non-adiabatic func-
tionals.
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• Does one always approach a steady state,
and is it unique? The hysterises seen in
model calculations with the Master equa-
tion is an example of more than one steady
solution.

• Is there a dependence on how the poten-
tial is turned on? Recently, bound states
of the molecule have been shown to lead
to infinitely oscillating contributions to the
current in model calculations using the
TDDFT-NEGF approach, when the turn-
on is non-adiabatic. Do these survive in an
interacting system?

• Are there infinite memory effects in
the time-dependent Kohn-Sham potential?
These are logically possible, and might even
be necessary, to reproduce the physics.

• Exactly what features of these theories are
needed to reproduce strongly-correlated ef-
fects such as Coulomb blockade, and is

there any chance to model such features?

On the other hand, the present Landauer-type
calculations (the standard approach) yield the
correct steady solution to the more sophisticated
approaches when the functional is local in time

and space (see Sec IV D), and this may be suf-
ficient for many purposes. Only more demand-
ing calculations (be they time-dependent DFT,
non-local static DFT, or CI or GW) and better
characterized experiments can tell us what is im-
portant to reliable first-principles predictions of
the conductance of single molecules.
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Agräıt, J.C. Cuevas, A.L. Yeyati, B. Ludolph, A.
Mart’in-Rodero, G. Rubio-Bollinger, J.M. van Ruiten-
beek, C. Urbina, Nature 394, 154 (1998).

[6] Four-Atom Period in the Conductance of Monatomic Al
Wires K.S. Thygesen, K.W. Jacobsen, Phys. Rev. Let.
91, 146801(2003).

[7] Electrical conductivity of individual carbon nanotubes,
T.W. Ebbesen, H.J. Lezec, H.Hiura, J.W. Bennett, H.F.
Ghaemi and T. Thio, Nature 382, 54 (1996).

[8] Individual single-wall carbon nanotubes as quantum
wires, S. J. Tans, M.H. Devoret, H. Dai, A. Thess, R.
E. Smalley, L.J. Geerligs, and C. Dekker, Nature 386,
474 (1997).

[9] Carbon nanotube single-electron transistors at room
temperature, H.W.C. Postma, T. Teepen, Z. Yao, M.
Grifoni, and C. Dekker, Science 293, 76 (2001).

[10] Electronic transport in extended systems: Application to

carbon nanotubes, M.B. Nardelli, Phys. Rev. B 60, 7828
(1999).

[11] High performance electrolyte-gated carbon nanotube
transistors, S. Rosenblatt, Y.Yaish, J. Park. J. Gore, V.
Sazonova, and P.L. McEuen, Nanoletters 2, 869 (2002).

[12] Green’s function theory of electrical and thermal trans-
port in single-wall carbon nanotubes, P.J. Lin-Chung
and A.K. Rajagopal, Phys. Rev. B 65, 113408 (2002).

[13] Electron transport in single-walled carbon nanotubes,
P.L. McEuen and J.Y. Park, MRS Bulletin 29, 272
(2004).

[14] Variability of Conductance in Molecular Junctions, J.
Ulrich, D. Esrail, W. Pontius, L. Venkataraman, D. Mil-
lar, L.H. Doerrer, J. Phys. Chem., 110, 2462 (2006).

[15] Single-Molecule Circuits with Well-Defined Molecular
Conductance, L. Venkataraman, J.E. Klare, I.W. Tam,
C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Nano
Lett.,6, 458 (2006).

[16] The Appropriateness of Density-Functional Theory for
the Calculation of Molecular Electronics Properities,
J. R. Reimers, Z-L. Cai, A. Bilic, and N. S. Hush, Ann.
N.Y. Acad. Sci. 1006, 235-251 (2003).

[17] The conductance of molecular wires and DFT based
transport calculations, F. Evers, F. Weigend, M. Koen-
topp, Phys Rev. B 69, 25411 (2004).

[18] Quantum chemistry calculations for molecules coupled
to reservoirs: Formalism, implementation, and applica-
tion to benzenedithiol, A. Arnold, F. Weigend, and F.
Evers, J. Chem. Phys. 126, 174101 (2007).

[19] Zero-bias molecular electronics: Exchange-correlation
corrections to Landauer’s formula, M. Koentopp, K.



26

Burke, and F. Evers, Phys. Rev. B Rapid Comm., 73,
121403 (2006).

[20] Dynamical Corrections to the DFT-LDA Electron Con-
ductance in Nanoscale Systems, N. Sai, M. Zwolak, G.
Vignale, and M. Di Ventra, Phys. Rev. Lett. 94, 186810
(2005).

[21] Spatial Variation of Currents and Fields Due to Local-
ized Scatterers in Metallic Conduction, R. Landauer,
IBM J. Res. Dev. 1, 223 (1957).

[22] Electrical resistance of disordered one-dimensional lat-
tices, R. Landauer, Phil. Mag. 21, 172 (1970).

[23] Generalized many-channel conductance formula with
application to small rings, M. Büttiker, Y. Imry, R. Lan-
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