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Abstract. An important consequence of the discovery of giant magnetoresis-
tance in metallic magnetic multilayers is a broad interest in spin dependent effects
in electronic transport through magnetic nanostructures. An example of such
systems are tunnel junctions – single-barrier planar junctions or more complex
ones. In this review we present and discuss recent theoretical results on electron
and spin transport through ferromagnetic mesoscopic junctions including two or
more barriers. Such systems are also called ferromagnetic single-electron tran-
sistors. We start from the situation when the central part of a device has the
form of a magnetic (or nonmagnetic) metallic nanoparticle. Transport charac-
teristics reveal then single-electron charging effects, including the Coulomb stair-
case, Coulomb blockade, and Coulomb oscillations. Single-electron ferromagnetic
transistors based on semiconductor quantum dots and large molecules (especially
carbon nanotubes) are also considered. The main emphasis is placed on the spin
effects due to spin-dependent tunnelling through the barriers, which gives rise to
spin accumulation and tunnel magnetoresistance. Spin effects also occur in the
current-voltage characteristics, (differential) conductance, shot noise, and others.
Transport characteristics in the two limiting situations of weak and strong cou-
pling are of particular interest. In the former case we distinguish between the
sequential tunnelling and cotunnelling regimes. In the strong coupling regime we
concentrate on the Kondo phenomenon, which in the case of transport through
quantum dots or molecules leads to an enhanced conductance and to a pronounced
zero-bias Kondo peak in the differential conductance.
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1. Introduction

Since last few decades one can observe a common pursuit towards miniaturization of
electronic systems. According to the empirical Moore’s law, the number of transistors
per microchip is doubled every two years. It is however obvious that the possibility
of further miniaturization will be stopped in the near future due to the loss of chips’
stability when the device components achieve critical dimensions in the nanometer
range. Thus, the most challenging task facing contemporary science and technology
is to implement structures, alternative to the silicon-based devices, whose size could
be reduced further.

The same tendency can also be observed in the development of hard discs,
whose memory cells become smaller and smaller every year. This generates new
challenges related to information reading/writing. An important step towards further
miniaturization was the discovery of the giant magnetoresistance (GMR) effect. The
GMR was discovered in 1988 in artificially layered metallic structures consisting of
ferromagnetic 3d films separated by nonmagnetic metallic layers [1, 2]. It turned
out that electrical resistance of magnetic metallic multilayers depends on their
magnetic state, and usually drops when magnetic configuration varies from antiparallel
alignment to the parallel one [1, 2, 3, 4]. The GMR effect occurs for current flowing in
the film plane as well as perpendicularly to it. This phenomenon turned out to be very
useful for applications in highly sensitive read heads, and allowed reading information
from smaller memory cells using their weak magnetic field.

The discovery of GMR initiated broad interest in spin polarized electronic
transport in nanoscopic systems. It turned out that electron spin provides an
additional degree of freedom, which considerably broadens the range of applications
of mesoscopic systems in novel electronic devices. The spin-based nanoelectronics
– called now spin electronics or shortly spintronics – is a relatively new area of
mesoscopic physics dealing with the interplay of charge and spin degrees of freedom
[5, 6, 7, 8, 9, 10, 11, 12]. Although a lot of theoretical and experimental works on the
spintronic properties of mesoscopic systems have been carried out, this field is still in
an early stage of development.

An effect similar to the aforementioned GMR also occurs when nonmagnetic
metallic layer in a trilayer structure is replaced with a nonmagnetic insulating barrier,
and the current flows owing to the phenomenon of quantum-mechanical tunnelling
through the barrier. This effect was discovered in 1975 in ferromagnetic planar
junctions by Julliére [13], and is of current interest due to applications in magnetic
storage technology (Magnetic Random Access Memories) and in spin-electronics
devices [5, 6, 7, 8, 9, 10, 11, 12]. As in the case of GMR, the tunnel magnetoresistance
(TMR) consists in a decrease (increase is also possible) in the junction resistance
when magnetic configuration of the junction changes from the antiparallel to parallel
one. Tunneling in complex junctions, particularly in mesoscopic ones, where charging
effects become important, is still not fully explored. A specific kind of such systems
are double-barrier junctions with a small central electrode (called an island). Such
systems are known as single-electron transistors (SETs), mainly because electrons
in a biased device flow one by one through the system and the transfer of single
electrons can be controlled by a gate voltage. Electronic transport in such devices
was extensively studied in the past decade, but mainly in the nonmagnetic limit
[14, 15, 16, 17, 18, 19, 20, 21, 22].

Recent experiments on magnetic nano-structured materials revealed new
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phenomena associated with the interplay of ferromagnetism and discrete charging
effects. A typical example is a ferromagnetic single-electron transistor, i.e., a small
metallic nanoparticle (semiconducting quantum dots or molecules are also possible)
coupled by tunnel barriers to ferromagnetic electrodes [23, 24]. First ferromagnetic
single-electron transistors were fabricated by Ono et al. [25, 26] and later by
Brückl et al. [27]. Transport in ferromagnetic single-electron transistors with
nonmagnetic metallic islands – both normal and superconducting – was also measured
[28, 29, 30, 31]. One should bear in mind, that the interplay of spin and charge effects
was already studied long time ago in granular systems, in which magnetic nanoparticles
were randomly dispersed in a nonmagnetic matrix [32]. Recently granular films were
investigated again by several groups [33, 34, 35, 36, 37, 38, 39, 40], but both the size
of the grains and also their location were strictly controlled.

In the case of sufficiently large metallic islands (but still in the nanometer
range), discrete structure of the electronic states in the grain is not resolved and
is irrelevant. To observe the discrete electronic states in transport characteristics one
should either diminish size of the metallic nanoparticles [41], or use semiconducting
quantum dots based on two-dimensional electron gas [42, 43, 44, 45]. An alternative
strategy is to use ferromagnetic semiconducting materials instead of metallic ones
as the electrodes [46]. Magnetic impurities in the middle of the tunnel barrier of a
ferromagnetic tunnel junction [47, 48, 49, 50] also can be considered as quantum dots
with a very strong Coulomb interaction. Another group of single-electron devices are
molecular ferromagnetic transistors [51] and, especially, ferromagnetically contacted
carbon nanotubes [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62].

In the following we will review basic transport characteristics of ferromagnetic
single-electron transistors in the sequential tunnelling, cotunneling, and strong
coupling (Kondo) regimes. In particular, we will consider such properties of the device
like charge and spin currents, tunnel magnetoresistance, spin accumulation, shot noise,
Kondo effect, and others. In section 2 we review basic principles of single-electron
transport in the case of a large metallic island attached to ferromagnetic leads. The
size of the island is however small enough so that the charging energy is the dominant
energy scale in the system. The limits of fast and slow spin relaxation in the island
are also discussed. Then we consider shot noise and the role of discrete electronic
structure in such devices. In section 3 we consider devices based on double metallic
islands. In turn, in section 4 we deal with electronic transport through single-level
quantum dots (QDs) in the sequential tunnelling and cotunneling regimes. Transport
through multi-level QDs, including transport through two-level quantum dots and
carbon nanotubes attached to ferromagnetic leads is discussed in section 5. Transport
through quantum dots in the Kondo regime is briefly addressed in section 6. Final
conclusions are in section 7.

1.1. Basic concepts

The systems considered in this review consist of a mesoscopic central part (island)
coupled by tunnel barriers to external ferromagnetic leads. The central part is
characterized by an addition energy, which corresponds to the energy needed for
adding a single electron, and includes contributions from the electrostatic charging
energy and the discrete single-particle level separation. If the charging energy is
the most relevant energy scale, the systems exhibit the single-electron charging effects
[15, 63, 64, 65, 66, 67, 68, 69]. An electron can tunnel to the central part only when the
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Figure 1. A sketch illustrating (a) a single first-order (sequential tunnelling)
process, and (b) a second-order (cotunneling) transport process.

energy provided by the transport voltage surpasses the corresponding charging energy;
otherwise, the current is exponentially suppressed and the system is in the Coulomb
blockade regime [14, 70, 71]. Once the bias voltage is larger than the threshold
voltage, the electrons can tunnel one by one through the system leading to the step-
like current-voltage characteristics – so-called Coulomb staircase. The blockade can
also be overcome by applying a gate voltage Vg that leads to sawtooth-like variation
of electric current with Vg – so-called Coulomb oscillations [15, 63, 64, 67, 72].

When the electrodes are made of a ferromagnetic material, the system exhibits
further interesting phenomena resulting from the interplay of charge and spin degrees
of freedom [73, 74]. In particular, the tunnelling current flowing through the
system depends on the relative alignment of the magnetic moments of ferromagnetic
electrodes, giving rise to the TMR effect [25, 26], which is described quantitatively by
the ratio

TMR =
RAP −RP

RP
=

IP − IAP

IAP
, (1)

where RP and RAP denote the total system resistance in the parallel and antiparallel
magnetic configurations, respectively, and IP, IAP are the corresponding currents. A
simple theoretical model of TMR was introduced by Jullière [13], who considered a
single planar ferromagnetic tunnel junction and showed that TMR in such a device is
given by TMRJull = 2pLpR/(1 − pLpR), where the spin polarization pr of the lead r
(r = L,R for the left/right lead) is defined as

pr =
ρr+ − ρr−
ρr+ + ρr−

, (2)

with ρr± being the spin-dependent density of states of lead r for the spin-majority
(+) and spin-minority (−) electrons.

1.2. Transport regimes

In the following considerations we will distinguish between the three different transport
regimes:

Sequential tunnelling – In the regime of weak coupling between the island and
leads, and out of the Coulomb blockade, electron transport is dominated by processes
of the first order in the coupling parameter. Electrons flow then consecutively one by
one due to the tunnelling events, and the transition rate from an initial state |i〉 to a
final state |f〉 can be determined from the Fermi golden-rule,

αi→f =
2π

~
|〈i|HT |f〉|2 δ(εi − εf), (3)
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where HT is the relevant tunnelling Hamiltonian, and εi (εf ) is the energy of the
initial (final) state. This transport regime is known as the sequential tunnelling regime
[14, 15]. An example of a single first-order process is sketched in Fig. 1a.

Cotunneling – Although the sequential tunnelling in the Coulomb blockade regime
is exponentially suppressed, the current still flows due to higher-order tunnelling
processes involving tunnelling of a single, two or more electrons via intermediate
virtual states [75, 76, 77]. These processes are known as cotunneling. An exemplary
cotunneling process is illustrated in Fig. 1b.

The second order perturbation theory gives the cotunneling rate from an initial
state |i〉 to a final state |f〉 [76]

αi→f =
2π

~

∣∣∣∣∣
∑

q

〈i|HT |q〉〈q|HT |f〉
εi − εq

∣∣∣∣∣

2

δ(εi − εf) (4)

where the summation is over all virtual states |q〉, and εα is the energy od the state α
(α = i, f, q). In the Coulomb blockade regime this tunnelling rate is only algebraically
suppressed, contrary to the sequential transport processes which are then suppressed
exponentially. Because of that even at low temperatures and in the strong Coulomb
blockade regime the rates of cotunneling processes do not vanish. The second-order
corrections become also important on resonance for intermediate coupling strengths.

Strong coupling – For strong coupling of the metallic island to electrodes,
the tunnelling processes lead to logarithmic corrections to conductance, and the
perturbation theory fails at the degeneracy points of two consecutive charge states. In
the case of quantum dots additionally the Kondo effect appears at low temperatures
(below the Kondo temperature TK , T . TK) leading to an enhanced conductance in
the linear response regime [78].

2. Ferromagnetic single-electron transistors based on metallic

nanoparticles

In this section we review spin-polarized transport in a metallic ferromagnetic single-
electron transistor (FM SET). The device consists of a metallic nanoparticle as
the central electrode (island), which is coupled through tunnel barriers to external
reservoirs of spin polarized electrons. A gate voltage is attached capacitively to the
island, which allows to control position of the corresponding Fermi level.

Electronic transport in nonmagnetic SETs was already extensively studied in the
past two decades [14, 15, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]. Recently, the
attention was also drawn to electron tunnelling in magnetic systems [25, 26, 73, 74,
90, 91, 92], which was stimulated by recent progress in nanotechnology. It has been
shown theoretically that some qualitatively new effects may arise from the interplay of
charging effects and spin degrees of freedom. These include, for example, oscillations
of TMR with increasing bias voltage, spin accumulation, enhancement of TMR in the
Coulomb blockade regime, etc. [73, 74, 93, 94, 95, 96, 97, 98]. The enhancement
of TMR in the cotunneling regime and the oscillations of TMR as a function of the
transport voltage have also been observed experimentally [38, 39, 99, 100].

The capacitance C of few-nanometer-size particles is of the order of 10−18 F
[39, 41, 101]. Consequently, the corresponding charging energy, EC = e2/2C,
establishes a new relevant energy scale. If the charging energy is larger than the
thermal energy, EC ≫ kBT , where T denotes temperature and kB is the Boltzmann
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Figure 2. Schematics of ferromagnetic single-electron transistors. The parallel
and antiparallel magnetic configurations of the system are also specified. The
island is separated from external electrodes by tunnel barriers. Each barrier is
characterized by its spin-dependent resistance Rrσ and capacitance Cr (r = L,R).
The system is symmetrically biased, VL = V/2, VR = −V/2, and there is also a
gate voltage Vg applied to the island.

constant, the effects due to discreteness of charge become observable in transport
characteristics [14, 15].

The single-electron transistors considered in this section are illustrated
schematically in Fig. 2, where part (a) shows a device whose all three electrodes
are ferromagnetic, whereas part (b) shows a system with ferromagnetic source and
drain electrodes and a nonmagnetic island. Generally, magnetic moments of the
leads may form an arbitrary magnetic configuration. However, we focuss on systems
whose moments form either parallel (P) or antiparallel (AP) magnetic configuration,
as shown in Fig. 2. In the system shown in part (a) the magnetic moments of
external electrodes point in the same direction, while magnetic moment of the island
is either parallel or antiparallel to them. In the system shown in part (b), magnetic
moments of external electrodes in the parallel configuration are aligned, while in the
antiparallel configuration they are anti-aligned. The two magnetic alignments can
be easily achieved by sweeping magnetic field through the hysteresis loop, provided
the respective ferromagnetic components have different coercive fields. One may also
make use of exchange anisotropy to fix magnetic moment of a particular layer and
rotate magnetic moment of the second layer with a weak magnetic field. Generally,
there is a chance that electron tunnelling through a barrier will change its spin
orientation. However, we consider only spin-conserving tunnelling processes through
the two barriers. First, we assume that the islands are relatively large, so the effects
due to quantization of the corresponding energy levels can be neglected. For smaller
islands, however, the discrete energy spectrum may modify transport characteristics
[40, 102, 103], and this will be considered later (see section 2.3).

To describe charge and spin transport we need to specify a model Hamiltonian of
the system. First, the electrostatic energy required to add n excess electrons to the
island, while keeping constant voltages VL and VR in the left and right electrodes and
the gate voltage Vg, is given by [104]

Hch = EC(n− Qg

e
)2 , (5)

where a constant term (independent of n) is irrelevant and has been dropped.
Here, the total island’s capacitance C is the sum of the capacitances of the left
and right junctions and of the gate, C = CL + CR + Cg. The external charge
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Qg ≡ CLVL + CRVR + CgVg accounts for the effect of applied voltages, and can
be continuously tuned. The total Hamiltonian of the device takes then the general
form

H =
∑

r=L,R

Hr +HI +Hch +HT ≡ H0 +HT . (6)

Here H0 describes the decoupled leads and island, while HT takes into account the
lead-island coupling. The ferromagnetic leads and the island are described by

Hr =
∑

kσ

εrkσc
†
rkσcrkσ , (7)

for r = L,R, I, where crkσ are the Fermi operators for electrons with a wavevector k
and spin σ in the electrodes and island (r = L,R, I), and εrkσ is the corresponding
single-particle energy. The last part of the Hamiltonian,

HT =
∑

r=L,R

∑

kqσ

trkqσc
†
rkσcIqσ + h.c. (8)

describes tunnelling processes between the leads and island, with trkqσ being the
relevant matrix elements.

2.1. Transport in the sequential tunnelling regime

When the resistances of both tunnel barriers are much larger than the quantum
resistance, Rr ≫ RQ ≡ h/e2, and the system is not in the Coulomb blockade regime,
transport is dominated by sequential tunnelling processes. As a consequence, the
charge is well localized in the island and the orthodox tunnelling theory is applicable
[14, 15].

In order to calculate electric current in the sequential transport regime, one may
use the method based on the master equation which is a detailed balance of electrons
tunnelling to and off the island. In the stationary case the master equation reads

0 = −
∑

σ

[
Γ+
Lσ(n) + Γ−

Lσ(n) + Γ+
Rσ(n) + Γ−

Rσ(n)
]
P (n, V )

+
∑

σ

[
Γ+
Lσ(n− 1) + Γ+

Rσ(n− 1)
]
P (n− 1, V )

+
∑

σ

[
Γ−
Lσ(n+ 1) + Γ−

Rσ(n+ 1)
]
P (n+ 1, V ), (9)

where P (n, V ) is the probability to find the island in a state with n additional electrons
when a bias voltage V (V = VL−VR) is applied, and Γ±

rσ(n) is the spin-dependent rate
for tunnelling of electrons with spin σ from the lead r to island (upper sign) and from
the island to lead r (lower sign), when the island is occupied by n excess electrons.
These tunnelling rates depend on the bias voltage (not indicated explicitly), and can
be expressed by means of the Fermi golden rule as

Γ±
rσ(n) =

1

e2Rrσ

∆E±
rσ(n)

exp
[
∆E±

rσ(n)/kBT
]
− 1

, (10)

where ∆E±
rσ(n) describes a change in the electrostatic energy of the system caused by

the corresponding tunnelling event, when in the initial state there were n additional
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electrons on the island. In the above equation Rrσ denotes the spin-dependent tunnel
resistance of the r-th barrier, given by

Rrσ =
~

2πe2ρrσρIσ|trσ|2
, (11)

where trkqσ = trσ has been assumed for simplicity. The spin dependence of the
resistance is a consequence of the spin-dependent density of electron states at the Fermi
level in the respective electrodes and the corresponding tunnelling matrix elements.
In particular, in Eq. (11) it is due to the spin-dependent density of states of the r-th
lead, ρrσ, spin-dependent density of states of the island, ρIσ, as well as due to the
spin-dependent tunnelling matrix elements trσ.

In a stationary state, the net transition rate between the charge states with n and
n + 1 excess electrons on the island vanishes. The probability P (n, V ) can be then
determined from the following recursion relation [83, 84]

P (n+ 1, V )
∑

σ

yσ(n+ 1) = P (n, V )
∑

σ

xσ(n) , (12)

where xσ(n) =
∑

r=L,R Γ+
rσ(n) and yσ(n) =

∑
r=L,R Γ−

rσ(n), corresponding to
transition rates for tunnelling to and off the island, respectively.

Generally, energy of an electron after tunnelling event is relaxed to the relevant
Fermi level in a short time scale. One can assume that the energy relaxation time
is the shortest time scale, shorter than the time between two successive tunnelling
events. However, such a restriction cannot be imposed on the spin relaxation time
which can be relatively long. In a general case, a nonequilibrium magnetic moment
may accumulate on the island due to the spin dependence of tunnelling processes,
which leads to spin splitting of the corresponding Fermi level. For arbitrary spin
relaxation times, the splitting of the Fermi level can be determined from the spin
balance [96, 105]

1

e
(IσR − IσL)−

ρIσΩI

τsf
∆Eσ

F = 0 , (13)

where ΩI is the island’s volume, −e is the electron charge (e > 0), τsf denotes the
spin relaxation time on the island, while IσL and IσR are the currents flowing through
the left and right junctions in the spin channel σ. The last term in Eq. (13) takes into
account intrinsic spin-flip processes on the island. ¿From this condition it is possible
to calculate self-consistently the shifts of the Fermi levels due to spin accumulation
for both spin orientations.

The electric current flowing through the left junction can be calculated from the
following formula:

IL =
∑

σ

IσL = −e
∑

σ

∞∑

n=−∞

[
Γ+
Lσ(n)− Γ−

Lσ(n)
]
P (n, V ) . (14)

Similar formula also holds for IR. In the stationary state the currents flowing through
both junctions are equal, IL = IR ≡ I.

In the following we discuss two limiting cases: the limit of fast spin relaxation
and the limit of slow spin relaxation on the island. In the former case the spin of an
electron tunnelling to the island relaxes before a next tunnelling event takes place.
In the latter case, on the other hand, the electron spin is conserved for a time much
longer than the time between successive tunnelling events.
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Figure 3. Current in the parallel and antiparallel magnetic configurations (a)
and the resulting TMR (b) as a function of the bias voltage for a FM SET with
a ferromagnetic island in the limit of fast spin relaxation. The parameters are:
T = 9 K, RP

L↑
= 0.65 MΩ, RP

L↓
= 0.065 MΩ, RP

R↑
= 5 MΩ, RP

R↓
= 2.5 MΩ,

RAP
r↓ = RAP

r↑ = (RP
r↑R

P
r↓)1/2 (for r = L,R), CL = 0.1 aF, CR = 1 aF, Cg = 5.1

aF, Vg = 0, and the offset charge Q0 = 0.025e. The dots in part (b) present the
experimental data taken from Ref. [39].

2.1.1. Fast spin relaxation In the limit of fast spin relaxation, SETs with
nonmagnetic islands behave like nonmagnetic junctions, exhibiting no TMR effect.
Therefore, the following discussion in this subsection is limited to FM SETs with
ferromagnetic islands, see Fig. 2a. Generally, one may assume that the spin-dependent
resistances for the parallel (RP

rσ) and antiparallel (RAP
rσ ) configurations fulfill the

condition RP
rσR

P
rσ̄ = RAP

rσ RAP
rσ̄ , where σ̄ ≡ −σ. This formula follows from Eq. (11)

when assuming that all spin effects are included into the spin dependent density of
states (transfer matrix element are independent of spin and magnetic configuration).
Moreover, since there is no spin accumulation on the island in the limit of fast spin
relaxation, there is no associated spin splitting of the Fermi level, ∆Eσ

F = 0.
The current flowing through the system in the parallel and antiparallel

configurations is displayed in Fig. 3a. For both magnetic configurations, the I − V
curves reveal the well-known Coulomb steps. Moreover, these two curves are different;
the current flowing in the parallel configuration is generally larger than the current
flowing in the antiparallel configuration, see Fig. 3a. This difference leads in turn
to nonzero TMR effect, as shown in Fig. 3b. The TMR effect has a component
that oscillates as a function of the bias voltage. The amplitude of these oscillations,
however, decreases as the transport voltage increases. For the parameters assumed
here, TMR reaches local maxima at the voltages corresponding to the positions of
Coulomb steps. However, this is not a general rule, and for other parameters TMR
can have local minima at the Coulomb steps. The global maximum value of TMR in
Fig. 3b appears at the first step, i.e., at the threshold voltage. When the temperature
increases, the effects due to discrete charging, i.e. the Coulomb steps and enhancement
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of TMR at the Coulomb steps become diminished and disappear at kBT ≈ EC [98].
The oscillatory behavior of the TMR effect with increasing transport voltage was
observed experimentally, for example by Ernult et al. [39], see the dots in Fig. 3b.
The curves presented in Fig. 3 are calculated for the parameters corresponding to
those in Ref. [39]. To get a good agreement with experimental observations, a nonzero
offset charge Q0 on the island (due to external charges) has been assumed. As can be
seen in Fig. 3b, there is a satisfactory agreement between the theoretical curve and
experimental data for voltages above the threshold, V & 30mV, while in the Coulomb
blockade regime transport calculated using the sequential tunnelling approximation is
not properly described.

2.1.2. Slow spin relaxation In the case of a FM SET with a nonmagnetic island, see
Fig. 2b, a nonzero TMR in the sequential tunnelling regime can exist only when the
spin relaxation time is sufficiently long, i.e. significantly longer than the time between
successive tunnelling events. We note that the longest spin relaxation times were
measured for aluminium and copper [106, 107] (for example, the relaxation time for
copper was estimated to be of the order of 10−7 s). If this is the case, a nonequilibrium
magnetic moment builds up on the island due to spin accumulation. This moment
leads a nonvanishing TMR. In other words, the island becomes magnetized in a
nonequilibrium situation, and the created moment depends on the bias and gate
voltages.

Since the density of states at the Fermi level in a nonmagnetic island is
independent of the spin orientation, one finds ∆Eσ

F = −∆Eσ̄
F . Apart from this,

the resistances in the antiparallel configuration are RAP
Lσ = RP

Lσ and RAP
Rσ = RP

Rσ̄, see
also Fig. 2b.

Typical transport characteristics of a FM SET with nonmagnetic island in the
limit of slow spin relaxation are shown in Fig. 4 as a function of the bias voltage. The
splitting of the Fermi level is displayed in Fig. 4a for both magnetic configurations. As
one could expect, the splitting takes place only in the antiparallel alignment, while in
the parallel configuration there is no spin accumulation. In the former case the ratio
of tunnelling rates for electrons with opposite spin orientations becomes the same
for electrons tunnelling to and off the island only when a nonequilibrium magnetic
moment is built on the island. In the parallel configuration, however, this condition
is already fulfilled without any spin accumulation. However, this is true only in the
case when both junctions are characterized by equal spin asymmetries. When the
spin asymmetries of both electrodes are different, spin accumulation also occurs in the
parallel configuration.

As illustrated in Fig. 4a, behavior of the Fermi level splitting with increasing
transport voltage can be decomposed into two components. One component
monotonously increases, while the second one oscillates with increasing bias voltage.
This oscillatory behavior can be accounted for in the following way. Let us assume
that the voltage is slightly above that corresponding to a certain Coulomb step and
begins to increase. Then, the spin accumulation also increases, until a local maximum
value is reached. The local maximum occurs at a voltage, at which the chemical
potential of the depleted spin channel approaches the value which allows the next
charge state in the island. This, in turn, enhances tunnelling rate (onto the island)
of electrons corresponding to the depleted spin channel, and consequently reduces the
spin splitting of the Fermi level. When the voltage increases further, a local minimum
in the spin accumulation is then reached at a voltage, where the chemical potential
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Figure 4. Basic characteristics of a FM SET with a nonmagnetic island as a
function of the bias voltage in the limit of slow spin relaxation on the island:
(a) spin splitting of the Fermi level, (b) I − V characteristics, and (c) tunnel
magnetoresistance. The parameters are: kBT = 0.05EC , RP

L↑
= 5 MΩ,

RP
L↓

= 2.5 MΩ, RP
R↑

= 0.3 MΩ, RP
R↓

= 0.15 MΩ, CL = CR = Cg = 1 aF,

and Vg = 0.

of the second (accumulated) spin channel approaches the value which allows the next
charge state on the island. The same scenario repeats at each Coulomb step leading
to the oscillatory component in the spin accumulation. In the sequential tunnelling
regime, where only the first-order tunnelling processes are taken into account, spin
accumulation is exponentially small in the Coulomb blockade regime, as can be seen
in Fig. 4a.

The current as a function of the bias voltage for the parallel and antiparallel
configurations is shown in Fig. 4b. As before, characteristic Coulomb steps are clearly
visible. Moreover, owing to different stationary spin accumulations in the parallel and
antiparallel configurations, the current in the parallel configuration is also different
from that in the antiparallel configuration. This gives rise to the TMR effect which
is presented in Fig. 4c. Now, the bias dependence is more complex than it was in the
case of FM SETs with magnetic islands in the absence of spin accumulation. It is
interesting to note, that TMR can change sign in the vicinity of the Coulomb steps in
current-voltage curves, which is a consequence of different spin accumulations in the
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two magnetic configurations.
Generally, it is more difficult to obey the slow spin relaxation limit in

ferromagnetic islands than in nonmagnetic ones. Anyway, some experimental data
show that this is achievable. In such a case, the spin accumulation builds up in
the magnetic island and has significant influence on transport characteristics. In
Refs. [93, 105] it has been shown that spin accumulation modifies the ’staircase’-like
variation of the electric current with the bias voltage. Since the spin accumulation
depends on the magnetic configuration of the junction, this can also lead to an
enhanced TMR effect. Moreover, in some voltage regions TMR can change sign.
In addition, the Coulomb steps for the two magnetic configurations become slightly
shifted, as was also observed experimentally [49]. The difference between current-
voltage curves in the fast and slow spin relaxation limits varies continuously with spin
relaxation rates. This difference was used very recently to evaluate spin relaxation
time in Co nanoparticles [40].

2.2. Contribution to the conductance due to cotunneling processes

The electric current and spin accumulation in the limit of sequential tunnelling (see
the preceding subsection) are exponentially small in the Coulomb blockade regime.
However, charge transport may occur not only due to spin-dependent sequential
tunnelling, but also due to spin-dependent cotunneling processes [74, 97, 108], which
give dominant contribution in the Coulomb blockade regime and also lead to spin
accumulation [108, 109]. Close to resonance (in the vicinity of the threshold voltage)
both sequential and cotunneling currents may be comparable. The current I is then
equal to the sum of first, I(1), and second, I(2), order contributions, I = I(1) + I(2).

To calculate cotunneling current far from the resonance one could use Eq. (4).
This formula, however, cannot be used when voltage approaches the threshold voltage
(at resonance). To calculate current and associated spin accumulation in the whole
voltage range, the real-time diagrammatic formalism [97, 104, 110, 111] has been
used. The spin accumulation on the island (or equivalently spin splitting of the
electrochemical potential) is then determined from the spin balance equation, similarly
as in the sequential tunnelling regime, see Eq. (13).

The differential conductance in the whole (sequential and cotunneling) transport
regime is shown in Fig. 5 for SETs with Ni and Fe electrodes and for nonmagnetic
islands (in the limit of slow spin relaxation). Upper part corresponds to the parallel
configuration while the lower one to the antiparallel one. First, we find well resolved
splitting of the conductance peaks in the antiparallel alignment, while no splitting
can be seen in the parallel configuration. This splitting in conductance peaks
is a direct consequence of the spin splitting of the corresponding electrochemical
potential of the island, and therefore can be used to detect and measure spin
accumulation. The absence of conductance splitting in the parallel configuration is
simply a consequence of the absence of spin accumulation in this configuration. Such
a splitting of the conductance peaks in the cotunneling regime was recently observed
experimentally [49]. Generally, there are several experimental techniques by which the
spin accumulation can be detected indirectly [107, 112]. The peculiarities of transport
characteristics of FM SETs offer new possibilities.
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Figure 5. Differential conductance in FM SETs with nonmagnetic islands as a
function of the bias voltage V in the (a) parallel and (b) antiparallel configurations,
calculated in the whole (sequential and cotunneling) transport regime in the
limit of slow spin relaxation in the island. The curves have been calculated
for kBT/EC = 0.02 and symmetric junctions with RR↑ = 5h/e2. The spin
polarization is p = 0.23 and p = 0.40 for Ni and Fe electrodes, respectively. The
dotted line corresponds to the sequential tunnelling limit in the SET with Fe
electrodes. (After Ref. [97])

2.3. Discrete energy structure of the island

Discussion up to now was limited to the case when addition of a single electron costed
only an electrostatic energy. When, however, the size of metallic island becomes
reduced further, electron spectrum of the island cannot be considered as a continuous
one, and discrete structure of the energy levels plays an important role. Addition of
an electron costs then not only the electrostatic charging energy, but also the energy
equal to the level spacing ∆E. In this subsection we describe briefly the effect of
discreteness on the transport characteristics. The relevant approach was developed in
Refs. [102, 103]. The electron transport in the stationary state is then governed by
the solution of the generalized master equation [102, 113]

0 = −{Γ(n↑, n↓) + Ω↑,↓(n↑, n↓) + Ω↓,↑(n↑, n↓)}P (n↑, n↓, V )

+ Γ+
↑ (n↑ − 1, n↓)P (n↑ − 1, n↓, V ) + Γ+

↓ (n↑, n↓ − 1)P (n↑, n↓ − 1, V )

+ Γ−
↑ (n↑ + 1, n↓)P (n↑ + 1, n↓, V ) + Γ−

↓ (n↑, n↓ + 1)P (n↑, n↓ + 1, V )

+ Ω↑,↓(n↑ − 1, n↓ + 1)P (n↑ − 1, n↓ + 1, V )

+ Ω↓,↑(n↑ + 1, n↓ − 1)P (n↑ + 1, n↓ − 1, V ), (15)

where P (n↑, n↓, V ) denotes the probability to find n↑ and n↓ excess electrons on the
island (n = n↑+n↓ is the total number of excess electrons). The first term in Eq. (15)
describes how the probability of a given charge and spin state decays due to electron
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Figure 6. (Color online) The influence of discrete electronic structure on
transport characteristics in a FM SET with nonmagnetic island in the limit of slow
spin relaxation. Voltage dependence of the tunnel current I (a), the differential
conductance G = dI/dV (b), spin accumulation 〈n↑−n↓〉 (c), standard deviation

[〈(n↑ − n↓)2〉 − 〈n↑ − n↓〉
2]1/2 (d), and tunnel magnetoresistance TMR (e),

calculated at T = 2.3K. The solid and dashed curves in (a), (c) and (d) correspond
to the antiparallel and parallel configurations, respectively. The other parameters
are: ∆E = 3meV, CL/CL = 5, EC = 10meV, RL↑ = 2RL↓ = 200MΩ, RR↑ =
2RR↓ = 4MΩ and RR↑ = 2MΩ for the parallel alignment (2RR↑ = RR↓ = 4MΩ
for the antiparallel alignment). (After Ref. [102])
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tunnelling to and from the island, whereas other terms describe the rate at which
this probability increases. The Ω-terms account for spin-flip relaxation processes.
The coefficients entering Eq. (15) are defined as Γ±

σ (n↑, n↓) =
∑

r=L,R Γ±
rσ(n↑, n↓)

and Γ(n↑, n↓) =
∑

σ[Γ
+
σ (n↑, n↓) + Γ−

σ (n↑, n↓)], where Γ±
rσ(n↑, n↓) are the tunnelling

rates for electrons with spin σ, tunnelling to (+) the island from the lead r = L,R or
backward (−). These coefficients are given by [102, 103]

Γ±
rσ(n↑, n↓) =

∑

i

γr
iσF

∓
σ (Eiσ |n↑, n↓)f

±(Eiσ + E±
r (n)− EF ),

Ωσσ̄(n↑, n↓) =
∑

i

∑

j

ωiσ,jσ̄F
+
σ (Eiσ |n↑, n↓)F

−
σ̄ (Ejσ̄ |n↑, n↓). (16)

Here, f+(E) is the Fermi function (f− = 1 − f+), whereas F+
σ (Eiσ |n↑, n↓) (F−

σ =
1 − F+

σ ) describes the probability that the energy level Eiσ is occupied by an
electron with spin σ for a particular configuration (n↑, n↓). The parameter γr

iσ

is the bare tunnelling rate of electrons between the lead r and the energy level
Eiσ of the island, and ωiσ,jσ is the transition probability from the state iσ to jσ
of the island due to the spin-flip processes. The energies E±

L (n) and E±
R (n) are

given by E±
L (n) = CR/C eV + U±(n) and E±

R (n) = −CL/C eV + U±(n) where
U±(n) = EC [2(n− nx)± 1] and nx = CgVg/e.

¿From the solution P (n↑, n↓, V ) of the master equation (Eq. 15), one can
determine current flowing through the island,

IL = −e
∑

σ

∑

n↑,n↓

P (n↑, n↓, V )
{
Γ+
Lσ(n↑, n↓)− Γ−

Lσ(n↑, n↓)
}
. (17)

For further discussion we assume that the discrete energy levelsEiσ are spin degenerate
(nonmagnetic situation) and equally separated with the level spacing ∆E.

To emphasize the role of spin accumulation let us assume that the intrinsic spin
relaxation time on the island is long enough to neglect all intrinsic spin-flip processes.
The corresponding I − V characteristics for the parallel and antiparallel alignments
are shown in Fig. 6a. In both cases the electric current is blocked below a threshold
voltage, and a typical ’Coulomb staircase’ appears above it, with additional small
steps due to the discrete levels of the island. The effects due to discrete charging
and discrete electronic structure are more clearly seen in the differential conductance
shown in Fig. 6b, where the small peaks correspond to new discrete levels taking
part in transport. The difference between the I-V characteristics for the parallel and
antiparallel configurations is due to a different spin accumulation in both geometries.
In Fig. 6c we see the average value of the difference between the numbers of spin-
up and spin-down excess electrons on the island, 〈M〉 ≡ 〈n↑ − n↓〉, i.e., the spin
accumulation. There is no significant spin accumulation in the parallel configuration.
The number M ≡ n↑ − n↓ of spins accumulated on the island fluctuates in time
around its average value 〈M〉, as shown in Fig. 6d, where the standard deviation
(〈M2〉 − 〈M〉2)1/2 ≡ [〈(n↑ − n↓)

2〉 − 〈n↑ − n↓〉2]1/2 is plotted against the voltage V .
It is worth to note that although there is almost no spin accumulation in the parallel
configuration, the corresponding fluctuations are relatively large.

The difference between the I − V curves in the parallel and antiparallel
configurations leads to the tunnel magnetoresistance, shown in Fig. 6e. The broad
peaks correspond to the Coulomb steps, while the fine structure originates from the
discrete structure of the density of states of the island.
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One can extend the presented formalism also to the case of a FM SET with
a ferromagnetic island [114] and calculate nonequilibrium spin accumulation on the
island (when spin relaxation time is sufficiently long). Using similar approach Inoue
and Brataas [115] analyzed current-induced magnetization reversal induced by spin
accumulation rather than by spin torque. They found that the magnetization reversal
is possible when a free energy change due to nonequilibrium spin accumulation is
comparable to the anisotropy energy.

2.4. Shot noise in ferromagnetic SETs

¿From the application point of view, an important transport characteristics of the
system is the corresponding current noise. Functionality of a system depends on the
relevant noise to signal ratio, which should be as small as possible. However, the
noise is also a source of additional information on the system properties like quantum
and Coulomb correlations [116]. The shot noise in ferromagnetic single-electron
transistors was studied theoretically in Ref. [117], where the method developed for
spinless electrons in single-electron transistors [118, 119, 120, 121, 122] was extended
to magnetic systems.

The time correlation function of any two quantities X and Y can be expressed
as [123]

〈X(t)Y (0)〉 =
∑

n′
↑
,n′

↓
;n↑,n↓

Xn′
↑
,n′

↓
P (n′

↑, n
′
↓; t|n↑, n↓; 0)Yn↑,n↓

P 0(n↑, n↓) , (18)

where, P (n′
↑, n

′
↓; t|n↑, n↓; 0) is the conditional probability to find the system in the

final state with n′
↑ and n′

↓ excess electrons at time t, if there was n↑ and n↓ excess

electrons in the initial time t=0. The probability P 0 can be determined from Eq. (15).
Following this procedure, the current-current correlation function in a FM SET

considered in the preceding subsection has been calculated in Ref. [117]. The
corresponding Fourier transform can be presented as

SII(ω) = SSh
II + Sc

II(ω) , (19)

where SSh
II is the Schottky value (the frequency independent part), while the second

term in Eq. (19) is the frequency dependent component.
Figure 7a shows the bias dependence of the zero-frequency current noise SII(ω =

0). The current noise is smaller in the antiparallel configuration than in the parallel
one. This is because in the presence of spin accumulation (which is significant only
in the antiparallel alignment) the amplitude of fluctuations is smaller. In Fig. 7b
SII(ω = 0) is split into two parts; the frequency independent component SSh

II and
the contribution Sc

II(ω = 0) arising from the frequency dependent part of the current
noise, see Eq. (19). The component SSh

II is almost constant ≈ 2eI(C2
1 +C2

2)/C
2 at the

plateaux of the I − V curve and increases with opening of new channels. Dynamical
correlations between the currents are described by Sc

II(ω). Its value in the limit ω → 0
can be positive between the I−V steps and negative when new channels become open.
This is evident for the antiparallel alignment at V ≈ 26mV, when opening a tunnelling
channel for electrons with σ =↓ leads to negative dynamical correlations. This effect
is almost compensated by an increase in SSh

II , and therefore one gets only a small
reduction of the current noise SII(ω = 0).

In the power spectrum of the current Sc
II(ω) one can distinguish two distinct

relaxation times, one in the high and another one in the low frequency regions [117]. In
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Figure 7. Voltage dependence of the current shot noise at ω = 0 (a) in a
FM SET with nonmagnetic island and in the slow spin relaxation limit for
4RL↑ = RL↓ = 8MΩ, RR↑ = 4RR↓ = 240MΩ for the antiparallel alignment
(RL↑ = 4RL↓ = 8MΩ, for the parallel configuration) (other parameters as in

Fig. 6). In part (b) SII(ω = 0) is split into two components: SSh
II (upper curves)

and Sc
II (ω = 0) (lower curves). (After Ref. [117])

a wide voltage range the corresponding relaxation times are very close to the effective
relaxation times for the charge and spin noise.

The asymmetry between the tunnelling channels for electrons with the opposite
spins leads to activation of the spin component in the current noise. In Ref. [117]
the components Sc

II charge and Sc
II spin, corresponding to the charge and spin noise,

respectively, have been extracted from Sc
II . It has been shown that the charge

component is almost constant whereas the spin component increases with spin
polarization p of the leads, and for p → 1 can be much larger than the charge
component. The analysis showed that both charge and spin fluctuations are relevant
for the shot noise in FM SETs. It has been also pointed out that a super-Poissonian
shot noise, the Fano factor SII(0)/2eI > 1, can occur due to lifting of the spin
degeneracy.

3. Transport in double-island devices

Some new features of transport characteristics appear in spin-polarized electronic
transport through double-island structures [38, 40, 92, 99, 124]. A typical double-
island device, shown schematically in Fig. 8, consists of two metallic islands separated
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Figure 8. Schematic of a double-island device. The first (1) and second (2)
islands are capacitively coupled to two gate voltages, Vg1 and Vg2, and separated
from each other and from the left and right electrodes by tunnel barriers.

from each other and from external reservoirs by tunnel barriers. A gate voltage
is additionally attached capacitively to each island. Generally, both islands and
external electrodes can be either magnetic or nonmagnetic [25, 38, 125]. In the
following, we consider the situations when at least two electrodes (external or central)
are ferromagnetic, and their magnetic moments form only collinear (parallel and
antiparallel) configurations. Apart from this, we limit discussion to continuous density
of states in the islands.

Hamiltonian of the double-island systems is similar to that used for single-island
devices, but now the electrostatic energy is given by [124, 126]

Hch = EC1

(
n1 −

Qg1

e

)2

+ EC2

(
n2 −

Qg2

e

)2

+ 2ECM

(
n1 −

Qg1

e

)(
n2 −

Qg2

e

)
, (20)

where n1(2) is the number of excess electrons on the first (second) island and Qg1(g2)

describes the respective charge induced by applied voltages, Qg1(g2) = CL(R)VL(R) +
Cg1(g2)Vg1(g2). Apart from this, EC1

and EC2
denote the charging energies of the

corresponding islands, whereas ECM
describes electrostatic coupling of the islands,

EC1(C2) =
e2

2C1(2)

(
1− C2

M

C1C2

)−1

, (21)

ECM
=

e2

2CM

(
C1C2

C2
M

− 1

)−1

, (22)

with C1(2) being the total capacitance of the first (second) island, C1(2) = CL(R) +
Cg1(g2) + CM , and CM denoting the capacitance of the middle junction.

To find the stationary current flowing through the system one needs then to know
the probabilities P (n1, n2, V ) of finding the system in the charge state with n1 and n2

additional electrons on the first and second islands, respectively, when a bias voltage V
is applied. These probabilities can be calculated in a recursive way from the following
steady-state master equation

0 = −
∑

σ

[
Γσ
L1(n1, n2) + Γσ

1L(n1, n2) + Γσ
12(n1, n2)

+ Γσ
21(n1, n2) + Γσ

2R(n1, n2) + Γσ
R2(n1, n2)

]
P (n1, n2, V )
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+
∑

σ

Γσ
L1(n1 − 1, n2)P (n1 − 1, n2, V )

+
∑

σ

Γσ
1L(n1 + 1, n2)P (n1 + 1, n2, V )

+
∑

σ

Γσ
12(n1 + 1, n2 − 1)P (n1 + 1, n2 − 1, V )

+
∑

σ

Γσ
21(n1 − 1, n2 + 1)P (n1 − 1, n2 + 1, V )

+
∑

σ

Γσ
R2(n1, n2 − 1)P (n1, n2 − 1, V )

+
∑

σ

Γσ
2R(n1, n2 + 1)P (n1, n2 + 1, V ) , (23)

with the normalization condition
∑

n1,n2
P (n1, n2, V ) = 1. The corresponding

transition rates are given by Eq. (10), with the respective changes in the total system
electrostatic energy. For example for tunnelling from the first island to the second
one, the change in the electrostatic energy can be written as

∆Eσ
12(n1, n2) = E(n1 − 1, n2 + 1)− E(n1, n2)−∆Eσ

F1 +∆Eσ
F2 .(24)

Here, ∆Eσ
F1 and ∆Eσ

F2 denote the corresponding shifts of the chemical potentials for
spin σ in the first and second islands, respectively. The spin asymmetry of tunnelling
through the barrier r will be characterized in this section by the asymmetry factor
αr, defined as αr = Rr↑/Rr↓. This asymmetry factor corresponds to the ratio of
the respective spin-dependent densities of states. In particular, for FM/NM junctions
it is given by α = ρ↓/ρ↑, whereas for FM/FM junctions α = ρ2↓/ρ

2
↑, provided that

the two ferromagnetic electrodes are built of the same material. We note that the
relation between spin dependent barrier resistances in the parallel and antiparallel
configurations of magnetic moments on the opposite sides of the barrier is the same as
that described in Sec.2. When a bias voltage is applied to the system, a nonequilibrium
spin accumulation may appear on the islands. Generally, the shifts of the Fermi
level for both spin orientations are different. However, one can assume that the
ratio of the Fermi level shifts for the spin-up and spin-down electrons, defined as
βj = −∆E↑

Fj/∆E↓
Fj , fulfills the relation βj = ρIj↑/ρIj↓, for the first (j = 1) and

second (j = 2) island, respectively, with ρIjσ being the spin-dependent density of
states of the j-th island. As a consequence, for nonmagnetic islands one directly gets,
β1 = β2 = 1.

Electric current flowing through the system can be determined from the following
formula:

IL = − e
∑

σ

∞∑

n1,n2=−∞

[Γσ
L1(n1, n2)− Γσ

1L(n1, n2)]P (n1, n2, V ) , (25)

which corresponds to the current flowing through the left junction, but IL = IR ≡ I
in the stationary state.

3.1. Fast spin relaxation: no spin accumulation

Consider first transport characteristics of a system built of two ferromagnetic
islands and nonmagnetic external electrodes, shown in Fig. 9. Different magnetic
configurations of the system are specified in the inset of Fig. 9c. When the spin
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Figure 9. The average electron number on the islands (a), currents (b) in
the parallel and antiparallel configurations and the resulting TMR (c) as a
function of the bias voltage. The parameters are: C1 = C2 ≡ C = 3CM = 3
aF, kBT/(e2/2C) = 0.05. The spin asymmetries of resistances in the parallel
configuration are αL = αR = 5, αM = 25, whereas the total junction resistances
are RP

L = RP
R = RP

M/10 = 1 MΩ. In the antiparallel configuration, RAP
Lσ = RP

Lσ ,

RAP
M↑

= RAP
M↓

= (RP
M↑

RP
M↓

)1/2, and RAP
Rσ = RP

Rσ̄ .

relaxation time in the islands is much shorter than the time between two successive
tunnelling events, no spin accumulation builds up on the islands. Since there is an
asymmetry between the two barrier resistances, some charge accumulates on the
islands, as displayed in Fig. 9a. First of all, the magnitude of excess charge on
the islands increases with increasing voltage. For the barrier asymmetry assumed
in Fig. 9, the electrons easier tunnel to the second island from the right lead than
out of the second island to the first one. As a consequence, the electrons accumulate
on the second island. On the other hand, the electrons easier tunnel out of the
first island to the left lead than from the second island to the first one. Thus,
the number of excess electrons on the first island decreases with increasing the bias
voltage – there are holes accumulated on the first island. This occurs in both magnetic
configurations. The electric current flowing through the system in the parallel and
antiparallel configurations is shown in Fig. 9b. The Coulomb steps due to discrete



CONTENTS 22

L RL RL R

c

b

a

0

1

2

3

4

5

6

 

 

 

I (
nA

)

 parallel
 antiparallel

-20

-10

0

10

20 ↑↑ ∆=∆ 2F1F EE

↑∆ 2FE

↑∆ 1FE

 parallel
 antiparallel

 

 

F
e

rm
i l

e
ve

l s
hi

ft 
(m

e
V

)

0 100 200 300 400

-0.02

-0.01

0.00

0.01

0.02

0.03

 

 

T
M

R

V (mV)

Figure 10. The shifts of the Fermi levels for spin-up electrons (a), currents in the
parallel and antiparallel configurations (b) and TMR (c) as a function of the bias
voltage. The parameters are: C1 = C2 ≡ C = 3CM = 3 aF, kBT/(e2/2C) = 0.05,
β1 = β2 = 1, τsf1 → ∞, τsf2 =→ ∞, αL = αR = 5, αM = 1, whereas

RP
L = RP

R = RP
M/50 = 1 MΩ. In the antiparallel configuration, RAP

Lσ = RP
Lσ ,

RAP
Rσ = RP

Rσ̄ .

charging are clearly evident, and the difference in currents flowing in the parallel and
antiparallel configurations gives rise to the tunnel magnetoresistance, shown in Fig. 9c.
The TMR effect oscillates as a function of the bias voltage and the amplitude of these
oscillations decreases as the voltage is increased in a similar way as in the case of
single-island FM SETs, see Fig. 3b. Moreover, some dips occur now in TMR at the
voltages corresponding to the steps in the current-voltage characteristics.

3.2. Slow spin relaxation: spin accumulation

When the spin relaxation time is longer than the time between two successive
tunnelling events, a nonequilibrium magnetic moment appears on each island. The
corresponding shifts of the Fermi level due to spin accumulation can be calculated
from spin current conservation, see Eq. (13), written for each island [124].

Figure 10 shows the shifts of the Fermi levels and currents in the parallel and
antiparallel configurations, as well as the resulting TMR calculated in the limit of long
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Figure 11. The shifts of the Fermi levels for majority-spin electrons (a), currents
(b) and differential conductance (c) in the parallel and antiparallel configurations,
and the resulting TMR (d) as a function of the bias voltage. The parameters are:
T = 140 K, CL = 0.45 aF, CM = 0.2 aF, CR = 0.35 aF, Cg1 = Cg2 = 0,
α2
L = αM = αR = 25, and β1 = β2 = 0.2, whereas τsf1 = τsf2 = ∞. The total

junction resistances are RL = 3500 MΩ, RM = RR = 1 MΩ. In the antiparallel
configuration, RAP

Lσ = RP
Lσ , and RAP

r↑ = RAP
r↓ = (RP

r↑R
P
r↓)1/2, for r = M,R.

(After Ref. [124])

spin relaxation time for the system built of ferromagnetic electrodes and nonmagnetic
islands. The magnetic moments of external electrodes can form either parallel or
antiparallel configurations, as illustrated in the inset of Fig. 10c. First of all, the
nonequilibrium spin accumulation, shown in Fig. 10a, exists not only in the antiparallel
configuration but also in the parallel one. In the antiparallel configuration the shifts
of the Fermi level for a given spin orientation are equal on both islands, whereas in
the parallel configuration they are opposite. The effects due to discrete charging lead
to an oscillatory behavior of the Fermi level shift, in a similar way as in the case
of single-island FM SETs with nonmagnetic islands discussed above. The currents
flowing through the system in both magnetic configurations are shown in Fig. 10b.
Due to nonequilibrium spin accumulation induced on the islands, these currents are
different, which leads to nonzero tunnel magnetoresistance, as displayed in Fig. 10c. It
is interesting to note, that now TMR changes sign in certain transport voltage regions.
These effects are clearly due to magnetic moments accumulated on the islands. If the
spin relaxation time becomes shorter than the time between successive tunnelling
events, spin accumulation disappears and, consequently, TMR also vanishes.

Recently, several experiments on spin-polarized transport through granular
systems were reported [37, 38, 40, 92, 99]. For example, in Ref. [92], the
tunnelling current was driven from a tip of scanning tunnelling microscope through
ferromagnetic grains to ferromagnetic electrode. Transport measurements of such
devices showed pronounced Coulomb steps in the current-voltage characteristics.
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Figure 12. (Color online) Differential conductance in the antiparallel
configuration as a function of the bias voltage calculated for different values of the
spin relaxation time τsf1 = τsf2 = τsf and for ρ+I1ΩI1 = ρ+I2ΩI2 = 1000/eV. The
other parameters as well as magnetic configuration of the system are the same as
in Fig. 11. (After Ref. [124])

Moreover, negative differential conductance was observed. It was further proposed
that the negative differential conductance could be a consequence of a nonequilibrium
spin accumulation. Such systems can be modelled theoretically by double-island
devices whose two islands and the right electrode are ferromagnetic, whereas the left
electrode is nonmagnetic, corresponding to the nonmagnetic tip of scanning tunnelling
microscope, see the inset of Fig. 11c. Transport characteristics of such a device are
displayed in Fig. 11 for the parameters taken from Ref. [92]. The shifts of the Fermi
level for spin-up electrons are shown in Fig. 11a. These shifts are different in both
magnetic configurations. Generally, spin accumulation on the first island is larger
than the accumulation on the second island. The reason for this is the fact that
the rate for electron tunnelling from the first island to the left lead is smaller than
the rate for tunnelling of electrons to or from the second island, which is due to
asymmetry of barriers. The currents flowing through the system in the parallel and
antiparallel configurations are illustrated in Fig. 11b. Moreover, negative differential
conductance occurs in both magnetic configurations, however, it is more pronounced
in the antiparallel configuration, as shown in Fig. 11c. It can be seen that negative
differential conductance increases with increasing the bias voltage. The resulting TMR
effect is displayed in Fig. 11d. It is interesting to note that TMR oscillates between
negative and positive values.

Oscillations of the sign of TMR and differential conductance result from spin
accumulations in both islands and are absent in the limit of fast spin relaxation (no
spin accumulation) in the islands. The results presented in Fig. 11 correspond to the
long spin relaxation limit. In such a limit, some spin accumulation may occur even for
a very small current flowing through the system, giving rise to NDC and oscillations of
the TMR sign for small bias voltages. However, both effects disappear when the spin
relaxation time is shorter than the time between successive tunnelling events. Thus,
for a finite relaxation time, one may expect absence of NDC and TMR oscillations
for small voltages and the onset of these effects at larger voltages. This is because at
some voltage there is a crossover from the fast to slow spin relaxation limits. In fact
such a behavior is consistent with experimental data of Ref. [92].
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Figure 13. (Color online) TMR as a function of the bias voltage calculated
for different values of spin relaxation time τsf1 = τsf2 = τsf and for ρ+I1ΩI1 =

ρ+I2ΩI2 = 1000/eV. The other parameters as well as magnetic configuration of
the system are the same as in Fig. 11. (After Ref. [124])

The disappearance of NDC with decreasing spin relaxation time τsf is shown
explicitly in Fig. 12, where the bias dependence of differential conductance is presented
for different values of the spin relaxation time. This figure clearly shows that
NDC disappears when spin relaxation time decreases, in agreement with the above
discussion. In the limit of fast spin relaxation time, the differential conductance is
positive, although its periodic modulation still remains.

Similarly, periodic oscillations of the sign of TMR also disappear with decreasing
spin relaxation time τsf . This behavior is shown in Fig. 13, where the bias dependence
of TMR is shown for several values of τsf . First, the transitions to negative TMR
disappear with decreasing τsf . The TMR becomes then positive, although some
periodic modulations survive. Second, the phase of the modulations shifts by about
π when the spin relaxation varies from fast to slow limits.

In the case of analyzed systems, the negative differential conductance occurs due
to nonequilibrium spin accumulation on the islands. It is however worth noting that
the negative differential conductance may also exist in single-electron devices built of
nonmagnetic materials [127, 128].

4. Spin polarized transport through single-level quantum dots connected

to ferromagnetic leads

In the previous two sections we considered spin-dependent transport through single-
electron devices, whose central electrodes (islands) were described by continuous
(or discrete with small level separation) energy spectrum, and the most relevant
and dominant energy scale was the electrostatic charging energy. In ultra-small
metallic islands (nanoparticles) or in semiconducting quantum dots, the level spacing
is comparable with the charging energy or even larger. This also happens in the case
of a molecule attached to metallic leads. In this limit one arrives at slightly more
sophisticated single-electron devices [18, 129, 130].

In this section we consider a FM SET based on a semiconductor quantum dot
coupled to ferromagnetic leads. This model also applies to molecules attached to
ferromagnetic electrodes. Single-electron transistors based on quantum dots are
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of current interest not only because of new and interesting physics emerging in
those systems, but, more importantly, due to possible future applications and due
to the possibility of manipulation of a single electron charge and a single electron
spin [18, 41, 131, 132]. Furthermore, quantum dots are also interesting for future
applications in quantum computing [133, 134].

Transport properties of quantum dots coupled to nonmagnetic leads have already
been extensively studied both theoretically and experimentally [18, 66, 71, 72,
131, 132, 135, 136]. However, further interesting effects occur in the case of
quantum dots coupled to ferromagnetic leads, e.g. spin accumulation, parity effect
on tunnel magnetoresistance, zero-bias anomaly in the Coulomb blockade regime,
exchange field, splitting of the Kondo anomaly, and others. Most of the works
concerned theoretical description of spin-polarized transport in the weak coupling
regime, as well as in the strong coupling regime, where the Kondo physics emerges
[137, 138, 139, 140, 141, 142, 143, 144, 145]. Sequential transport through a single-level
quantum dot coupled to ferromagnetic leads was studied for both collinear [146, 147]
and non-collinear [148, 149, 150, 151, 152, 153] configurations of the electrodes’
magnetic moments. Spin-polarized transport in the cotunneling regime has also been
addressed for collinear systems [154, 155, 156, 157], as well as for systems magnetized
non-collinearly [158, 159, 160, 161]. Furthermore, the resonant tunnelling was also
considered [142, 162].

Quantum dots coupled to ferromagnetic leads may be realized experimentally
in various ways, including ultrasmall metallic (e.g. aluminum) nanoparticles [41],
single molecules [51], granular structures [163], self-assembled dots in ferromagnetic
semiconductors [46], carbon nanotubes [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], and
magnetic tunnel junctions [49]. Quite recently, semiconductor quantum dots based
on two-dimensional electron gas were successfully attached to ferromagnetic leads
[42, 43, 44, 45].

4.1. Quantum dots weakly coupled to ferromagnetic leads: collinear magnetizations

Let us begin our discussion with the case when the dot is weakly coupled to the leads.
One can then use a perturbative approach in which the coupling is considered as a
small perturbation to the unperturbed quantum dot and the leads. Transport is then
dominated either by the first order or by the second order (cotunneling) contributions.
Later on we consider a more general situation when the coupling may be strong and
a new Kondo physics emerges at low temperatures.

4.1.1. Model and method A schematic of a quantum dot coupled to ferromagnetic
leads is presented in Fig. 14. The magnetizations of the leads can be either parallel or
antiparallel. There is also a gate voltage attached to the dot. The system is modelled
by an Anderson-like Hamiltonian of the general form [164]

H = HL +HR +HD +HT, (26)

where the first and second terms describe the left and right reservoirs of noninteracting
electrons, Hr =

∑
qσ εrqσc

†
rqσcrqσ for r = L,R [see Eq. (7)]. The third term of the

Hamiltonian, HD, represents the dot and includes two components: one describes
noninteracting electrons in the dot level and the other represents the Coulomb
interaction of two electrons residing in this level,

HD =
∑

σ=↑,↓

εσd
†
σdσ + Ud†↑d↑d

†
↓d↓ , (27)



CONTENTS 27

Dot

2

V

2

V−
gV

Figure 14. Schematic of a quantum dot coupled to ferromagnetic leads. The
magnetic moments of external electrodes can be aligned either in parallel or
antiparallel. The system is symmetrically biased and there is a gate voltage
attached to the dot.

where U is the correlation energy, εσ = ε∓∆/2 is the energy of an electron in the dot
with spin σ, and d†σ (dσ) is the corresponding creation (annihilation) operator. The
position of the dot level can be tuned by the gate voltage, but is independent of the
symmetrically applied transport voltage. Generally, the dot level may be spin-split,
for example due to a stray field of the electrodes or due to an external magnetic field.
The corresponding level splitting is denoted by ∆, whereas ε is the energy of the spin-
degenerate dot level. In general, four different states of the dot are possible: empty
dot (χ = 0), singly occupied dot with a spin-up (χ =↑) or spin-down (χ =↓) electron,
and doubly occupied dot (χ = d), where |χ〉 are the corresponding eigenfunctions.

Interaction between the leads and quantum dot is incorporated in the tunnelling
Hamiltonian, HT, given by

HT =
∑

r=L,R

∑

qσ

(
trqσc

†
rqσdσ + t∗rqσd

†
σcrqσ

)
, (28)

where trqσ are the tunnel matrix elements. Tunnelling gives rise to an intrinsic
broadening Γσ of the dot levels, Γσ =

∑
r=L,R Γσ

r . The parameters Γ↑
r and Γ↓

r

describe contributions to the level widths due to coupling of the dot to the lead r.
The respective contribution Γσ

r can be expressed in terms of the Fermi golden rule
as Γσ

r = 2π
∑

q |trqσ|2δ(ω − εrqσ). Assuming the tunnel matrix elements trqσ to be
independent of the wave vector q, one can write

Γσ
r = 2π|trσ|2ρrσ . (29)

The coupling parameters are usually expressed in terms of the spin polarization pr
of the lead r, defined by Eq. (2), as Γ

↑(↓)
r = Γr(1 ± pr), where Γr = (Γ↑

r + Γ↓
r)/2.

As reported in [165], typical values of the dot-lead coupling strength Γ in the weak
coupling regime are of the order of tens of µeV.

In order to investigate transport properties of the system in the whole range of
parameters, one has to use a method which is more sophisticated than that based
on the Fermi golden rule. Two such techniques are commonly used: the method
based on the equation of motion for the electron Green functions, and the real-time
diagrammatic technique. Discussion in this section is based mainly on the latter one
[104, 166, 167, 168, 169, 170]. This technique is based on a systematic perturbation
expansion of expectation value of the current operator and the density matrix order
by order in the dot-lead coupling strength Γ. Even, if we limit further considerations
based on this technique to the second order processes, this allows us to describe
transport in the resonance regime, where the usual second order perturbation term
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diverges. One also could go beyond the second order theory and describe more subtle
effects.

Within the real-time diagrammatic technique, the density matrix elements of the
quantum dot, Pχ1

χ2
, are given by a kinetic equation in the Liouville space

0 = (εχ1
− εχ2

)Pχ1

χ2
+

∑

χ′
1
χ′
2

Σ
χ1χ

′
1

χ2χ′
2

P
χ′
1

χ′
2

, (30)

where Σ
χ′
1
χ1

χ′
2
χ2

is the irreducible self-energy corresponding to transition forward in time

from state |χ′
1〉 to |χ1〉 and then backward in time from state |χ2〉 to |χ′

2〉.
When the tunnelling processes are spin-conserving and magnetic moments of the

leads are collinear, the density matrix is diagonal. After performing the perturbation
expansion, one gets the following first-order (sequential tunnelling) and second-order
(cotunneling) master equations:

0 =
∑

χ

Σ
(1)
χ′χP

(0)
χ , (31)

0 =
∑

χ

Σ
(2)
χ′χP

(0)
χ +Σ

(1)
χ′χP

(1)
χ , (32)

respectively, where the probabilities obey the normalization condition
∑

χ P
(m)
χ =

δm,0.
Systematic perturbation expansion of electric current with respect to the coupling

strength Γ can be performed in a similar way, and the first-order and second-order
contributions to current are given by the expressions [166, 169]

I(1) = − ie

2~

∑

χχ′

Σ
I(1)
χ′χP

(0)
χ , (33)

I(2) = − ie

2~

∑

χχ′

Σ
I(2)
χ′χP

(0)
χ +Σ

I(1)
χ′χP

(1)
χ , (34)

where the coefficients Σ
I(1)
χ′χ and Σ

I(2)
χ′χ are the first- and second-order self-energies,

modified as compared to Σ
(m)
χ′χ, to account for the number of electrons transferred

through the barriers [156].
Transport characteristics of quantum dots are generally studied in both the linear

and nonlinear response regimes [156]. It is thus important to distinguish between
different transport regimes of quantum dots, which are sketched in Fig. 15 and labelled
by the corresponding capital letters.

First of all, by changing position of the dot level (by the gate voltage for instance)
or applying the bias voltage, one can cross over from one regime to another. The three
regions (A, B and A’) around zero bias correspond to the regime where sequential
tunnelling is exponentially suppressed and current flows mainly due to cotunneling.
The charge state of the dot is then fixed (strictly at zero temperature) to zero electrons
in the regime A, one electron in the regime B, and two electrons in the regime A’. The
first-order tunnelling processes are possible once the bias voltage is increased above
the threshold voltage, allowing for finite occupation of two adjacent charge states (zero
and one for regime C, and one and two for regime C’). In the regime D all four dot
states χ = 0, ↑, ↓, d are possible. By performing a particle-hole transformation, the
behavior in regime A’ and C’ can be mapped to that in regime A and C, respectively.
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Figure 15. A sketch illustrating different transport regimes. The respective
regimes are separated by solid lines and labelled correspondingly.

4.1.2. Case of nonmagnetic leads To discuss the role of second-order processes
we first briefly describe the case of a quantum dot coupled to nonmagnetic leads
(pL = pR = 0). Figure 16 shows the first-order (dashed line) and second-order (dotted
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Figure 16. Linear conductance as a function of the level position. The dashed
line corresponds to the first-order contribution G(1), the dotted line presents the
second-order conductance G(2) and the solid line shows the sum G(1) +G(2). The
different transport regimes are also specified. The parameters are: kBT = Γ,
U = 20Γ, and p = 0. (After Ref. [156])

line) contributions to the linear conductance as well as the total conductance (solid
line). The conductance is shown there as a function of the dot’s level energy. When
the dot level crosses the Fermi level of electrodes, there is a resonance peak in the
linear conductance. Another resonance appears when ε + U crosses the Fermi level.
The resonance peaks acquire a certain width as a result of the level broadening due to
coupling to the leads (thermal fluctuations also contribute). It is interesting to note,
that the second-order contribution becomes negative at resonances, which indicates
that the second-order processes renormalize the first-order (sequential) contribution.
Except for resonances, the dot is either in the empty (regime A) or doubly occupied
(regime A’) state, or in the Coulomb blockade regime (regime B). In all these three
cases the cotunneling contribution to electric current becomes dominant. It is also
worth noting, that the second-order processes lead to renormalization of the dot level
energy [166].
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4.1.3. Case of ferromagnetic leads When the external electrodes are ferromagnetic,
qualitatively new features appear in the transport characteristics. These are
particularly pronounced in the tunnel magnetoresistance, defined by Eq. (1). Below
we describe some of them.

Figure 17. (Color online) The first-order (a) and first- plus second-order (b)
tunnel magnetoresistance as a function of the bias and gate voltages for the
parameters: kBT = 1.5Γ, U = 40Γ, and p = 0.5. (After Ref. [156])

Tunnel magnetoresistance calculated in the first order of the dot-lead coupling
strength Γ (sequential transport limit) is shown in Fig. 17a as a function of the bias
and gate voltages. It is evident that the TMR generally acquires then two different
values, depending on the transport region. For the regions A (and A’), B and D, the
TMR value is

TMRA,B,D
seq =

p2

1− p2
=

1

2
TMRJull , (35)

while for the region C (and C’) it is

TMRC
seq =

4p2

3(1− p2)
=

2

3
TMRJull . (36)

This behavior can be accounted for as follows. For the regions A (A’) and B the
first-order linear conductance in the parallel and antiparallel configurations is

G
(1)
P ∼ Γ/2 and G

(1)
AP ∼ Γ(1− p2)/2 , (37)

which leads to the magnetoresistance equal to TMR = TMRA,B
seq = p2/(1 − p2). To

account for the behavior of TMR in the regions C and D let us consider the zero
temperature limit. In the region C there are then three dot states taking part in
transport: χ = 0, ↑, ↓ (because of the particle-hole symmetry, the results are also
applicable to regime C’). On finds then the first-order currents in the parallel and

antiparallel configurations to be I
(1)
P ∼ Γ/3 and I

(1)
AP ∼ Γ(1−p2)/(3+p2), which leads to

TMRC
seq = 4p2/3(1−p2). Similar analysis for the region D gives TMRD

seq = p2/(1−p2).
As we already know from previous sections, first-order (sequential) transport does

not describe properly the blockade regions (the regions A, A’ and B). Transport in
these regions is expected to be strongly modified by the second-order (cotunneling)
processes. Accordingly, the above picture is also strongly modified. The corresponding
TMR is displayed in Fig. 17b. Since the sequential tunnelling dominates transport
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above the threshold voltage (outside the blockade regions, i.e. in the regions C and D),
the total TMR is only slightly modified there as compared to that in the first-order. In
the regions A, A’ and B, however, the first-order tunnelling processes are exponentially
suppressed and the current is dominated by the second-order (cotunneling) processes.
As follows from Fig. 17b, cotunneling has then a significant influence on TMR. Apart
from this, TMR in the regions A and A’ behaves differently from that in the region B.

regime Aregime Bregime A'
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TMRJull
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Figure 18. The total linear tunnel magnetoresistance (solid line) as a
function of the level position. The dashed line represents the first-order tunnel
magnetoresistance, whereas the dotted line corresponds to the Jullière’s value.
The parameters are kBT = 1.5Γ, U = 40Γ, and p = 0.5. (After Ref. [156])

Let us look now in more details at the vertical cross-section of Fig. 17b along
the zero bias (linear response). The corresponding linear TMR as a function of the
level position (gate voltage) is shown in Fig. 18. By changing position of the dot
level, one crosses over from the regime A through the regime B to the regime A’. For
comparison, the Jullière’s value of TMR, as well as the first-order contribution to TMR
(denoted as TMR(1)) are shown there. Note, that the first-order TMR is independent
of the gate voltage and is equal to a half of the Jullière’s value. First of all, one can
note that the second-order processes modify the TMR substantially. Unlike the first-
order term, the total TMR (first-order plus second-order contributions) does depend
on the level position. The interesting feature of TMR shown in Fig. 18b is a strong
parity effect. The TMR reaches maximum when there is an even number of electrons
on the dot (zero for the regime A or two for the regime A’), and has minimum for
an odd (one in the regime B) number of electrons. A universal feature is that for
even electron number, TMR exactly coincides with the Jullière’s value. The system
behaves then like a single ferromagnetic tunnel junction. Such a situation can take
place when tunnelling processes are coherent. The only second-order processes that
contribute to conductance in these regions are the non-spin-flip cotunneling processes,
in which the electron spin is conserved. Such processes indeed are fully coherent. The
corresponding cotunneling rates are proportional to the product of the density of states
of the left and right leads, thus, one can express the second-order linear conductance
as

G
(2)
P ∼ Γ2

2
(1 + p2) and G

(2)
AP ∼ Γ2

2
(1− p2) , (38)

for the parallel and antiparallel configuration, respectively. As a consequence, the
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TMR is then equal to that of a single planar ferromagnetic tunnel junction

TMRA =
2p2

1− p2
= TMRJull . (39)

Because of the particle-hole symmetry, the same result can be obtained for regime A’.
The situation becomes, however, more complex for an odd number of electrons

on the dot. Apart from the non-spin-flip processes, there are also spin-flip cotunneling
processes that change spin of the dot. Such second-order processes give rise to spin
relaxation on the dot and lead to reduction of TMR in the regime B. The dependence
of TMR on the position of the energy level in the regime B reflects the relative relation
of the spin-flip to non-spin-flip cotunneling processes. The minimum value of TMR
appears for ε = −U/2, see Fig. 18b, where one finds

TMRB
min =

2p2

3(1− p2)
=

1

3
TMRJull . (40)
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Figure 19. The total current (a) in the parallel (solid line) and antiparallel
(dashed line) magnetic configurations as a function of the bias voltage in units of
I0 = eΓ/~. Part (b) shows the first-order contribution to the TMR (dashed line)
and the total TMR (solid line). The parameters are: kBT = 1.5Γ, ε = −20Γ,
U = 40Γ, and p = 0.5. (After Ref. [156])

Electric current flowing through the system in the nonlinear response regime is
shown in Fig. 19a for both magnetic configurations and for a symmetric Anderson
model (ε = −U/2). The corresponding TMR is also shown there, see Fig. 19b.
The contribution due to the second-order tunnelling processes is significant (or even
dominant) in the Coulomb blockade regime. The sequential TMR is shown by a
dashed line in Fig. 19b. One can see that sequential TMR is constant as a function
of the bias voltage. However, this is not a universal behavior and occurs only for
symmetric Anderson model. Generally, first-order TMR depends on the applied bias
voltage, as illustrated in Fig 17a. The second-order processes lead to a strong and
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Figure 20. (Color online) The total tunnel magnetoresistance as a function of
the bias and gate voltages in the presence of external magnetic field for (a) ∆ = 4Γ
and (b) ∆ = −4Γ. The parameters are: kBT = 1.5Γ, U = 40Γ, and p = 0.5.

nontrivial dependence of the total TMR on the bias voltage. For large values of
the transport voltage (regime D), the first-order tunnelling processes dominate, and
therefore the total TMR is only slightly modified as compared to that in the sequential
transport regime. However, for voltages below the threshold voltage (regime B),
the cotunneling processes lead to a strong bias dependence of TMR in the Coulomb
blockade regime, and to a deep minimum of TMR in the zero-bias limit. In the case
of metallic islands, cotunneling processes usually lead to an enhancement of the TMR
effect in the Coulomb blockade regime [74]. Here, we have the opposite situation, i.e.,
suppression of the effect. At low bias voltage, |eV | ≪ kBT , the single-barrier spin-flip
processes reduce the TMR. This is however no longer the case for nonlinear response
regime, |eV | ≫ kBT , where the spin accumulation diminishes the amount of spin-flip
processes and the TMR increases. Consequently, the TMR effect in regime B increases
with rising the bias voltage within the limits TMRJull/3 ≤ TMRB ≤ TMRJull. The
minimal value is reached at V = 0 and ε = −U/2, whereas the maximal value is
approached for bias voltages large as compared to thermal energy but still far away
from the onset of sequential tunnelling.

New features of transport characteristics appear when the spin degeneration of
the dot level is lifted, ε↑ 6= ε↓, e.g. due to an external magnetic field applied to
the system. It turns out that a finite Zeeman splitting, ∆ = ε↓ − ε↑, changes the
transport characteristics substantially. Figure 20a illustrates the gate and bias voltage
dependence of tunnel magnetoresistance for ∆ = 4Γ. First of all, a finite Zeeman
splitting affects the TMR mainly in the regimes A (A’) and B, where the second-order
processes dominate. Furthermore, TMR exhibits a distinctively different behavior in
the regions A and A’. It is enhanced in the case of empty dot, and reduced in the
case of doubly occupied dot (it may even become negative in the latter case). This
effect depends on the orientation of applied magnetic field; when the field is applied in
the opposite direction, ∆ = −4Γ, there is an enhancement of TMR in regime A’ and
suppression in regime A, as illustrated in Fig. 20b. Thus, by changing the sign of the
Zeeman splitting (magnetic field orientation) or applying a gate voltage, which changes
the dot occupation, it is possible to reduce or enhance the TMR effect considerably.
Another interesting feature of TMR displayed in Fig. 20a appears in the region B.
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There is a strong asymmetry of TMR with respect to the bias reversal. The TMR is
decreased for positive and increased for negative bias voltage. This can also be seen
in Fig. 20b, but for positive transport voltage TMR is then larger than for negative
bias voltage. The crossover between those two values of TMR takes place roughly at
the zero bias. As a consequence, by changing the bias voltage in the small range one
can substantially tune magnitude of the TMR effect.

4.2. Transport through quantum dots in the Coulomb blockade regime: collinear

magnetizations

As we know from previous subsection, the most interesting features due to
ferromagnetism of the electrodes, e.g. the zero-bias anomaly, occur in the blockade
regime, where sequential tunnelling processes play a minor role. This anomaly appears
only in the case when the dot is singly occupied at equilibrium (εσ < 0, εσ + U > 0)
and the system is in a deep Coulomb blockade regime; Γ, kBT ≪ |εσ|, εσ +U . In such
a case the sequential tunnelling is exponentially suppressed, and cotunneling gives
the dominant contribution to electric current [76, 155, 157, 171, 172, 173]. Therefore,
the sequential tunnelling can be completely ignored. In this subsection we look more
carefully at these features taking into account only second-order contribution.

In order to calculate the cotunneling current in the deep blockade regime one
can employ a simplified second-order perturbation theory and master equation for the
occupation probabilities. The rate of a cotunneling processes from lead r to lead r′,
which change the dot state from |χ〉 to |χ′〉, can be written as

γχ→χ′

rr′ =
2π

~

∣∣∣∣∣
∑

v

〈Φχ′

r′ |HT|Φv〉〈Φv|HT|Φχ
r 〉

εi − εv

∣∣∣∣∣

2

δ(εi − εf ), (41)

with εi and εf denoting the energies of initial and final states, |Φχ
r 〉 being the state of

the system with an electron in the lead r and the dot in state |χ〉, whereas |Φv〉 is a
virtual state with εv denoting the corresponding energy. Among different cotunneling
processes one can distinguish the single-barrier (r = r′) and double-barrier (r 6= r′)
cotunneling as well as spin-flip (χ 6= χ′) and non-spin-flip (χ = χ′) cotunneling. The
spin-flip processes change the spin state of the dot, whereas the non-spin-flip processes
do not change the dot state. The current flows through the system due to double-
barrier cotunneling processes. On the other hand, the single-barrier processes do not
contribute directly to electric current, however, they can change the dot occupations,
and this way also influence the current.

The cotunneling current flowing through the system from the left to right lead is
given by

I = e
∑

χχ′

Pχ

[
γχ→χ′

LR − γχ→χ′

RL

]
, (42)

where Pχ denotes the corresponding occupation probability. The probabilities Pχ can
be found from the master equation,

0 =
∑

rr′

∑

χ′

[
−γχ→χ′

rr′ Pχ + γχ′→χ
rr′ Pχ′

]
, (43)

together with the normalization condition
∑

χ Pχ = 1.
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4.2.1. Zero-bias anomaly and its physical mechanism In order to elucidate and
understand the anomalous behavior of TMR in the Coulomb blockade regime, we
show in Fig. 21a the differential conductance in the small bias regime for both parallel
and antiparallel configurations and for several temperatures. Figure 21b displays the
corresponding TMR effect. First of all, the TMR effect in the regime B for |eV | ≫ kBT
increases with lowering temperature and approaches the Jullière’s value, whereas the
minimum at zero bias does not depend on temperature. The differential conductance
in the parallel alignment has characteristics typical of the cotunneling regime, with a
smooth parabolic dependence on the bias voltage. For antiparallel configuration, on
the other hand, differential conductance has a local maximum at zero bias, followed
by local minimum with increasing bias, as illustrated in Fig. 21a. This zero-bias
anomaly stems from the interplay of the spin-flip and non-spin-flip single-barrier and
double-barrier cotunneling processes [155]. The minimum in the TMR effect is a direct
consequence of this anomalous behavior of differential conductance in the antiparallel
configuration.
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Figure 21. The differential conductance (a) for the parallel and antiparallel
configurations and the tunnel magnetoresistance (b) as a function of the bias
voltage for different values of temperature. The maximum in differential
conductance for antiparallel configuration at zero bias is clearly demonstrated.
The other parameters are the same as in Fig. 19. Figure was generated using the
scheme for the perturbation expansion in the Coulomb blockade regime. (After
Ref. [156])

The zero-bias anomaly in the cotunneling regime is qualitatively similar to
the anomaly due to the Kondo effect, which occurs in the strong coupling limit
[174, 175, 176]. There are, however, some distinct differences. First of all, processes
responsible for the zero-bias anomaly in the cotunneling regime are of the second order
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in tunnelling processes, while these leading to the Kondo effect are of higher order.
The conductance in the cotunneling regime is much smaller than in the Kondo regime,
where almost perfect transmission (G = e2/h) through the dot is possible owing to
the Kondo peak in the density of states at the Fermi level. Furthermore, the Kondo
peak occurs at temperatures lower than the so-called Kondo temperature, T . TK,
and exists also in the parallel configuration [51, 139].

To understand the mechanism of the zero-bias anomaly it is crucial to distinguish
between different types of cotunneling processes: the single-barrier cotunneling
processes shown in Fig. 22a and double-barrier cotunneling processes illustrated
in Fig. 22b. Both single-barrier and double-barrier processes can be either spin-
flip or non-spin-flip ones. The current flows due to double-barrier cotunneling,
whereas the single-barrier cotunneling can influence the current in an indirect way, by
changing the spin state of the dot. In the antiparallel configuration, there is a finite
spin accumulation on the dot, as presented in Fig. 22c. The different occupation
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Figure 22. Single-barrier (a) and double-barrier (b) cotunneling processes, and
the occupation probabilities for spin-up and spin-down electrons in the antiparallel
configuration (c). The parameters are kBT = 0.5Γ, ε = −U/2, U = 30Γ, and
p = 0.5. (After Ref. [155])

probabilities for spin-up and spin-down electrons appear due to spin asymmetry
in tunnelling processes. In equilibrium, both rates are equal and there is no spin
accumulation, P↑ = P↓. When a bias voltage is applied, and the system is in
the antiparallel configuration, the relative amount of single-barrier cotunneling is
diminished as compared to the double-barrier cotunneling. This is because the rate of
single-barrier cotunneling is proportional to thermal energy, whereas that of double-
barrier cotunneling is proportional to the bias voltage. In the nonlinear response
regime, the magnetic state of the dot is mainly determined by the spin-flip processes
that transfer an electron from the left to the right leads. The one shown in Fig. 22b
changes the dot spin from | ↑〉 to | ↓〉. Because the rate of this process is proportional
to a product of densities of states for majority electrons, the corresponding rate is
larger than that of the other process that changes the dot spin from | ↓〉 to | ↑〉,
where only the minority spins are involved. This results in a nonequilibrium spin
accumulation, P↓ > P↑, that increases with increasing voltage, as shown in Fig. 22c.
The initial state for the dominant spin-flip cotunneling process that contributes to
current is | ↑〉, as sketched in Fig. 22b. Thus, the conductance is diminished by spin
accumulation. This is the mechanism by which spin accumulation gives rise to nonzero
tunnel magnetoresistance effect, GP > GAP, see Fig. 21b.
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Since the spin accumulation reduces electronic transport, any spin-flip process
that reduces the spin accumulation should enhance the conductance. In particular,
single-barrier spin-flip cotunneling is an example of such a process. As pointed
above, the rate of single-barrier processes scales with kBT while that of double-
barrier cotunneling is proportional to max{|eV |, kBT }, which explains the mechanism
of the zero-bias anomaly. At low bias voltage, |eV | . kBT , single-barrier spin-flip
processes play a significant role – they decrease the spin accumulation opening this
way the system for the fastest double-barrier cotunneling. As a consequence, the
current increases relatively fast with applied bias, leading to a maximum in differential
conductance. For |eV | ≫ kBT , on the other hand, the relative role of single-barrier
processes is negligible as compared to double-barrier cotunneling, and the conductance
is reduced. Thus, the interplay between the rates of double-barrier and single-barrier
cotunneling processes leads to the maximum in the differential conductance at the
zero bias.

4.2.2. Effects of spin relaxation in the dot on cotunneling transport Intrinsic spin
relaxation in the dot can result, for instance, from spin-orbit interaction, coupling of
the electron spin to nuclear spins, etc. However, we will not consider a particular
microscopic mechanism of the intrinsic spin-flip processes, but simply assume that
the spin-flip relaxation is described by a spin-relaxation time τsf , and is taken into
account via a relaxation term in the appropriate master equation for the occupation
probabilities [157],

0 =
∑

ν,ν′=L,R

(
−γσ→σ̄

νν′ Pσ + γσ̄→σ
νν′ Pσ̄

)
− 2

τsf

Pσe
βεσ − Pσ̄e

βεσ̄

eβεσ + eβεσ̄
, (44)

where β = 1/(kBT ), Pσ denotes the probability that the dot is occupied by a spin-σ
electron, and γσ→σ̄

νν′ is the cotunneling rate from lead ν to lead ν′ with a change of the
dot spin from σ to σ̄ (σ̄ = −σ). The last term describes the spin relaxation processes,
which in the case of spin-degenerate dot level reduces to −(Pσ − Pσ̄)/τsf .

As before, (see section 2) one can distinguish between the fast and slow spin
relaxation limits. The former (latter) limit corresponds to the situation when the
time between successive cotunneling events, τcot, is significantly longer (shorter) than
the intrinsic spin relaxation time τsf . A typical spin relaxation time for quantum dots
can be relatively long, up to µs [177, 178]. On the other hand, the time between
successive cotunneling events can be estimated taking into account the fact that the
rate of spin-flip cotunneling is generally larger than that of non-spin-flip cotunneling
(for a finite parameter U). Assuming ε↑ = ε↓ = ε, one then finds

τcot ≈
hε2(ε+ U)2

AU2Γ2
, (45)

with A = max{|eV |, kBT } and h = 2π~. Assuming typical parameters [165], one can
roughly estimate τcot to range from 10−3 ns to 1 ns.

The anomalous behavior of differential conductance in the antiparallel
configuration results from spin asymmetry of the tunnelling processes, which gives
rise to spin accumulation, P↑ 6= P↓. The intrinsic spin-flip processes in the dot reduce
the spin accumulation and this way suppress the anomaly. This behavior is displayed
in Fig. 23(a), where different curves correspond to different values of the parameter
r defined as r = h/(τsfΓ). Thus, r = 0 describes the case with no intrinsic spin
relaxation, whereas the curves corresponding to nonzero r describe the influence of
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Figure 23. The differential conductance in the antiparallel configurations (a) and
tunnel magnetoresistance (b) as a function of the bias voltage for different spin
relaxation r = h/(τsfΓ). The parameters are: kBT = 0.2Γ, ε = −15Γ, U = 30Γ,
and pL = pR = 0.5. (After Ref. [157])

intrinsic relaxation processes. First of all, one can note that small amount of intrinsic
spin-flip processes enhances the zero-bias anomaly [see the curve for r = 10−2 in
Fig. 23(a)]. This is because such processes play then a role similar to that of single-
barrier spin-flip cotunneling. In the case of fast spin relaxation, on the other hand,
the spin accumulation is suppressed and the anomaly disappears, as can be seen in
Fig. 23(a) for r = 1. It is also worth noting that spin-flip processes in the dot enhance
the overall conductance in the antiparallel configuration. In the parallel configuration,
however, the differential conductance does not depend on intrinsic relaxation.

Modifying the conductance in the antiparallel configuration, spin relaxation
processes suppress the tunnel magnetoresistance, as shown in Fig. 23(b). Since
the zero-bias maximum in conductance is suppressed in the fast spin relaxation
limit, the corresponding dip in TMR at small voltages is also suppressed by the
intrinsic relaxation processes. More specifically, the dip in TMR broadens with
increasing r and disappears in the limit of fast relaxation (see the curve for r = 1).
An interesting feature of TMR in the presence of spin-flip scattering in the dot is
the crossover from positive to negative values when r increases, as illustrated in
Fig. 23(b). Thus, the difference between conductances in the parallel and antiparallel
magnetic configurations persists even for fast spin relaxation in the dot, contrary
to the sequential tunnelling regime, where such a difference disappears [147]. This
seemingly counterintuitive behavior can be understood by taking into account the
following two facts: (i) absence of spin accumulation in the dot for fast spin relaxation
(P↑ = P↓), and (ii) difference in the fastest cotunneling processes contributing to the
current in the two magnetic configurations. The fastest double-barrier cotunneling
processes involve only the majority-spin electrons of the two leads – thus, in the
parallel configuration the fastest cotunneling processes are the non-spin-flip ones.
They take place either via the empty-dot virtual state (for one orientation of the
dot spin) or via the doubly occupied dot virtual state (for the second orientation
of the dot spin). The dominant contribution to the current is then proportional to
1/ε2 + 1/(ε + U)2. On the other hand, in the antiparallel magnetic configuration
the fastest cotunneling processes are the spin-flip ones, which can occur only for
one particular orientation of the dot spin. However, for this spin orientation
cotunneling can take place via both empty and doubly occupied dot virtual states.
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The corresponding dominant contribution to electric current is then proportional to
[1/ε−1/(ε+U)]2 = 1/ε2+1/(ε+U)2−2/[ε(ε+U)]. It is thus clear that the difference
in currents flowing through the system in the antiparallel and parallel configurations
is equal to −2/[ε(ε+ U)], which results from the interference term. Since ε < 0 and
ε + U > 0, this interference contribution is positive. As a result, the current in the
antiparallel configuration is larger than the current in the parallel configuration.

The minimum in TMR at zero bias in the case of a symmetric Anderson model
can be expressed as

TMRmin =
2p2

(
4kBTΓ

2 − ε2h/τsf
)

12(1− p2)kBTΓ2 + (3 + p2)ε2h/τsf
, (46)

whereas for |eV | ≫ kBT and r ≪ 1 one finds

TMRmax =
2p2

[
2(3− p2)kBTΓ

2 − ε2h/τsf
]

2(1− p2)(3 − p2)kBTΓ2 + (3 + p2)ε2h/τsf
. (47)

The latter formula approximates the value of TMR corresponding to the bias voltage
at which the differential conductance has a local minimum. In the slow spin relaxation
limit one finds TMRmin = 2p2/(3 − 3p2), and TMRmax = 2p2/(1 − p2). However, in
the limit of fast spin relaxation TMR becomes negative and is given by

TMRmin = TMRmax = −2p2/(3 + p2). (48)

4.2.3. Effects of external magnetic field on cotunneling transport The discussion up
to now was limited to the case of degenerate dot level. The situation changes when
ε↑ 6= ε↓, e.g., due to an external magnetic field. The level splitting is described
by the parameter ∆ = ε↓ − ε↑, where the magnetic field is assumed to be along the
magnetic moment of the left electrode. In Fig. 24 we show the bias voltage dependence
of the differential conductance in the parallel and antiparallel configurations for
different values of parameter r. In the limit of no intrinsic spin relaxation in the
dot (solid line in Fig. 24) and at low bias voltage, the dot is occupied by a spin-up
electron and the current flows mainly due to non-spin-flip cotunneling. The spin-
flip cotunneling processes are suppressed for |∆| & |eV |, kBT , which results in the
steps in differential conductance at |∆| ≃ |eV |. The suppression of spin-flip inelastic
cotunneling was recently used as a tool to determine the spectroscopic g-factor [165].
When |eV | becomes larger than |∆|, spin-flip cotunneling is allowed, consequently the
conductance increases. However, there is a large asymmetry of differential conductance
in the antiparallel configuration with respect to the bias reversal. To understand this
asymmetry, it is crucial to realize that when the splitting ∆ = ε↓ − ε↑ is larger than
kBT , the single-barrier spin-flip cotunneling processes can occur only when the dot
is occupied by a spin-down electron. Thus, the single-barrier processes can assist the
fastest double-barrier cotunneling processes, but only for positive bias. This is because
the fastest processes can occur when the dot is occupied by a spin-down electron for
negative bias and by a spin-up electron for positive bias, leading to larger conductance
for positive than for negative bias voltage. No such asymmetry occurs in the parallel
configuration [see Fig. 24(a)], as now the system is fully symmetric with respect to
bias reversal.

The situation changes when intrinsic spin-flip relaxation processes occur in the
dot. For the parameters assumed in Fig. 24, the spin relaxation in the dot affects the
conductance only for |eV | & |∆|, while for |eV | . |∆| the conductance is basically
independent of r (see Fig. 24). This is because for |eV | . |∆| and |∆| ≫ kBT , the dot
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Figure 24. The differential conductance in the nonlinear response regime for
different spin relaxation in the parallel (a) and antiparallel (b) configurations.
The parameters are: kBT = 0.2Γ, ε↑ = −16Γ, ε↓ = −14Γ, U = 30Γ and p = 0.5.
(After Ref. [157])

is predominantly occupied by a spin-up electron and the transitions to the spin-down
state due to relaxation processes are energetically forbidden. As a consequence, the
current flows mainly due to non-spin-flip cotunneling, irrespective of spin relaxation
time. This scenario holds for both magnetic configurations of the system.

When |eV | & |∆|, the spin-flip cotunneling processes can take place and the
dot can be either in the spin-up or spin-down state. In the parallel configuration,
Fig. 24(a), the conductance is slightly reduced by the spin-flip relaxation processes.
This can be understood by realizing the fact that the fastest non-spin-flip cotunneling
processes in the parallel configuration are more probable when the dot is occupied by
a spin-down electron than by a spin-up one [due to smaller energy denominator, see
Eq. (41)]. Since the spin-down state (as that of larger energy) relaxes relatively fast
to the spin-up state (which has definitely smaller energy), this leads to a reduction in
the conductance. On the other hand, the differential conductance in the antiparallel
configuration is enhanced by the relaxation processes for positive bias and diminished
for negative bias voltages. Consider first the situation for positive bias. As already
discussed above for r = 0, an important role in that transport regime is played by
the single-barrier spin-flip cotunneling processes, which open the system for the fast
double-barrier cotunneling by reversing spin of the dot from the spin-down to the
spin-up state. The relaxation processes play a role similar to that of the single-barrier
cotunneling, and lead to a certain increase in the conductance. For negative bias
voltage, in turn, the fast double-barrier cotunneling processes occur when the dot is
occupied by a spin-down electron. The probability of such events is decreased by
spin relaxation, leading to a reduced conductance. An interesting consequence of the
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Figure 25. The differential conductance in the nonlinear response regime for
the asymmetric Anderson model, ε = −U/4, for different spin relaxation. The
parameters are: kBT = 0.2Γ, U = 60Γ, pL = 0.95 and pR = 0. (After Ref. [157])

enhancement (reduction) of the differential conductance for positive (negative) bias
voltage is an increase of the asymmetry with respect to the bias reversal – see the
curve for r = 1 in Fig. 24(b).

4.2.4. Asymmetric situations An interesting situation occurs when the quantum dot
is coupled asymmetrically to the left and right leads (pL 6= pR). The differential
conductance for a system with one electrode nonmagnetic and the other one made
of a ferromagnet with large spin polarization (in the following referred to as strong
ferromagnet) is shown in Fig. 25 for the case when the dot is described by an
asymmetric Anderson model (|ε| 6= ε+ U).

Consider first the situation in the absence of intrinsic spin relaxation in the dot
(solid curves in Fig. 25). When |eV | ≫ kBT , the influence of single-barrier cotunneling
can be neglected [155]. The cotunneling processes which transfer charge from one lead
to another take place via two possible virtual states – empty dot (an electron residing
in the dot tunnels to one of the leads and another electron from the second lead
enters the dot) and doubly occupied dot (an electron of spin opposite to that in the
dot enters the dot and then one of the two electrons leaves the dot). Consider first
positive bias (eV > 0, electrons flow from right to left, i.e., from normal metal to
strong ferromagnet), and assume for clarity of discussion that the strong ferromagnet
is a half-metallic one with full spin polarization (only spin-up electrons can then tunnel
to the left lead). When a spin-down electron enters the dot, it has no possibility to
leave the dot for a long time. The allowed cotunneling processes occur then via doubly
occupied dot virtual states. In the absence of intrinsic spin relaxation in the dot, the
only processes which can reverse the dot spin are the single-barrier cotunneling ones,
which however play a minor role when kBT ≪ |eV |. Thus, the current flows due to
non-spin-flip cotunneling via doubly-occupied dot virtual states, whereas cotunneling
through empty-dot virtual states is suppressed. The situation is changed for negative
bias (electrons flow from strong ferromagnet to normal metal). Now, the dot is mostly
occupied by a spin-up electron, which suppresses cotunneling via doubly-occupied dot
virtual state and the only contribution comes from cotunneling via empty-dot virtual
state. The ratio of cotunneling rates through the empty dot and doubly occupied dot
virtual states is approximately equal to ξ = [ε/(ε+ U)]−2. In the situation presented
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in Fig. 25 one finds ξ ≫ 1. Accordingly, the conductance for negative bias is much
larger than for positive bias voltage.

When |eV | becomes of the order of kBT or smaller, the rate of single-barrier
cotunneling is of the order of the rate of double-barrier cotunneling. Therefore, the
single-barrier processes can play an important role in transport. More precisely, single-
barrier cotunneling processes can reverse spin of an electron in the dot and thus can
open the system for the fast cotunneling processes.

Intrinsic spin-flip processes in the dot have similar influence on electronic
transport as in the case discussed in the previous section. As before, relaxation
processes remove the asymmetry with respect to the bias reversal and suppress the
zero-bias anomaly. Thus, the diode-like behavior can appear only in the limit of slow
spin relaxation, and is suppressed in the limit of fast spin relaxation, as shown in
Fig. 25 by the curves corresponding to r = 1.

4.3. Systems with noncollinear magnetizations

New features of transport characteristics occur when the leads’ magnetizations form
an arbitrary noncollinear magnetic configuration [137, 140, 141, 148, 149, 150, 161,
179, 180, 181, 182, 183, 184]. Such a configuration can be controlled by a weak
external magnetic field, weak enough to neglect the corresponding Zeeman splitting
of the dot level and weaker than the effective exchange field exerted on the dot
by ferromagnetic leads. In particular, the differential conductance is significantly
modified by the exchange field in noncollinear configurations. This also applies to
the TMR effect, which for arbitrarily aligned leads’ magnetizations can be defined as,
TMR = [IP − I(ϕ)]/I(ϕ), where ϕ is an angle between the leads’ magnetic moments.

The system, whose spin moments SL and SR of the left and right lead,
respectively, form an arbitrary configuration is shown in Fig. 26. The corresponding
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Figure 26. (color online) Schematic of a quantum dot coupled to ferromagnetic
leads with non-collinearly aligned magnetizations. The net spin moments of the
left SL and right SR lead form an angle ϕ. There is a symmetric bias voltage
applied to the system.

Hamiltonian, written for the quantization axis of the dot equivalent to that of the
left lead, is given by Eq. (26), where the tunnel Hamiltonian can be decomposed into
two terms HT = HTL +HTR. The term HTL describes tunnelling processes between
the left electrode and the dot and takes the same form as for collinear configurations,
while HTR describes tunnelling processes between the dot and right lead, and acquires
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the form

HTR =
∑

k

[(
tR+c

†
Rk+ cos

ϕ

2
− tR−c

†
Rk− sin

ϕ

2

)
d↑

+
(
tR+c

†
Rk+ sin

ϕ

2
+ tR−a

†
Rk− cos

ϕ

2

)
d↓ + h.c.

]
. (49)

The real-time diagrammatic method described at the beginning of this section
for collinear magnetic configurations can be extended to include the effects due to
noncollinearity of the leads’ magnetic moments. The density matrix of the quantum
dot for an arbitrary magnetic configuration is given by

ρ̂D =




P 0
0 0 0 0

0 P ↑
↑ P ↑

↓ 0

0 P ↓
↑ P ↓

↓ 0

0 0 0 P d
d


 . (50)

The diagonal elements of the density matrix correspond to the respective occupation
probabilities, while the off-diagonal elements P ↓

↑ and P ↑
↓ describe the dot spin ~S, with

Sx = ReP ↑
↓ , Sy = ImP ↑

↓ , and Sz =
(
P ↑
↑ − P ↓

↓

)
/2. The density matrix elements can

be determined from the corresponding kinetic equation, which in the steady state and
for spin-degenerate dot level can be written as [104, 161, 166, 167]

0 =
∑

χ′
1
,χ′

2

P
χ′
1

χ′
2

Σ
χ′
1
χ1

χ′
2
χ2

. (51)

By expanding the self-energies and density matrix elements, one can calculate the
sequential and cotunneling current.

In the following we focus on transport in the Coulomb blockade regime, |ε|, |ε+
U | ≫ Γ, kBT , and when the dot is singly occupied, ε < 0 < ε+U . ¿From the discussion
above we know that there is an anomalous behavior of the differential conductance in
the small bias regime for antiparallel magnetic configuration. Now, we will consider
how this anomaly changes when magnetic configuration varies continuously from
antiparallel to parallel alignment.

4.3.1. Symmetric Anderson model We consider first the symmetric Anderson model,
ε = −U/2. The exchange field vanishes then for an arbitrary magnetic configuration,
and both differential conductance and TMR change monotonically when going from
antiparallel to parallel magnetic configurations. However, for ε 6= −U/2, the effects
of exchange field become important and lead to nontrivial behavior of transport
characteristics, as will be discussed later.

The differential conductance G as a function of the bias voltage is shown in
Fig. 27(a) for several values of the angle ϕ. The conductance varies monotonically
with the angle between leads’ magnetic moments. When the angle increases from zero
to π, the anomaly emerges at small values of ϕ and its relative height increases with
increasing angle, reaching a maximum value at ϕ = π.

The exchange field for a symmetric Anderson model is negligible, and the average
dot spin tends to zero in the linear response regime. The angular dependence of the
linear conductance can be then expressed as

G =
e2Γ2

2hε2

[
3− p2

(
1 + 2 sin2

ϕ

2

)]
. (52)
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Figure 27. (color online) Differential conductance G = dI/dV (a) and tunnel
magnetoresistance TMR (b) as a function of the bias voltage V for indicated
values of the angle ϕ between magnetic moments, calculated for symmetric
Anderson model. The parameters are: kBT = 0.5Γ, ε = −15Γ, U = 30Γ, and
pL = pR ≡ p = 0.5. (After Ref. [161])

The variation of G with ϕ at low bias is thus characterized by the factor 1+2 sin2(ϕ/2),
which leads to maximum (minimum) conductance in the parallel (antiparallel)
magnetic configuration. Such behavior is typical of a normal spin-valve effect.

The bias dependence of the associated TMR is shown in Fig. 27(b) for several
values of the angle ϕ. The zero-bias anomaly in the differential conductance [see
Fig. 27(a)] leads to the corresponding anomaly (dip) in TMR at small bias voltages.
The dip in TMR decreases when magnetic configuration departs from the antiparallel
alignment, and eventually disappears in the parallel configuration. The variation
of TMR with the angle is monotonic, similarly as the angular variation of the
differential conductance. The dependence of TMR on the angle ϕ at zero bias is
given approximately by the formula

TMR =
2p2 sin2 ϕ

2

3− p2
(
1 + 2 sin2 ϕ

2

) . (53)

Now, the angular dependence of TMR is governed by sin2(ϕ/2), which gives maximum
TMR in the antiparallel configuration and zero TMR in the parallel one.

4.3.2. Asymmetric Anderson model The transport characteristics, described above
for the symmetric Anderson model, are significantly modified when the model becomes
asymmetric, i.e. when ε 6= −U/2. This can be realized by shifting the dot level position
by a gate voltage applied to the dot. Different contributions to the exchange field do
not cancel then, and the resulting effective exchange field becomes nonzero. And
this exchange field has a significant influence on transport properties. The strength
of effective exchange field grows with deviation of the Anderson model from the
symmetric one, described quantitatively by 2ε+U (with 2ε+U = 0 for the symmetric
model).

The leading contribution to the exchange field comes from the first-order diagrams
of the perturbation expansion in terms of the real-time diagrammatic technique,
whereas the current flows due to the second-order tunnelling processes. This leads
to two different time scales which determine transport characteristics. Transport
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Figure 28. (color online) The differential conductance G = dI/dV (a) and tunnel
magnetoresistance TMR (b) as a function of the bias voltage V for indicated values
of the angle ϕ for asymmetric Anderson model ε = −12Γ and U = 30Γ. The other
parameters are the same as in Fig. 27. (After Ref. [161])

properties are thus a result of the interplay of the first- and second-order processes.
Although the first-order processes do not contribute directly to current, they influence
transport via modification of the dot spin.

The differential conductance is shown in Fig. 28(a) as a function of bias voltage
for an asymmetric Anderson model, ε 6= −U/2, and for different values of ϕ. The
low-bias differential conductance becomes enhanced in a certain range of the angle ϕ,
leading to a nonmonotonic dependence of the conductance G on the angle between
the leads’ magnetizations. This nonmonotonic behavior is also visible in TMR, see
Fig. 28(b). There is also a range of the angle ϕ, where TMR changes sign and becomes
negative in the small bias region, i.e. the corresponding conductance is larger than
that in the parallel configuration.

The most characteristic features of transport characteristics in the presence of
exchange field are the enhanced differential conductance at a non-collinear alignment
and its rapid drop when the system approaches the antiparallel configuration. The key
role in this behavior is played by the first-order processes giving rise to the exchange
field. These processes lead to the precession of spin in the dot, which facilitates
tunnelling processes and leads to an increase in the conductance as compared to that
in the parallel configuration. When the configuration becomes close to the antiparallel
one, the first-order processes become suppressed and the conductance drops to that
for antiparallel alignment. The nonmonotonic behavior of the differential conductance
with ϕ leads to a nonmonotonic dependence of TMR. The effects due to exchange
field give rise to a local minimum in TMR at a non-collinear magnetic configuration.
Moreover, in this transport regime TMR changes sign and becomes negative. When
the magnetic configuration is close to the antiparallel one, TMR starts to increase
rapidly reaching maximum for ϕ = π. The negative TMR and its sudden increase
when the configuration tends to the antiparallel one are a consequence of the processes
leading to nonmonotonic behavior of the differential conductance, as described above.

To understand more intuitively the above presented behavior of the differential
conductance and TMR at low bias voltage and close to the antiparallel configuration,
one should consider two different time scales. One time scale, τprec, is established by
the virtual first-order processes responsible for the spin precession due to exchange
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field,

∣∣τ−1
prec

∣∣ ≈ Γ

2h
p sinϕ ln

∣∣∣∣
ε

ε+ U

∣∣∣∣ . (54)

The second time scale, τcot, is associated with second-order processes which drive the
current through the system. At low temperature and low bias voltage, the cotunneling
rate can be expressed as

τ−1
cot ≈

Γ2

4h
(1 + p)(1− p cosϕ)

|eV |U2

ε2(ε+ U)2
. (55)

The rate τcot depends linearly on the applied voltage, whereas τprec is rather
independent of V . As a consequence, at low bias and for non-collinear configuration,
the exchange field plays an important role leading to a nonmonotonic dependence
of differential conductance on the angle between the leads’ magnetizations. When
magnetic configuration is close to the antiparallel one, the spin precession rate is
deceased (

∣∣τ−1
prec

∣∣ ∼ sinϕ) and, at certain angle, the rate of spin precession becomes
comparable to the cotunneling rate. This gives rise to a sudden drop (increase)
in differential conductance (TMR). We note that the nonmonotonic dependence of
differential conductance and magnetoresistance has also been observed in quantum
dots in the strong coupling limit [140, 141].

5. Transport through multi-level quantum dots connected to

ferromagnetic leads

Up to now we discussed theoretical aspects of electronic transport through the simplest
quantum dots, i.e. the dots with only one orbital level. Real dots are usually more
complex and their electronic spectrum includes many orbital levels taking part in
electronic transport. This may significantly change transport characteristics and also
may lead to qualitatively new features [185, 186, 187, 188, 189, 190]. In this section
we will consider some of the new effects in transport through multi-dot systems.

5.1. Sequential transport in two-level dots

The schematic of a two-level quantum dot coupled to ferromagnetic leads with collinear
magnetizations is shown in Fig. 29. The quantum dot is described by the following
Hamiltonian

ĤD =
∑

jσ

εjnjσ + U
∑

j

nj↑nj↓ + U ′
∑

σσ′

n1σn2σ′ − ∆

2

∑

j

(nj↑ − nj↓) , (56)

where njσ is the particle number operator, njσ = d†jσdjσ , d
†
jσ (djσ) is the creation

(annihilation) operator of an electron with spin σ on the jth level (j = 1, 2), and εj
is the corresponding single-particle energy. The on-level Coulomb repulsion between
two electrons of opposite spins is described by U , whereas the inter-level repulsion
energy is denoted by U ′. The forth term in Eq. (56) describes the Zeeman energy,
with ∆ = gµBB being the Zeeman splitting of the energy levels (B is an external
magnetic field along the magnetic moment of the left electrode). To present the main
features of transport characteristics, it is convenient to introduce the level spacing
δε = ε2 − ε1 and also define ε1 ≡ ε.

In the following we analyze the current I, differential conductance G, and the
Fano factor F in the parallel and antiparallel magnetic configurations, as well as
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Figure 29. (color online) Energy diagram of a two-level quantum dot coupled
to ferromagnetic leads. For clarity reasons the energy diagram is shown here for
∆ = U ′ = 0. The leads’ magnetizations can form either parallel or antiparallel
configurations. The arrows indicate the net spin of the leads.

the corresponding TMR for two-level quantum dots. The Fano factor, F = S/Sp,
describes the deviation of the zero-frequency shot noise S from the Poissonian shot
noise Sp = 2e|I|. The presented results have been obtained within the real-time
diagrammatic technique [169, 185, 188].

a b

Figure 30. (color online) The differential conductance G = dI/dV as a function
of the bias voltage and level position in the parallel magnetic configuration (a)
and TMR (b) for the parameters: kBT = Γ, δε = 25Γ, U = 50Γ, ∆ = 0,
pL = pR ≡ p = 0.7, and Γrj ≡ Γ/2 (r = L,R, j = 1, 2). (After Ref. [188])

5.1.1. Quantum dots symmetrically coupled to ferromagnetic leads Typical variation
of the differential conductance with the bias voltage V and level position ε (gate
voltage) is shown in Fig. 30(a) for the parallel magnetic configuration. Conductance
in the antiparallel configuration is qualitatively similar to that in the parallel
configuration, but generally smaller, which leads to nonzero TMR effect. The
diamonds in Fig. 30(a) around V = 0 correspond to the Coulomb blockade regions.
When lowering position of the dot levels, the charge of the dot changes successively.
The dot is empty for ε & 0, occupied by one electron for 0 & ε & −U , doubly occupied
for −U & ε & −(2U+δε), occupied by three electrons for−(2U+δε) & ε & −(3U+δε),
and the two orbital levels of the dot are fully occupied for −(3U+δε) & ε. In all these
transport regions the dot is in a well-defined charge state, and the sequential tunnelling
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Figure 31. (color online) Current (a) in the units of I0 = eΓ/~ and Fano factor
(b) in the parallel (solid line) and antiparallel (dashed line) configurations as well
as tunnel magnetoresistance (a) as a function of the bias voltage for ε = U/2.
The other parameters are the same as in Fig. 30. (After Ref. [188])

is exponentially suppressed. If the bias voltage is increased above a certain threshold
voltage, the current flows due to first-order (sequential) tunnelling processes. When
the thermal energy is low enough, one observes then a well-resolved step in the current
as a function of the bias voltage. In the density plots shown in Fig. 30a, this can be
seen in the form of lines that clearly separate the Coulomb blockade regions from
transport regions associated with consecutive charge states taking part in transport.
When the bias voltage increases further, additional steps [and consequently lines in
Fig. 30(a)] arise at voltages where new states becomes active in transport.

The corresponding TMR as a function of the bias and gate voltages is shown in
Fig. 30(b). It is worth noting that TMR takes now several well-defined values. Such
behavior of TMR is significantly different from that for a single-level quantum dot,
where TMR in the sequential tunnelling regime acquires only two values [156]. As in
single-level dots, TMR in the linear response regime is independent of the gate voltage
and is given by p2/(1− p2), i.e. half of the TMR in the Julliere model [13]. Figure 30
also shows that, when increasing the bias voltage V and keeping constant position of
the dot levels, the current and TMR acquire some specific and well-defined values in
different transport regions. As shown in Ref. [188], the current and TMR at these
plateaus can be approximated by simple analytical formulas.

This behavior is presented in more details in Fig. 31(a), where the bias voltage
dependence of the current and TMR is shown explicitly for the case when the dot
level is above (ε = U/2) the Fermi level of the leads at equilibrium. The current in
both magnetic configurations and the associated TMR exhibit characteristic plateaus
which correspond to different transport regions. The corresponding Fano factors FP
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and FAP in the parallel and antiparallel magnetic configurations are shown in Fig. 31b.
Similarly as current and TMR, the Fano factor acquires roughly constant values,
different in different transport regions. Due to the spin asymmetry in the coupling
of the dot to external leads, the bias dependence of the Fano factor is significantly
different from that in the corresponding nonmagnetic situations [185]. For both
magnetic configurations of the system, the Fano factor depends on the polarization
factor p (differently in the two configurations, in general). If |eV | ≪ kBT , the Fano
factor becomes divergent due to the thermal noise, which dominates in this transport
regime; in the case of V = 0, the noise is given by S = 4kBTG

lin, with Glin being
the linear conductance, leading to a divergency of the Fano factor [116, 191]. Apart
from this, in some transport regions we find FP > FAP, while in the other ones
FP < FAP. The ratio FP/FAP depends generally on the spin polarization of the leads
p [188]. Furthermore, we note that if the leads are half-metallic, the Fano factor in
the parallel configuration diverges as p → 1. This increase of the Fano factor is due to
the enhanced spin asymmetry in transport processes through the dot [146, 192, 193].
On the other hand, in the antiparallel configuration the Fano factor tends to unity
for p → 1, except for the Coulomb blockade regime with two electrons trapped in the
dot, where the shot noise is super-Poissonian.

5.1.2. Quantum dots asymmetrically coupled to the leads When one of the leads
is half-metallic (p = 1) and the other one is nonmagnetic (p = 0), transport
characteristics become asymmetric with respect to the bias reversal. Furthermore, the
current can be suppressed in certain bias regions, and this suppression is accompanied
by the occurrence of NDC. This basically happens when the electrons residing in the
dot have spin opposite to that of electrons in the half-metallic drain electrode. In
Fig. 32 we show the current and Fano factor for a quantum dot coupled to half-
metallic (left) and nonmagnetic (right) lead as a function of the bias voltage. For
the situation shown in Fig. 32, current is suppressed in certain regions of positive bias
voltage. As follows from Fig. 32(a), there are three such blockade regions, labelled with
the consecutive numbers. On the other hand, for negative bias voltage, the current
changes monotonically with the transport voltage, as shown in the inset of Fig. 32(a).

The mechanism of the blockade can be described as follows. In the blockade
region (1), 1 . eV/U . 2, the dot is in the state | ↓〉|0〉 and the spin-down electron
residing in the dot has no possibility to tunnel further to the left lead, which leads to
suppression of the current. Here, the first (second) ket corresponds to the first (second)
orbital level of the dot. The blockade region (2), 2 . eV/U . 3, is associated with
the occupation of the states | ↓〉|0〉 and |0〉| ↓〉. The current is then prohibited due to
the full occupation of the single-particle spin-down states. When increasing the bias
voltage further, 3 . eV/U . 4, the blockade of the current becomes suppressed [see the
plateau between regions (2) and (3) in Fig. 32(a)], which is due to a finite occupation
of state | ↑↓〉|0〉. Although tunnelling of spin-down electrons is then blocked, the
current is still carried by spin-up electrons. In turn, the blockade region (3) occurs
for 4 . eV/U . 5, where the dot is in the triplet state | ↓〉| ↓〉 and tunnelling is
also suppressed. Thus, the current is blocked when the total dot spin Sz is either
Sz = −1/2 or Sz = −1, i.e., the spin of electrons on the dot is opposite to that of
electrons in the half-metallic lead. There is no suppression of current for negative
voltage. This is because the electrons residing in the dot can always tunnel to the
nonmagnetic drain electrode. It is also interesting to note that a pure triplet state is
formed in the region (3) [188, 194].
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Figure 32. The current (a) in units of I0 = eΓ/~ and Fano factor (b) as a
function of the bias voltage for pL ≡ p = 0.95, 0.98, pR = 0, while the other
parameters are the same as in Fig. 30. The inset in part (a) shows the current in
the whole range of the bias voltage. (After Ref. [188])

The current blockade in the regions (1) to (3) in Fig. 32(a) for positive bias is
not due to the charging effects as in the Coulomb blockade regime, but due to a
particular occupation of the dot spin state. Such blockade is frequently referred to
as the Pauli spin blockade, and has already been found in single-dot and double-dot
systems [195, 196, 197, 198, 199]. It is worth noting that the current blockade in
Fig. 32(a) is not complete – there is a small leakage current in each blockade region,
which results from the fact that the assumed spin polarization of the half-metallic lead
is not exactly equal to unity. When spin polarization is increased, the current in the
blockade regions decreases (compare the curves for p = 0.95 and p = 0.98).

The spin blockade of charge current leads to the super-Poissonian shot noise, i.e.,
the corresponding Fano factor is larger than unity. On the other hand, the Fano factor
outside the spin blockade regions is sub-Poissonian (smaller than unity), as shown in
Fig. 32(b). The enhancement of the shot noise in the Pauli blockade regions is a
consequence of large spin asymmetry in the tunnelling processes. The occurrence of
a spin-down electron on the dot prevents further tunnelling processes for a longer
time, while spin-up electrons on the dot can escape much faster, allowing further
tunnelling processes. This bunching of fast tunnelling processes gives rise to large
current fluctuations, and consequently also to Fano factors much larger than unity.

Recently an interacting three-terminal quantum dot with ferromagnetic leads was
considered in Ref. [192, 193]. The dot operated as a beam splitter - one contact was
a source and the other two acted as drains. The authors found a dynamical spin
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blockade (spin-dependent bunching of tunnelling events) and positive zero-frequency
cross-correlations of the current in the drain electrodes.

5.2. Cotunneling in two-level quantum dots

In all transport characteristics discussed above only sequential tunnelling processes
were taken into account, while higher order processes, in particular the cotunneling
ones, have been neglected. From our discussion on single-level dots we already
know that higher order contributions are particularly pronounced in the blockade
regions, where they have a significant influence on TMR and Fano factor. The role
of cotunneling processes in two-level dots was studied in a recent paper [200]. It has
been shown there that the cotunneling processes lead to a significant enhancement
(or reduction) of TMR in the blockade regime. Outside the blockade regions,
however, TMR is determined mainly by sequential transport, so the contribution
from cotunneling processes is rather minor. Similarly, the cotunneling processes
significantly modify the Fano factor in the blockade regions, while outside these regions
the Fano factor is only weakly sensitive to the cotunneling. More specifically, the
Fano factor in the blockade regions is reduced in comparison to that obtained in
the sequential transport limit. However, it is still larger than one, indicating super-
Poissonian shot noise in the blockade regime due to bunching of the fastest cotunneling
processes.

There is also another interesting phenomenon in the blockade regime, which
resembles the zero bias anomaly observed in single-level dots in the antiparallel
magnetic configuration. This takes place when each orbital level of the dot at
equilibrium is occupied by a single electron, and the system is in the Coulomb blockade
regime [189]. The Hamiltonian H of the system is given by Eq. (26), where HD

additionally includes the exchange term and can be expressed by the formula [201, 202]

HD =
∑

jσ

εjnjσ + U
∑

j

nj↑nj↓ + U ′
∑

σσ′

n1σn2σ′ − J
∑

αβγδ

d†1αd1βd
†
2γd2δ~σαβ~σγδ . (57)

The last term in HD corresponds to the exchange energy according to the Hund’s rule,
with J being the respective exchange coupling and ~σ denoting a vector of Pauli spin
matrices.

Six different two-particle states of the dot are possible, these are: three singlets
|S = 0,M = 0〉1 = (| ↑〉| ↓〉 − | ↓〉| ↑〉)/

√
2, |0, 0〉2 = | ↑↓〉|0〉, |0, 0〉3 = |0〉| ↑↓〉, and

three triplets |1, 0〉 = (| ↑〉| ↓〉 + | ↓〉| ↑〉)/
√
2, |1, 1〉 = | ↑〉| ↑〉 and |1,−1〉 = | ↓〉| ↓〉.

In the case of finite level spacing, δε > kBT,Γ, and J < δε, the lowest singlet state is
|0, 0〉2. Transport characteristics strongly depend on the ground state of the system.
It is therefore useful to introduce the difference between the energy of the lowest lying
singlet (εS) and triplet (εT) states, ∆ST = εS − εT = J − δε.

For ∆ST < 0, the ground state of the dot is a singlet, |0, 0〉2, whereas for ∆ST > 0,
the ground state is a triplet, which is three-fold degenerate, |1, 0〉, |1, 1〉, |1,−1〉. On
the other hand, for ∆ST = 0, the dot is in a mixed state and the occupation of singlet
and each triplet is equal at equilibrium and given by 1/4.

Figure 33 presents the bias voltage dependence of differential conductanceG in the
parallel and antiparallel magnetic configuration and for several values of ∆ST = J−δε.
Let us consider the situation in Fig 33(c), which corresponds to degenerate singlet
and triplet states, ∆ST = 0. The differential conductance in the parallel configuration
exhibits a smooth parabolic dependence on the bias voltage, whereas in the antiparallel
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Figure 33. (color online) The differential conductance in the parallel (solid line)
and antiparallel (dashed line) magnetic configuration of the system as a function of
the bias voltage for several values of ∆ST = J − δε as indicated: (a) ∆ST = −5Γ,
(b) ∆ST = −2.5Γ, (c) ∆ST = 0, (d) ∆ST = 2.5Γ. The other parameters are:
kBT = 0.5Γ, ε = −60Γ, δε = 5Γ, U = U ′ = 40Γ, and p = 0.5. (After Ref. [189])

configuration there is a maximum at the zero bias voltage. This effect bears a
resemblance to that found in the case of singly occupied one-level quantum dots
discussed in previous sections [155]. Here, however, the mechanism leading to the
maximum is different – the zero-bias peak appears due to cotunneling through the
singlet and triplet states of the dot. In the case of ∆ST = 0 and at low bias voltages,
all the four dot states, i.e. |0, 0〉2, |1, 0〉, |1,−1〉, |1, 1〉, participate in transport on
an equal footing. Consequently, the current flows due to both spin-flip and non-spin-
flip cotunneling processes. To understand the mechanism leading to the zero-bias
peak, one should bear in mind that in the antiparallel configuration the spin-majority
electrons of one lead tunnel to the spin-minority electron band of the other lead.
For example, for positive bias voltage (electrons tunnel then from the right to left
lead), the spin-↑ electrons can easily tunnel to the left lead (the spin-↑ electrons are
the majority ones), while this is more difficult for the spin-↓ electrons (they tunnel
to the minority electron band). Thus, the occupation of state |1,−1〉 (| ↓〉| ↓〉) is
increased with increasing bias voltage, while the occupation of state |1, 1〉 (| ↑〉| ↑〉)
decreases. The unequal occupations of these triplet states lead to a nonequilibrium
spin accumulation in the dot, P|1,1〉 − P|1,−1〉 < 0. It is further interesting to note
that in the antiparallel configuration the possible non-spin-flip cotunneling processes
are proportional to Γ+

LΓ
−
R and Γ−

LΓ
+
R, whereas the spin-flip cotunneling is proportional

to Γ+
LΓ

+
R and Γ−

LΓ
−
R . It is clear that the fastest cotunneling processes are the ones

involving only the majority spins, i.e. Γ+
LΓ

+
R. However, because of nonequilibrium spin

accumulation, with increasing the bias (V > 0), the dot becomes dominantly occupied
by majority electrons of the right lead, P|1,−1〉 > P|1,1〉, and the processes proportional

to Γ+
LΓ

+
R are suppressed. As a consequence, the differential conductance drops with

the bias voltage, leading to the zero-bias peak. This is thus the nonequilibrium
accumulation of spin S = 1 which is responsible for the maximum in G at low bias



CONTENTS 53

voltage. Because the dot is coupled symmetrically to the leads, there is no spin
accumulation in the parallel configuration and the differential conductance exhibits a
smooth parabolic dependence.

The maximum in the conductance at zero bias disappears for ∆ST < 0 as well as
for ∆ST > 0. Instead of the narrow maximum, a relatively broad minimum develops
then in the conductance for both magnetic configurations, as shown in Fig 33(a,b) or
for one magnetic configuration as in Fig 33(d). Consider for instance the case ∆ST < 0,
shown in Fig. 33(a,b). At low bias voltage the dot is occupied by two electrons on
the lowest energy level and the ground state is singlet, S = 0. Current is mediated
then only by non-spin-flip cotunneling processes. Once |eV | & |∆ST|, the triplet states
start participating in transport leading to an increase in the differential conductance
at |eV | ≈ |∆ST|. Thus, the suppression of cotunneling through S = 1 states gives rise
to a broad minimum in the differential conductance. The width of this minimum is
determined by the splitting between the singlet and triplet states, 2|∆ST|.
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Figure 34. (color online) Tunnel magnetoresistance as a function of the bias
voltage for ∆ST = −5,−2.5, 0, 2.5Γ, as indicated in the figure. The other
parameters are the same as in Fig. 33. (After Ref. [189])

The bias voltage dependence of TMR is shown in Fig. 34. Generally, TMR
displays a nontrivial dependence on the ground state of the dot. When the dot is
occupied by a singlet, ∆ST < 0, TMR displays a maximum plateau at low bias, which
can be approximated by, TMRS=0 = 2p2/(1 − p2) [189]. This is the Julliere value of
TMR. Here, it results from the fact that in this transport regime current flows due
to non-spin-flip cotunneling. On the other hand, for ∆ST ≥ 0, the TMR exhibits a
minimum at zero bias, which can be seen in Fig. 34 for ∆ST = 0 and ∆ST = 2.5Γ.

5.3. Multi-level quantum dots based on single-wall carbon nanotubes

When the number of discrete levels in the dot (relevant for electronic transport)
becomes larger than two, transport characteristics of the dots attached to
ferromagnetic leads become more complex and reveal further interesting features. Such
features were observed experimentally mainly in molecule-based quantum dots. When
a large natural molecule is weakly attached to metallic leads, it can be treated simply
as a multi-level QD [203, 204, 205]. As a specific case, we discuss transport properties
of a single-wall metallic carbon nanotube (CNT) weakly coupled to ferromagnetic
leads [206, 207, 208, 209, 210].

Sequential transport in CNTs weakly coupled to nonmagnetic and ferromagnetic
leads was considered in a recent paper [206], where TMR and the Fano factor have been
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a

b

Figure 35. (color online) The differential conductance in the parallel
configuration (a) and tunnel magnetoresistance (b) as a function of bias and
gate voltages. The parameters are: ∆ = 8.4 meV, U/∆ = 0.26, J/∆ = 0.12,
δU/∆ = 0.04, δ/∆ = 0.1, kBT/∆ = 0.025, pL = pR = 0.5, x = 0.14, and Γ = 0.2
meV.

calculated within the real time diagrammatic technique. The system was modelled by
the Hamiltonian in the form introduced by Oreg et al. [211],

HQD =
∑

µjσ

εµjnµjσ +
U

2



∑

µjσ

nµjσ −N0



2

+δU
∑

µj

nµj↑nµj↓ + J
∑

µj,µ′j′

nµj↑nµ′j′↓ , (58)

where nµjσ = d†µjσdµjσ , and d†µjσ (dµjσ) is the creation (annihilation) operator of an
electron with spin σ on the jth level in the subband µ (µ = 1, 2). The corresponding
energy εµj of the jth discrete level in the subband µ is given by εµj = j∆+ (µ− 1)δ,
where ∆ is the mean level spacing and δ describes the energy mismatch between the
discrete levels corresponding to the two subbands. The second term in Eq. (58) stands
for the electrostatic energy of a charged CNT, with U denoting the charging energy
and N0 being the charge on the nanotube induced by gate voltages. The next term
corresponds to the on-level Coulomb interaction with δU being the relevant on-site
Coulomb parameter. Finally, the last term in Eq. (58) describes the exchange energy,
with J being the relevant exchange parameter.

In Fig. 35 we show the differential conductance in the parallel configuration and
associated TMR, calculated in the first order approximation. The results are for a
specific choice of parameters, namely δU + J > δ. The latter condition indicates
that the following sequence of the ground states is realized when filling the CNT with
electrons while sweeping the gate voltage (for V = 0): S = 0, 1/2, 1, 1/2, where S is
the total spin of the nanotube. This means that in a certain transport regions, the
systems is in the triplet state at equilibrium. Fig. 35(a) clearly reveals the fourfold
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pattern of the conductance spectra, associated with filling of the consecutive levels in
the two electron subbands of the CNT. The corresponding TMR is shown in Fig. 35(b),
and reveals a complex variation with both gate and bias voltages.

As shown in Ref. [206], shot noise calculated in the first order approximation is
super-Poissonian in the blockade regions, and sub-Poissonian in the transport regions
were sequential tunnelling dominates. The corresponding Fano factor in the latter
case is close to 1/2, while in the former one is above 1. Detailed calculations taking
into account second order (cotunneling) processes show that the Fano factor in the
blockade regions is generally larger than 1, although it is reduced in comparison to
that derived in the first order approximation, similarly as in the case of two-level dot.

6. Kondo effect in quantum dots coupled to ferromagnetic leads

When a quantum dot or a large molecule is strongly coupled to external leads, low-
temperature transport characteristics reveal features that are typical of the Kondo
phenomenon [51, 139, 174, 175, 176, 212]. To analyze the Kondo effect [213], one may
use various theoretical techniques. For instance, one can use the perturbative methods,
like the real-time diagrammatic technique discussed in previous sections. However,
one has to go beyond the approximations used in the discussion of the sequential
and cotunneling transport. Another approximate method which is frequently used to
study electronic transport through quantum dots, including the Kondo regime, is the
equation of motion method for the relevant Green function. Alternatively, one may
employ nonperturbative methods, such as for example the numerical renormalization
group method [214, 215, 216, 217].

The Kondo effect [78] in electronic transport through a quantum dot has been first
predicted theoretically in Refs. [218, 219]. Since then, it has become well documented
experimentally [174, 220, 221, 222, 223]. The dot with an odd number of electrons
has a local spin which at low temperatures, kBT ≤ kBTK ≪ Γ, and in the presence of
strong coupling to the electrodes behaves effectively like a magnetic Kondo impurity.
Exchange coupling with the leads’ electrons gives rise to spin fluctuations in the dot
and screening of the dot’s spin. This, in turn, leads to the formation of a singlet
state and Kondo resonance peak at the Fermi level in the dot’s density of states. This
Kondo-correlated state leads to an increased transmission through the dot, and also
gives rise to a sharp zero-bias anomaly in the current-voltage characteristics. The
successful observation of the Kondo effect in semiconductor-based quantum dots, as
well as in molecular quantum dots based for instance on carbon nanotubes [224, 225] or
other single molecules [226, 227] attached to metallic electrodes opened new possibility
to study the influence of ferromagnetism on the Kondo phenomenon [44, 51, 228].

In this section we briefly discuss how the Kondo effect is modified by
ferromagnetism of the electrodes. First, we note that in the extreme case of half-
metallic leads, i.e. in the absence of minority-spin electrons, the screening of the dot
spin is not possible in the parallel magnetic configuration. Consequently, no Kondo-
correlated state can be then formed in this particular magnetic configuration.

The possibility of the Kondo effect in a quantum dot attached to ferromagnetic
electrodes was discussed in a number of papers [137, 139, 143, 212, 229, 230, 231, 232,
233, 234, 235]. It was shown, that the Kondo resonance in the parallel configuration
is split and suppressed in the presence of ferromagnetic leads [139, 231, 232, 235, 234].
However, it was also demonstrated that this splitting can be compensated by an
appropriate external magnetic field which restores the Kondo effect [139, 231].
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Let us begin with the collinear (parallel and antiparallel) magnetic configurations.
For the antiparallel configuration and vanishing magnetic field and bias voltage, the
model is equivalent to a quantum dot coupled to a single lead with density of states
ρL↑ + ρR↑ = ρL↓ + ρR↓ [218, 219]. Thus, the usual Kondo resonance forms in such a
case, which is the same as for nonmagnetic electrodes [78]. The situation changes in
the parallel configuration, where there is an overall asymmetry for up and down spins,
say ρL↑ + ρR↑ > ρL↓ + ρR↓. This significantly reduces (or even suppresses) the Kondo
effect.

6.1. Poor man’s scaling approach

Some basic relations concerning the Kondo effect, and particularly those concerning
the Kondo temperature, can be derived from a simple poor man’s scaling [236]
performed in two stages [237]. First one reduces the energy scale of the effective
electron bandwidth D starting from D0. This leads to a renormalization of the level
position ǫdσ according to the scaling equations [139]

dǫdσ
d ln(D0/D)

=
Γσ̄

2π
. (59)

This leads to a spin splitting of the level, which in the presence of a magnetic field
simply adds to the initial Zeeman splitting ∆ǫd. As a result, one finds

∆ǫ̃d = ǫ̃d↑ − ǫ̃d↓ = −(1/π)PΓ ln(D0/D) + ∆ǫd . (60)

The scaling of Eq. (59) is terminated at D̃ ∼ −ǫ̃d [237].
The strong-coupling limit can be reached by tuning the external magnetic field B

in such a way that the total effective Zeeman splitting vanishes, ∆ǫ̃d = 0. In the second
stage [236], spin fluctuations are integrated out. The Schrieffer-Wolff transformation

[78] allows to map the Anderson model, with renormalized parameters D̃ and ǫ̃d, to
the effective Kondo Hamiltonian [139]

HKondo = J+S
+

∑

rr′kq

a†rk↓ar′q↑ + J−S
−

∑

rr′kq

a†rq↑ar′k↓

+ Sz



Jz↑
∑

rr′qq′

a†rq↑ar′q′↑ − Jz↓
∑

rr′kk′

a†rk↓ar′k′↓



 , (61)

with J+ = J− = Jz↑ = Jz↓ = |T |2/|ǫ̃d| ≡ J0 in the large-U limit. Although initially
identical, the three coupling constants J+ = J− ≡ J±, Jz↑, and Jz↓ are renormalized
differently during the second stage of scaling. The relevant scaling equations are

d(ρ±J±)

d ln(D̃/D)
= ρ±J±(ρ↑Jz↑ + ρ↓Jz↓) (62)

d(ρσJzσ)

d ln(D̃/D)
= 2(ρ±J±)

2 (63)

All the coupling constants reach the stable strong-coupling fixed point J± = Jz↑ =
Jz↓ = ∞ at the Kondo energy scale, D ∼ kBTK . For the parallel configuration,
the Kondo temperature in leading order depends on the polarization p in the leads
following the formula

TK(p) ≈ D̃ exp

{
− 1

(ρ↑ + ρ↓)J0

arctanh(p)

p

}
. (64)
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The Kondo temperature is maximal for nonmagnetic leads, p = 0, and vanishes for
p → 1. The unitary limit for the parallel configuration can be reached by tuning the
magnetic field, as discussed above. In this case, the maximum conductance through
the quantum dot is the same as for nonmagnetic leads, i.e. GP

max,σ = e2/h per spin.
The scaling procedure was extended in Ref. [144, 145, 238] to noncollinear

configurations, where instead of Eq. (64) one finds

TK(p) ≈ D̃ exp

{
− 1

(ρ↑ + ρ↓)J0

arctanh(p cos(θ/2))

p cos(θ/2)

}
. (65)

This formula shows explicitly how the Kondo temperature varies with the angle θ
between magnetic moments of the leads.

6.2. Numerical renormalization group

Numerical renormalization-group (NRG) technique [78, 214, 217] is one of the
most powerful and accurate methods available currently to study strongly-correlated
systems in the Kondo regime. This technique has been adapted recently to the case
of a quantum dot coupled to ferromagnetic leads [145, 231, 232]. A simple way to
model the ferromagnetic leads in the standard NRG procedure is to take the density
of states in the leads to be constant and independent of electron spin, ρrσ(ω) ≡ ρ,
the bandwidths to be equal D↑ = D↓, and lump all the spin-dependence into the
spin-dependent coupling parameter, Γrσ(ω), which can be taken as independent of
energy.

The NRG method, with recent improvements related to high-energy features and
finite magnetic field [239, 240, 241, 242], is a well-established method to study the
Kondo impurity (quantum dot) physics. Using this technique one can calculate the
level occupation ndσ ≡ 〈d†σdσ〉, and the spin-dependent single-particle spectral density
Aσ(ω) for arbitrary temperature T , magnetic field B and polarization p. Using the
spectral function one can find the spin-resolved linear conductance

Gσ =
e2

~

ΓLσΓRσ

(ΓLσ + ΓRσ)

∫ ∞

−∞

dωAσ(ω)(−
∂f(ω)

∂ω
) (66)

with f(ω) denoting the Fermi function.

6.3. Nonequilibrium transport: zero-bias anomaly

The Kondo effect is usually observed as a zero bias anomaly in the differential
conductance. This requires theoretical methods applicable to nonequilibrium
situations. One of such techniques is based on the nonequilibrium Green functions.
The latter are usually determined from the relevant equation of motion and the
appropriate decoupling scheme. To describe the main features of the Kondo effect
in transport through quantum dots connected to ferromagnetic leads (at least
qualitatively), one may use the decoupling scheme introduced in Ref. [135, 136], but
generalized by a self-consistent determination of the level energy to account for the
exchange field [139, 233]. Alternatively, one may calculate the exchange field first and
then include it in the formalism by hand [234].

Figure 36 shows the differential conductance as a function of the transport voltage.
For zero magnetic field there is a pronounced splitting of the peak in the parallel
configuration [Fig. 36(a)], which can be tuned away by an appropriate external
magnetic field [Fig. 36(b)]. In the antiparallel configuration, in turn, the opposite
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Figure 36. Differential conductance in the P (a,d) and AP (b,e) configurations,
and the corresponding TMR (c,f). Contributions to the conductance from spin-
up (dashed lines) and spin-down (dotted lines) channels are also indicated. Left
column (a,b,c) corresponds to zero magnetic field, whereas the right one (d,e,f)
to the case when the compensating magnetic field B = 14.53 T is applied (for the
Lande factor g = 0.152). The numerical results are for large U limit, while the
other parameters are: kBT/Γ = 0.01, p = 0.2, Γ/D = 0.001. (After Ref. [233])

happens, i.e. there is no splitting at B = 0 [Fig. 36(d)] and a finite splitting at B > 0
[Fig. 36(e)] with an additional asymmetry in the peak amplitudes as a function of the
bias voltage. Figure 36(c,f) shows the corresponding TMR, which becomes negative
without magnetic field and changes sign to positive when a compensating magnetic
field is applied.

Within the EOM approach the effect of spin-dependent quantum charge
fluctuations is accounted in the self-consistent but intuitive manner. The real-time
diagrammatic technique [104, 167] enables one to construct a systematic approach,
where the effect of ferromagnetic electrodes can be analyzed without any additional
assumptions. Recently the resonant tunnelling approximation (RTA) was extended
by Utsumi et al. [142] to account for influence of the electrodes’ ferromagnetism on
the Kondo phenomenon. This technique gives more reasonable results and allows for
further systematic insight into the physics of the transport through quantum dots in
the Kondo regime.

The Kondo phenomenon in noncollinear magnetic configuration was considered
in Refs [143, 144, 145]. The results show that in symmetric systems, the Kondo
anomaly gradually disappears when the magnetic configuration varies from antiparallel
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to parallel one. However, the main drop of the Kondo peak appears already at small
deviations from the antiparallel alignment.

Recently Pasupathy et al. [51] studied electronic transport through a single C60

molecule attached to ferromagnetic Nickel electrodes in the Kondo regime. It was
shown that the Kondo correlations appear even in the presence of ferromagnetic
leads. The zero-bias anomaly in the nonequilibrium conductance, however, was split
for the parallel alignment of the leads magnetization in agreement with theoretical
predictions. For the antiparallel alignment, on the other hand, no splitting of the
zero-bias anomaly was observed. Some residual splitting observed in this geometry for
some samples can be interpreted as an effect of asymmetric coupling ΓL 6= ΓR. Similar
behavior has also been observed in electronic transport through carbon nanotubes
coupled to ferromagnetic leads [243].

7. Concluding remarks

In this review we addressed certain aspects of electronic transport in mesoscopic tunnel
junctions consisting of magnetic metallic nanoparticles, semiconducting quantum dots,
or molecules attached to ferromagnetic electrodes. We are aware that the review does
not cover all the problems considered in such systems and many references have not
been included. There are some other aspects of electronic and spin transport which
have been omitted. One of such aspects is spin torque acting on the island and/or
electrodes in ferromagnetic single electron transistors based on magnetic metallic
nanoparticles [244]. Another topic omitted in this review is the role of electron
coupling to a phonon bath. Such a coupling leads to new interesting phenomena
in transport characteristics [245]. For instance, the electron-phonon coupling leads to
phonon satellite peaks in the differential conductance. However, the most important
spin effects generated by spin-dependent tunnelling through the barriers separating
the central part from the ferromagnetic electrodes have been addressed.

We note that spin polarized transport through nanostructures, where the
Coulomb effects become important, is rapidly developing in recent years. This
applies not only to theoretical part of the subject, but also to the experimental side,
where recent progress in nanotechnology allows to attach external leads to individual
nanoparticles, quantum dots, and single molecules. An interesting and new field within
this topic is the spintronics based on molecular magnets. Such molecules are good
candidates for magnetic memory cells and also are considered as potential candidates
for information processing devices. There is no doubt, that the rapid progress is the
physics and technology of spin polarized electronic transport through nanostructures
is stimulated by application possibilities in magnetoelectronics, spintronics, and
information technology.
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[53] Zhao B, Mönch I, Vinzelberg H, Mühl T, and Schneider C M 2002 Appl. Phys. Lett. 80 3144
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[73] Barnaś J and Fert A 1998 Phys. Rev. Lett. 80 1058
[74] Takahashi S and Maekawa S 1998 Phys. Rev. Lett. 80 1758
[75] Averin D V and Odintsov A A 1989 Phys. Lett. A 140 251
[76] Averin D V and Nazarov Yu V 1990 Phys. Rev. Lett. 65 2446
[77] Geerligs L J, Averin D V, and Mooij J E 1990 Phys. Rev. Lett. 65 3037
[78] A. C. Hewson, The Kondo Problem to Heavy Fermions, (Cambridge Univ. Press, 1993).
[79] Kastner M A 1992 Rev. Mod. Phys. 64 849
[80] Devoret M and Glatti Ch 1998 Physics World Sept
[81] Averin A V and Korotkov A N 1990 Zh. Eksp. Tero. Fiz. 97 1661
[82] Averin D V, Korotkov A N and Likharev K K 1991 Phys. Rev. B 44 6199
[83] Amman M, Wilkins R, Ben-Jacob E, Maker P D, and Jaklevic R C 1991 Phys. Rev. B 43 1146
[84] Hanna A E and Tinkham M 1991 Phys. Rev. 44 5919
[85] Whan C B, White J, and Orladno T P 1996 Appl. Phys. Lett. 68 2996
[86] Hirvi K P, Paalanen M A, and Pekola J P 1996 J. Appl. Phys. 80 256



CONTENTS 62

[87] Melsen J A, Hanke U, Müller H-O, and Chao K-A 1997 Phys. Rev. B 55 10638
[88] Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L 2000 Nature 407

57
[89] Lientschnig G, Weymann I and Hadley P 2003 Jpn. J. Appl. Phys. 42 6467
[90] Moodera J S, Kinder L R, Wong T M, and Meservey R 1995 Phys. Rev. Lett. 74 3273
[91] Moodera J S and Kinder L R 1996 J. Appl. Phys. 79 4724
[92] Imamura H, Chiba J, Mitani S, Takanashi K, Takahashi S, Maekawa S, and Fujimori H 2000

Phys. Rev. B 61 46
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[147] Rudziński W and Barnaś J 2001 Phys. Rev. B 64 085318
[148] König J and Martinek J 2003 Phys. Rev. Lett. 90 166602
[149] Braun M, König J, Martinek J 2004 Phys. Rev. B 70 195345
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[233] Świrkowicz R, Wilczyński M, and Barnaś J 2004 Czechoslovak Journal of Physics 54 suppl.D
D615
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