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ABSTRACT 

 

The bond fluctuation model with a bond potential has been applied to investigation of 

the glass transition of linear chains and chains with a regular disposition of small 

branches. Cooling and subsequent heating curves are obtained for the chain energies 

and also for the mean acceptance probability of a bead jump. In order to mimic different 

trends to vitrification, a factor B gauging the strength of the bond potential with respect 

to the long-range potential (i.e. the intramolecular or intermolecular potential between 

indirectly bonded beads) has been introduced. (A higher value of B leads to a preference 

for the highest bond lengths and a higher total energy, implying a greater tendency to 

vitrify.) Different cases have been considered for linear chains: no long-range potential, 

no bond potential and several choices for B. Furthermore, we have considered two 

distinct values of B for alternate bonds in linear chains. In the case of the branched 

chains, molecules with different values of B for bonds in the main chain and in the 

branches have also been investigated. The possible presence of crystallization has been 

characterized by calculating the collective light scattering function of the different 

samples after annealing at a convenient temperature below the onset of crystallization. It 

is concluded that crystallization is inherited more efficiently in the systems with 

branched chains and also for higher values of B. The branched molecules with the 

highest B values in the main chain bonds exhibit two distinct transitions in the heating 

curves which may be associated with two glass transitions. This behavior has been 

detected experimentally for chains with relatively long flexible branches.
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Introduction 

 

 Vitrification is a process associated with fast cooling of liquids and mainly 

characterized by a loss of mobility which is not caused by a long-range organization of 

the molecules. In these conditions, the system becomes an amorphous solid or glass.1 

Vitrification does not correspond to a thermodynamic transition and, in fact, a glass is 

not in thermodynamic equilibrium. However, the process usually takes place in a 

narrow range of temperatures that permits the definition of an experimental glass 

transition temperature, Tg. The glass formation can be observed at slower cooling rates 

in some types of materials as polymer melts,2 whose crystallization is partially or totally 

hindered. 

 
 The glass transition of polymer melts has been the object of several studies by 

numerical simulation in recent years.3-11 Given the large time scales involved in the 

process and the need for considering a relatively large portion of the molecular systems, 

a substantial part of these studies have made use of simplified coarse-grained polymer 

models. Some of these studies have used the bond fluctuation model,12-13 devised to 

offer the computational benefit of lattices and the more realistic characterization of 

systems represented by the open space simulations. This model offers a variety of bond 

lengths. Also, it permits the generation of successive configurations in a Monte Carlo 

(MC) simulation by means of a simple single bead jump. These features make this 

model adequate for the study the statics and dynamics of vitrification when 

intramolecular and intermolecular interactions are included by means of adequate 

temperature-dependent potentials. A long-range potential that describes interactions 

between non-bonded close units is usually introduced. However, this potential may 

eventually induce the system crystallization if the mobility of the polymer units allows 
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for the formation of long-range order. Vitrification takes place, however, at a lower 

temperature when mobility of the amorphous structure is severely limited.  

 

 Previous studies with the bond fluctuation model have demonstrated that 

vitrification can only be investigated with the additional introduction of a bond-length 

potential.3,6,10 This potential leads to a higher proportion of the longest bonds allowed in 

the model, which are able to trap some amount of empty space, reducing  the system 

mobility and preventing the formation of ordered structures. In some of these studies, 

other intramolecular or intermolecular interactions are completely removed to avoid 

crystallization3 so that the temperature variation is only reflected in the bond potential 

effectiveness. A recent work on this issue has concluded that the bond potential should 

actually be much stronger than any long-range potential in order to mimic a realistic 

glass behavior.10 This particular conclusion was achieved by using a fixed bond 

potential and several weakened forms of the long-range potential. Previous studies of 

the glass transition with the bond fluctuation model have been focused in the study of 

linear chains. 

 

 This work considers linear chains and also chains with a regular disposition of 

small branches (which we denote as “branched chains”) represented by the bond 

fluctuation model in order to make a more systematic study of the possible of 

crystallization in glass forming polymer melts. Most of the systems have a fixed long-

range potential, which consistently leads to the same range of temperatures for the 

possible crystallization of the system, and differ in the strength of the bond potential 

and, also, in the polymer topology. Furthermore, we include in our study the cases of 

chains with different assignments of bond potentials within the chains (alternate bond 
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potentials for linear chains, and different potentials in the main chain and branches in 

the case of non-linear chains). Crystallization is mainly characterized by the increase of 

the collective scattering function of the simulation box. 

 

Model and Methods 

 

 The bond fluctuation model 12,13 offers a considerably higher number of empty 

positions available around an occupied site and, furthermore, it only needs a single and 

simple form of elementary move, particularly useful when it comes to writing  codes 

applicable to non-linear chains. It considers mutually- and self-avoiding walks on a 

cubic lattice, each polymer bead effectively occupying eight corners of a unit cell.  

 

In the present work, the distance between adjacent lattice sites is adopted as the 

length unit and energies are given in kBT units. We use a version of the model with an 

attractive-repulsive potential for bond energies, V(l), depending on each particular bond 

length, and a long-range potential U(R), depending on the particular distance between 

non-neighboring units. Namely, we consider the potentials proposed by Wittkop et al.6 

to mimic the “glassy” behavior of polymers chains. Our version, however, introduces a 

numerical factor for the bond energy potential energy, B, with respect to the values 

employed by Wittkop et al. so that 

 

BV ( l ) BV( l )=     (1) 

 

The consideration of factor B is inspired in recent results suggesting that the main 

features of the glass state can be only reproduced if the strength of the bond potential is 
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somehow increased with respect to the long-range potential.10 The present study, 

however, differs from the investigation performed in Ref. 10 in some substantial 

features. Firstly, a factor B is introduced here to increase the absolute values of the bond 

potential. Secondly, the  temperatures T actually correspond to the factors, kBT, that 

determine the Boltzmann weights associated to the potential energy terms, whose 

absolute values are presented in Tables 1 and 2 of Ref. 7 and in Table 1 of Ref. 14. 

These two differences apparently mean that the temperature values in this work 

correspond to temperatures (1+B)2 times smaller than in Ref. 10, although this 

correspondence is not exact due to some differences in the specific forms of the 

potentials. We have considered different values of B. In particular, we have investigated 

the case B=0 (no bond potential) and the range B=1-5. We have also obtained some 

results without the long-range potential  and B=1. 

 

Furthermore, our particular model considers linear chains and branched chains 

that are built by adding a single unit branch to every non-end bead in a linear chain. The 

main-chain branching beads are treated as “chiral atoms”. Consequently, we consider 

the plane formed the two bonds in the main chain connected to every branching bead 

(when these two bonds are not in a collinear configuration) and define the side of this 

plane in which the first bead of the branch should remain along the simulation. The 

initial spatial disposition is assigned for each unit branch during the initial equilibration 

process. We have verified that substantial amounts of “meso” and “racemic” diads are 

randomly generated by using this procedure. 

 

The model includes the possibility of employing different values of B for 

different types of bonds. In particular, the case of  different B factors on alternate bonds 
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along a linear chain has been considered. This case can mimic some chains with a 

regular disposition of monomers (or larger groups of atoms) with different compositions 

and it may also apply to the description of some polymers with different side groups 

along the main chain structure. Also, we have performed simulations for our branched 

chains considering the cases of a different B factor (greater or smaller) for bonds in the 

branches with respect to the factor associated to bonds in the main chain. 

 

The systems are built by placing n chains, each composed of N beads, in a cubic 

lattice of fixed length L, with periodic boundary conditions.15 Therefore the simulations 

correspond to a NVT ensemble. The value of L is chosen to be high enough so that the 

number of interactions between different replicas of the same chain is very small, 

L≥2<R2>1/2+5l, where <R2> is the mean quadratic end-to-end vector of a single self-

avoiding walk chain and l is the root-mean squared bond distance in the absence of any 

type of numerical potentials (l=2.72). In the present work L=84 for all the cases. The 

number of chains is determined from the desired number of sites blocked by polymer 

beads, equivalent to the polymer volume fraction, Φ=8nN/L3. This volume fraction is 

fixed to the value Φ=0.5, which gives a good representation of the melt state. Linear 

chains are constituted by N=40 beads, while branched chains are composed of N=78 

beads, 40 of them form the main chain. Therefore, the non-end beads of the main chain 

define 38 branching points, which are connected with 38 single bead branches. 

 

Initially, the chains form a packed configuration. Linear or branched chains are 

organised in successive arrays of extended conformations, placed as close as possible to 

avoid overlapping, i.e. at a distance of 2 for the linear chains. The separations between 

branched chains are 2 or 4 at the two different directions perpendicular to the main 
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chain. The wider separation in a given direction allow for the location of the branch 

beads, bonded to the main chain in this particular direction. All initial bond lengths are 

2. These initial configurations are far from equilibrium but the simulation boxes contain 

a large empty space in contact with some of the chains which eventually allow for a fast 

equilibration as it has been previously verified for linear15 and star16 chains. 

 

 An equilibration run of 106 MC steps is performed to equilibrate the linear and 

branched chains without intermolecular or bond potentials, starting from their initial 

extended conformations. We have computed the mean quadratic radius of gyration in 

the last 2x105 steps, verifying that it is stable. Furthermore, we have compared its value, 

<S2>=78.5±0.5, with the result obtained with a dilute (single chain) system at 

temperature, T=4.67, close to the θ state (same number of configurations), 

<S2>=82.5±0.5. Both values are close, as is expected, since the chains are supposed to 

behave ideally in a melt and in the theta state. A slight difference between both values is 

also found for linear chains, <S2>=61.6 in the melt and <S2>=66.3 at T=4.67, as was 

reported in a previous study of conformational and dynamic properties with the same 

model.15 These data confirm that this equilibration method (starting form extended 

conformations as described above) can be employed correctly also for the apparently 

more difficult case of branched chains. 

 

A second equilibration run, also of 1x106 steps is performed at a conveniently 

high temperature (T=20) for every system with a different set of potentials. Starting at 

this point, we perform cooling runs where the system temperature is gradually 

decreased. We have considered several cooling rates, corresponding to ∆T=-0.1 per 5, 

50, 500, 103, 5x103, 104 and 2.5x104 MC steps. The runs are finished when a very low 

temperature (T=0.1 or 0.2) is reached. “Isothermal annealing” processes are 

subsequently simulated at different low temperatures, using the configurations obtained 



 9

from the cooling process. Most of these runs are of similar length to the equilibration 

processes, though sometimes they are significantly extended (up to 3x106 MC steps) in 

subsequent runs in order to try to detect the possible formation of intermolecular 

structures. Furthermore, heating runs are also performed from the lowest temperature of 

the cooling processes, with the same rates employed for cooling. 

 

 In order to detect intermolecular order, we have computed the collective 

scattering function of the systems. This function is obtained as 

 

( )
s s

1
coll s i j ij

i j

8
n n

S ( q ) n f f exp i .−= < >∑∑ q R     (1) 

 

In eq 1, q is the scattering vector, depending on experimental settings, the vectors Rk(t) 

refer to the positions of the different nS=L3 sites within the system and fk is the contrast 

factor, related with the difference between the scattering factor due to the particular 

occupation in the site in a given configuration and the mean scattering factor of the 

system. Thus, for the homopolymer systems 

 

=if 1-Φ/8       (2a) 

 

if site i contains a bead unit. 

or 

=if -Φ/8       (2b) 

otherwise, in order to comply with the requirement that the global system, considered as 

a large single isotropic volume, does not scatter.15 The practical range of values of q is 

limited by the periodic boundary condition in the simulation box: 
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 kk n)L/(q π= 2 , z,y,xk ≡ ,  nk = 1,2... ,    (3) 

which also determines the smallest value of q. With these specifications, a 

homogeneous system should show small and isotropic values of Scoll(q) for the whole 

range of small and intermediate values of q. (At large values of q local features of the 

model can be observed).  In the presence of crystallization, however, Scoll(q) becomes 

large and anisotropic for small values of q (long-range order). 

 

Results and discussion 

 

In Figure 1 we show the mean energy per bead, E, along cooling processes 

corresponding to six different cases. These curves have been obtained at a cooling rate 

of ∆T=-0.1 per 5x103 MC steps. We consider linear and branched chains with bond 

potential, B=1, or without this contribution (B=0). We also include the results 

corresponding to systems without long-range potential (linear or branched chains) but 

with bond potential (B=1). All these curves exhibit a clear sigmoidal form, as has also 

been observed in previous simulations with the same model.6 Considering only the 

systems with long-range potential, the curves with B=1 have lower energies than the 

curves with B=0 since the bond potential gives a negative contribution to the energy. 

The curve corresponding to the linear chain without bond potential clearly shows the 

most abrupt transition. Comparing the curves with the same type of potential, the 

sharpest transitions always correspond to the linear chains. (This effect is, however, 

slight for the systems without long-range potential). Although the form of the curves 

may indicate a first order transition, as crystallization, the downwards curvature at high 

temperatures is a feature that can simply be associated to the asymptotic behavior of the 
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energy at high temperatures. This behavior is implicit in the model (the sigmoidal shape 

is also observed in the absence of long-range interactions, case for which crystallization 

does not occur.3,4) At very high temperatures, all the different chain configurations have 

similar statistical weights. Therefore, a further increase of temperature does not have 

any effect on the distribution of configurations and, consequently, the mean energy 

stays constant. The asymptotic regime is reached at higher temperatures when the total 

energy is greater and, consequently, the presence of a more energetic bond potential 

implies a later arrival of the asymptotic behavior, though this behavior should 

eventually be reached at conveniently high temperatures. Only simulations in the NPT 

ensemble13,17 would be able to exhibit an increase in the number of  vacancies in the 

system at higher temperatures implying an increase of energy (decrease of favorable 

interactions) in this region. Although some algorithms have been designed to perform 

non-constant volume simulations in lattices, these algorithms have not been 

implemented yet for the bond fluctuation model. 

 

However, the more abrupt curves exhibited by some of the curves obtained with 

long-range potential suggest a substantial crystallization process. This seems to explain 

the differences between the curves corresponding to the linear and branched chains that 

share the same asymptotic limits at high temperature. One may also suspect that 

crystallization explains the more marked sharpness in the curves of the models without 

a bond potential. In fact, the bond potential has been included in the bond fluctuation as 

an artifact to avoid crystallization. It can be observed that the centers of the sigmoidal 

transitions for all the curves corresponding to the systems with long-range potential in 

Figure 1 are placed at similar temperatures. In fact, these curves are sharp enough to 

give a good estimate of a transition temperature associated to the center of the 
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crystallization process, Tc. Their first derivatives provides (T)c=3.3±0.1. The systems 

without long-range interactions, however, show an inflexion point at considerable lower 

temperature which indicates a different physical behavior. 

 

Actually, the onset of the crystallization process can actually be assumed to 

occur at considerable higher values of T. However, it is more difficult to characterize 

since it is somehow masked by the asymptotic bending of the curves. This feature can 

also be discussed by taking into consideration other studies for the bond fluctuation 

model with the same type of long-range and bond potentials for polymer-solvent 

systems. As previously mentioned, the theta temperature of this particular model (linear 

chains) was estimated to be close to T=5.14,15,18  According to the standard theory for 

polymer solutions,19 this temperature corresponds to the critical point of infinitely long 

polymer chains. For finite chains, the critical point should occur at slightly lower values 

of T. All the present models show critical temperature located at the maximum in the 

phase-separation temperature-concentration curve. At phase separation, a polymer-

solvent system yields a polymer-rich solution and a more dilute phase. Since solvent 

molecules are actually represented by the model vacancies, polymer-rich solutions are 

equivalent to the systems of pure polymer with vacancies investigated in the present 

work. Therefore, the high concentration region of the phase separation curve can also 

mark the initial steps of the formation of a large crystalline region at a temperature 

slightly below Tθ. 

 

Since all curves shown in Figure 1 are sigmoidal, the characterization of the 

glass transition in the low temperature region is not easy. This transition is generally 

marked by an abrupt change in the slope of the curves, associated with a discontinuity 
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(not a peak) in the first derivative (specific heat). The curves in Figure 1 suggest two 

regions at low temperature. In one of these regions, the value of the energy is practically 

constant (first derivative close to zero). The second region corresponds to a relatively 

narrow range of temperatures where the curve shows a constant slope. This region is 

broader for the systems for which we can expect more inhibition of crystallization 

(those including the bond potential or branched chains). The intersection of the slopes 

corresponding to these two regions may be used as an estimate of the apparent glass 

transition temperatures (see Table 1). It is observed that the branched chains show 

smaller values of Tc, in spite of their higher number of beads and the steric effects of the 

branches. This has also been verified for the systems without long-range potential, 

where, however, the differences between the systems with linear and branched chains 

are small. 

 

We have investigated whether similar conclusions can be achieved by making a 

representation of the mean acceptance probability for a bead jump, p, obtained with the 

cooling processes, shown in Figure 2. This average measures the possibility to perform 

the jump and, therefore, is related with the number of empty sites available around a 

bead and also on the Metropolis probability to perform a bead jump to these sites. These 

properties have been proposed or used to characterize local changes in the specific 

volume that are also indicative of a glass transition.6,10,11,20,21 We can actually observe 

some correlation in the features shown by the equivalent curves in Figures 1 and 2, 

though the jump acceptance curves are markedly less sharp. In any case, our estimation 

of the glass transition temperature will be based on the energy curves, since these 

graphs provide a clearer distinction between the different cases, especially at low 

temperatures, where the acceptance ratios become very small. 
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Rigidity is an important factor determining the glass transition temperature of 

polymer systems.2 In fact, in the comparison between real linear chains and chains with 

the same skeleton but with bulky side groups, the latter have a higher Tg because of the 

considerably higher rigidity of the main chain induced by the moiety. In order 

investigate the rigidity due to branching in the present model we have calculated the 

mean quadratic distance between the end units of the backbone for the melt of branched 

chains without potential (infinite temperature). The result is <R2>=460±2 for the last 

2x105 steps of the initial equilibration. This result can be compared with the slightly 

smaller value for the mean quadratic end-to-end distance of linear chains (same number 

of beads in the backbone) previously reported, <R2>=370. The conclusion is that the 

increase of rigidity due to branching is relatively small (a 12% increase in the 

characteristic ratio). 

 

In Figure 2 it can also be observed that the acceptance ratios are higher for the 

linear chain than for the equivalent (same model) branched chains at high temperatures. 

Consequently, for a similar main-chain length, the higher rigidity of the main chain in 

the branched chains seems to be the predominant factor to inherit bead jumps. However, 

the branched chains have considerable higher acceptance ratios in the low temperature 

range. In this case, the much higher number of chain ends with a higher mobility in the 

branched chains turns to be the mean factor. This effect is found in spite that the 

translational diffusion coefficients, D, (obtained from representations of the mean 

squared global displacement of individual chains vs. number of MC steps) are always 

considerably greater for the case of linear chains. For instance, comparing the systems 

with long-range potential and B=1 at the intermediate temperature T=5, the acceptance 
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probability is larger for the branched chains. Nevertheless, D=5x10-6 for the linear 

chains and D=2x10-6 for the branched chains at this temperature. Since the glass 

transition occurs in the low range of temperatures, the mobility of end beads explains 

the lower Tg values exhibited by the branched chains. Actually, it has been 

experimentally verified for (similarly rigid) polyethylene chains of different degrees of 

branching that Tg decreases with a variable summing up the number of branching units 

and monomers in the branches.22 Incidentally, the acceptance ratios of the linear chains 

are again higher at very low temperatures (glass state) in the case of the chains without 

long-range interactions. The early occurrence of the glass transition for this case seems 

to trap a larger amount of empty space allowing more local jumps than in the case of 

branched chains. 

 

In Figure 3 we show the cooling curves of a branched chain with B =1 obtained 

with different cooling rates (∆T=-0.1 per 5, 50, 500 and 5x103 MC steps). All these 

curves show similar sigmoidal trends. Faster cooling processes are obviously associated 

to less abrupt overall transitions. The first derivatives show broader peaks for the curves 

corresponding to the faster cooling processes which complicate the characterization of a 

transition temperature. However, all these peaks are compatible with our estimate of 

crystallization temperature, Tc≅3.3. Assuming that the glass transition can be 

characterized by the point where the slopes corresponding to the two linear regions at 

low temperature intercept, we can observe that a fastest rate curves correlate with the 

lowest glass transitions (see Table 1). This tendency cannot be justified except by 

considering that the Tg estimates are strongly biased by the simultaneous crystallization 

processes. The slowest cooling processes contain larger crystalline regions acting as 



 16

effective crosslinks. Therefore, the amorphous parts of the system have less mobility, 

increasing the glass transition temperature. 

 

In Figure 4, we show the results obtained for the branched chain with different 

values of B for the cooling rate of T=-0.1 per 103 MC steps. In order to compare more 

easily the different curves, the energy values are divided by the factor (1+B). It can be 

clearly observed that higher values of B tend to retard the asymptotic regime. As a 

consequence, the glass transition temperature is increased and becomes closer to the 

crystallization temperature range. Therefore, crystallization can effectively be inhibited 

or even eliminated by increasing B. From this point of view, the value B=5 could be 

adequate to give a particularly good description of the glass transition. 

 

The estimation of the glass transition from these three curves is also given in 

Table 1. The result for B=5 is considerably higher than the center of hypothetical 

crystallization temperature range, assuming that the latter is mainly determined by the 

long-range potential and, therefore, it should be close to our estimation of Tc≅3.3 for 

B=0 or 1. A useful model should be able to provide ratios between crystallization and 

the glass temperatures following the main trend of most real polymers, for which 

vitrification occurs at temperatures significantly lower than possible crystallization. 

Otherwise, crystallization is not possible from the kinetic point of view, as it actually 

happens in the case of our model with B=5. Therefore, our choice B =3 can be 

descriptive of these realistic polymer systems. Even though the curve for B =3 shows a 

sigmoidal shape at high temperatures, the slope is constant in the range of temperatures 

for which crystallization may occur. 
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It should also be mentioned that the acceptance probabilities of the branched 

chains are above the values corresponding to the equivalent linear chains in the whole 

range of temperatures above glass transition for the models with B>1. Therefore, higher 

bond energies seem to stress the effect of the higher mobility of end units with respect 

to rigidity in the determination of the average bead jump probability for branched 

chains. 

 

In Figure 5 we show the results for a branched chain with B=3 obtained at 

different cooling rates. (∆T =-0.1 per 5, 50, 103, 104 and 2.5x104 MC steps). It can be 

observed that the estimate of Tg from these curves is practically constant. It should be 

remarked that the two curves obtained with the slowest cooling rates exhibit remarkably 

close and constant slopes in the region above Tg, showing a near to equilibrium curve in 

this region. The results for B=5 at different cooling rates yield similar conclusions. 

Therefore, the marked influence of crystallization in the estimation of Tg observed for 

the B =1 results is eliminated when B is increased, which can be considered as an 

indirect verification of the lack of significant crystallization in the B>1 systems. 

 

A more direct proof of the inhibition of the crystallization process for higher 

values of B can be done by computing the scattering function, Scoll(q). This function has 

been previously used to investigate the local structure (large q values) and the 

isothermal compressibility (low q range) in the melt and glass state for polymer systems 

without long-range potential.4,13 The collective scattering function for athermal  

polymer systems exhibits a flat form close to the value Scoll(q)≅0.2 at low q13,23 In our 

case, we are interested to characterize the possible presence of crystallization in the 

investigated systems. The onset of this feature should induce the appearance of peaks in 
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the region of lower values of q due to the presence of long-distance order. These peaks 

should eventually lead to a divergence at q→0 marking the spinodal of the transition 

process. In Figure 6, we present the curves corresponding to results obtained in different 

cases obtained at the lowest temperature of the cooling process (T=0.2). Ordered 

structure is observed for the systems with B smaller than 3. The most prominent peaks 

at low q correspond to the chains without bond potential. For B =1, the peaks are 

significantly smaller, but they are still clearly observed. However, the curves are mainly 

flat for B =3. For a given value of B, the relevant peaks are noticeably smaller in the 

case of branched chains. This shows a considerable inhibition of crystallization in our 

branched chains. 

 

The features marking long-range order should progressively be enhanced in an 

annealing process at a temperature lower than the onset of the crystallization process but 

higher than the glass transition temperature, where the crystals are able to grow at an 

adequate rate. In Figure 7, we show the results obtained for the model with B=1 (linear 

and branched chain) with an annealing at T=3.7, value close to the estimated 

temperature for the center of the crystallization transition. We observe a great increase 

of the intensity of the peaks, correlated with their progressive displacement to lower 

values of q for the linear chains. The increase is less dramatic for the branched chains, 

confirming the important inhibition of crystallization in these systems. However, 

ordered structures are eventually formed even for this type of chains, unless B is greater 

than 1.  For higher values of B, we have mainly investigated this feature in linear chains, 

since their tendency to crystallize is higher. In Figure 8, we observe that these features 

are significantly less marked for B =3. In fact, the system seems to exhibit some long-

range inhomogeneity at the earlier steps of the annealing, but the rate of this effect is 
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retarded and is practically stopped at longer times. An even clearer inhibition in the 

ordering growth is found for a linear chain with the alternative choices of B=1 or B=5 

for odd and even bonds along the chain skeleton, showing remarkably small values of 

the scattering functions after many annealing steps, see Figure 9. This choice of values 

of B tries to mimic the presence of bulky (prone to vitrify) monomers in the polymer 

structures. 

 

 In Figure 10, we present the cooling curves of ∆T=-0.1 per 103 MC steps 

corresponding to different types of chains, all of them with a mean value of B close to3. 

Comparing the curves for a linear and a branched chain, both of them for B=3, it is 

observed that the linear chain exhibits a slightly sharper overall transition. The 

estimated value of Tg for the linear chain is higher (Tg≅3.5) though it is still below the 

onset of a possible crystallization transition. We include in Figure 10 the cooling curve 

for the linear chain mixing B =1 and B =5 bonds. This curve exhibits a considerable 

large region with constant slope above Tg so that sigmoidal shape is only observed when 

high temperatures (T>10) are considered. This is consistent with the strong inhibition of 

crystallization shown by the scattering curves. Its glass transition is estimated to be 

slightly smaller than the result for linear chains with a single B =3 value (Table 1). 

 

Also, we include cooling curves that correspond to branched chains where either 

the main chain or the branch bonds have more tendency to form a glass, B=5, while we 

assign B=1 to the other chain bonds. The curve corresponding to “glassy” units in the 

branches is similar to that corresponding to linear chains with alternate B values.  

However, the chains with a “glassy” main chain are substantially different, with a 

broader linear region above Tg, as it can be observed in Figure 10. This region extends 
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up to T≅12, though a slight change in the slope can be distinguished in this region, at 

Tt≅6. Moreover, the most significant change in the slope yields an apparent glass 

transition at very small temperatures, Tg≅1.2, close to the smaller Tg values obtained for 

B=1 with higher cooling rates (which supposedly may inhibit the effect of 

crystallization on the determination of Tg for this value of B) or in the absence of long-

range interactions.   

 

We have obtained heating curves with the same rate for the variation of T used 

for cooling. Heating starts at the lowest T reached in the cooling process without 

annealing. The results for the branched chains with more glassy branches are shown in 

Figure11. There is some hysteresis above Tg, and both curves converge to a common 

equilibrium asymptotic behavior at large values of T. A similar description applies to 

the rest of investigated systems except for the branched polymers with a more glassy 

main chain. The peculiar behavior of these polymers is verified in the analysis of the 

heating curve. The cooling and heating curves for this particular system are shown in 

Figure 12. The heating curve above shows two clearly different regions above Tg that 

correlate with the slight differences in slope along the cooling curve. The first region, 

between Tg and Tt is similar to the curves observed in other systems, with a slight 

hysteresis. However, at temperatures above Tt, the heating curve bends downwards and 

the hysteresis is significantly increased. Since our estimates for Tg and Tt roughly 

correspond to the glass transition temperatures of chains with B =1 and B =5, 

respectively, the conclusion is that these systems show local heterogeneity, with two 

regions of independent glass transitions. 
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Real polymers that may correspond to this model are chains with bulky main 

chain monomers and flexible branches. In particular, these simulation results seem to be 

consistent with dielectric relaxation24 and NMR25 experiments performed for poly(di-n-

alkylitaconates) which apparently exhibit two glass transitions. It must be pointed out 

that the distinction between the cooling and heating processes due to hysteresis is only 

fainted noticed in the smother jump acceptance probability vs. T curves for all the 

investigated cases. Due to this lack of resolution, the acceptance curves are not able to 

reveal the peculiar behavior of the system with a glassy main chain. However, these 

curves also again considerably smaller glass transition temperatures with respect to the 

system with glassy branch units. 

 

In summary, we have confirmed the usefulness of employing stronger bond 

potentials to provide a better description of the glass transition in models that include a 

long-range potential. The systems with branched chains show a clear inhibition of 

crystallization and slightly smaller glass transition temperatures with respect to the 

systems of linear chains. The use of two different sets of bond potentials within a given 

type of chains is useful to describe more complex systems, as the case of branched 

chains with a more rigid main chain and flexible branches, for which two different glass 

transitions have been experimentally detected. 
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Table I. Estimation of the glass transition temperature for different systems and cooling 

rates. 

          System Tg 

linear chains, B=0 2.4±0.2a 

branched chains, B=0 2.0±0.2a 

linear chains, B=1 2.2±0.2a 

branched chains, B=1 1.8±0.1a 

linear chains, B=1, U(R)=0 1.1±0.1a 

branched chains, B=1, U(R)=0 1.0±0.1a 

branched chains, B=1 1.7±0.1b 

branched chains, B=1 1.5±0.1c 

branched chains, B=1 1.1±0.1d 

linear chain, B=3 3.5±0.2e 

branched chains, B=3 3.0±0.2e 

branched chains, B=5 4.5±0.2e 

linear chains, alternate bondsf 3.2±0.2g 

glassy branchesh 3.3±0.2g 

glassy main chaini 1.2±0.1g 

 

acooling rate: ∆T=-0.1 per 5x103 MC steps; bcooling  rate: ∆T=-0.1 per 500 MC steps; 

ccooling rate: ∆T=-0.1 per 50MC steps; dcooling rate: ∆T=-0.1 per 5 MC steps; eall 

cooling rates;  fB=1 or B=5 for odd and even bonds; gcooling rate: ∆T=-0.1 per 103 MC 

steps; hB=5 for bonds in the branches, B=1 for bonds in the main chain; iB=5 

for bonds in the  main chain, B=1 for bonds in the branches. 
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Figure 1.- Cooling curves of the mean energy per bead for different systems. Cooling 

rate: ∆T=-0.1 per 5x103 MC steps. Solid line: linear chain, B=0; dash line: linear chains, 

B=1; dot line: branched chains, B=0; dash-dot line: branched chains, B=1. Systems 

without long-range potential, B=1, are denoted by symbols. Squares: linear chains, 

circles: branched chains. 
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Figure 2.- Cooling curves of the mean acceptance probability of a bead jump for 

different systems. Cooling rate: ∆T=-0.1 per 5x103 MC steps. Solid line: linear chain, 

B=0; dash line: linear chains, B=1; dot line: branched chains, B=0; dash-dot line: 

branched chains, B=1. Systems without long-range potential, B=1, are denoted by 

symbols. Squares: linear chains, circles: branched chains. 
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Figure 3.- Cooling curves of the mean energy per bead corresponding to branched 

chains with B=1 at different cooling rates. Solid line: ∆T=-0.1 per 5x103 MC steps; dash 

line: ∆T=-0.1 per 500 MC steps: dot line: ∆T=-0.1 per 50 MC steps; dash-dot line: ∆T=-

0.1 per 5 MC steps. 
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Figure 4.- Cooling curves of the reduced mean energy per bead corresponding to 

branched chains with different values of B. Solid line: B=1, dash line: B=3; dot line: 

B=5. Cooling rate: ∆T=-0.1 per 103 MC steps. 
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Figure 5.- Cooling curves of the reduced mean energy per bead corresponding to 

branched chains with B=3 at different cooling rates. Circles: ∆T=-0.1 per 2.5x104 MC 

steps; solid line: ∆T=-0.1 per 104 MC steps; dash line: ∆T=-0.1 per 103 MC steps: dot 

line: ∆T=-0.1 per 50 MC steps; dash-dot line: ∆T=-0.1 per 5 MC steps. 
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Figure 6.- Collective scattering function, Scoll (q), for different systems at the lowest 

temperatures of the cooling process. Solid line: linear chain, B=0; dash line: linear 

chains, B=1; dot line: branched chains, B=0; dash-dot line: branched chains, B=1; short 

dash line: linear chains, B=3; dash-dot-dot line: branched chains, B=3. 
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Figure 7.- Collective scattering function, Scoll (q), at T=3.7, for linear and branched 

chains with B=1, after annealing with several different MC steps. Solid line: linear 

chains, 105 MC steps; dash line: branched chains, 105 MC steps; dot line: linear chains, 

5x105 MC steps; dash-dot line: branched chains, 5x105 MC steps; short dash line: linear 

chains, 106 MC steps; dash-dot-dot line: branched chains, 106 MC steps. 
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Figure 8.- Collective scattering function, Scoll (q), at T=3.7, for linear chains with B=3, 

after annealing with several different MC steps. Solid line: 105 MC steps; dash line: 106 

MC steps; dot line: 2x106 MC steps; dash-dot line: 3x106 MC steps. 
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Figure 9.- Collective scattering function, Scoll (q), at T=3.7, for linear chains with 

alternate bonds of B=1 and B=5, after annealing with several different MC steps. Solid 

line: 105 MC steps; dash line: 106 MC steps; dot line: 2x106 MC steps; dash-dot line: 

3x106 MC steps. 
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Figure 10.- Cooling curves of the reduced mean energy per bead corresponding to 

different systems with <B>≅3. Solid line: linear chains, B=3; dash line: branched 

chains, B=3; dot line: linear chains with alternate bonds of different B, B=1 and B=5; 

dash-dot: branched chains with B=1 for the main chain bonds and B=5 for the branch 

bonds; dash-dot-dot line: branched chains with B=5 for the main chain bonds and B=1 

for the branch bonds. Cooling rate: ∆T=-0.1 per 103 MC steps. 
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Figure 11.- Cooling (solid line) and heating (dash line) curves of the reduced mean 

energy per bead corresponding to branched chains with B=1 for the main chain bonds 

and B=5 for the branch bonds. Rates: |∆T|=-0.1 per 103 MC steps. 
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Figure 12.- Cooling (solid line) and heating (dash line) curves of the reduced mean 

energy per bead corresponding to branched chains with B=5 for the main chain bonds 

and B=1 for the branch bonds. Rates: |∆T|=-0.1 per 103 MC steps. 

  

 


