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1. Introduction 

Molecular transport junctions (MTJs), the simplest components of molecular 

electronics, are structures in which a molecule is inserted between two electrodes, and 

subjected to applied voltage.  Monitoring MTJ current as a function of applied voltage 

can be viewed as a kind of spectroscopy.[1-19] This spectroscopy is characterized by 

several factors. First, of course, is the identity of the molecule and the geometry that the 

molecule adopts within the junction.  Second are the parameters of the Hamiltonian that 

describe the system and determine the band structure of the electrodes, the electronic 

structure of the molecule and the electronic coupling between the electrodes and the 

molecule. The latter includes electronic correlations such as the image effect that is 

often disregarded in theoretical studies. Finally, effects of the underlying nuclear 

configuration as well as dynamic coupling between transmitted electrons and molecular 

vibrations can strongly affect the electron transmission process. Figure 1 sketches, in a 

light way, a two terminal junction and indicates the couplings that are important in 

understanding MTJ’s. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  Cartoon view of some of the parameters important for molecular junction transport.  
The molecule is shown schematically in a metal junction.  The parameters are the relevant 
energies that determine the nature and the mechanisms of junction transport. 
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This review deals with the effect of electron-phonon1 interactions in molecular 

conduction junctions. The interplay between electronic and nuclear dynamics in 

molecular systems is a significant factor in molecular energetics and dynamics with 

important, sometimes critical, implications for molecular structure, spectroscopy, 

electron transfer and chemical reactions. For example, electron transfer in condensed 

phases, a process akin to molecular conduction, would not take place without the active 

participation of nuclear motions. This statement cannot be made about molecular 

conduction, still electron-phonon interactions are associated with some key junction 

properties and can strongly affect their operation.  

Consider condensed phase electron transfer between a donor and an acceptor 

center in a molecular system. As pointed out above, a strong interaction of the electronic 

process with the nuclear environment is a critical component of this process. Indeed, 

this rate process is driven by the polaron-like localization of the transferred electron at 

the donor and acceptor sites. This is expressed explicitly by the Marcus expression for 

the non-adiabatic electron transfer rate[20-22] 

 22 | |et DAk Vπ
=
=

F         (1) 

where VDA is the coupling between the donor (D) and acceptor (A) electronic states and 

where  
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is the thermally averaged and Franck Condon (FC) weighted density of nuclear states. 

In Eq. (2) νD and νA denote donor and acceptor nuclear states, Pth  is the Boltzmann 

distribution over donor states, ( ) and ( )D D A Aε ν ε ν are nuclear energies above the 

corresponding electronic origin and AD A DE E E= −  is the electronic energy gap between 

the donor and acceptor states. In the classical limit F  is given by 
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where kB is the Boltzmann constant and T is the temperature, and where λ is the 

reorganization energy, a measure of the nuclear energy that would be dissipated after a 

sudden jump from the electronic state describing an electron on the donor to that 

                                                 
1 The term “phonons” is used in this review for vibrational modes associated with any nuclear vibrations, 
including molecular normal modes. 
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associated with an electron on the acceptor. A simple approximate expression for the 

relationship between electron transfer rate D Ak →  across a given molecular species and 

the low bias conduction g of the same species in the coherent transport regime is[23] 
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      (4) 

where ( )L
DΓ  is the rate of electron transfer from the donor (assumed to be attached to the 

left electrode) into the electrode while ( )R
AΓ  is the equivalent rate for the acceptor on the 

right electrode.2 Eq. (4) shows that the nuclear processes that dominate the electron 

transfer rate do not appear in the corresponding conduction, in which the driving force 

originates from the coupling between electrons on the molecule and the infinite 

electronic baths provided by the leads. Indeed, inelastic effects in molecular conduction 

junctions originate from coupling between the transmitted electron(s) and nuclear 

degrees of freedom on the bridge during the electron passage.3 Important consequences 

of this coupling are: 

(1) Far from resonance, when the energy gap between the molecular highest occupied 

molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO)4 and the 

nearest lead Fermi energy is large relative to the relevant phonon frequencies and 

corresponding electron-phonon couplings (a normal situation for low bias ungated 

molecular junctions), this coupling leads to distinct features in the current-voltage 

response. Indeed, inelastic electron tunneling spectroscopy (IETS, see Section 5b) 

provides a tool of increasing importance in the study of structure and dynamics of 

MTJs, and much of the impetus for the current interest in electron-phonon effects in 

MTJs is derived from these experimental studies.[29] [30] [31-36] [37, 35, 38-40] Such 

experiments not only confirm the presence of the molecule in the transport junction, but 

can also be analyzed to show particular normal modes and intensities, help interpret the 

junction geometry and indicate mechanisms and transport pathways.[37, 38, 41-45] 

                                                 
2 Eq. (4) is valid when the molecular D and A electronic levels are not too far (relative to their 
corresponding widths Γ) from the metal Fermi energy. 
3 Obviously such effects exist also in electron transfer processes, see, e.g. Refs. They are responsible, for 
example, for the crossover from coherent tunneling to non-coherent  hopping in long range electron 
transfer. 
4 The HOMO/LUMO language is very commonly used in describing molecular transport junctions, but it 
can be quite deceptive.  For a bulk system, electron affinity and ionization energy are the same in 
magnitude.  This is not true for a  molecule, where the one-electron levels change substantially upon 
charging.  This is a significant issue, involving the so-called ‘band lineup” problem[27], [28]  in 
descriptions of junction transport. 
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(2) When conditions for resonance tunneling are satisfied, i.e. when the bias is large 

enough and/or appropriate gating is applied, and provided that the molecule-lead 

coupling is not too large, the inelastic tunneling spectrum (resonance inelastic electron 

tunneling spectroscopy, RIETS, see Sect. 5c) changes qualitatively, displaying features 

associated with the vibrational structure of the intermediate molecular ion. 

(3) When temperature is high enough, thermal activation and dephasing can change the 

nature of the transport process from coherent tunneling (away from resonance) or 

coherent band motion (in resonance) to incoherent hopping. This is manifested in the 

temperature and length dependence of the transport process and the ensuing conduction. 

(Section 4) 

(4) Electron phonon coupling is directly related to the issue of junction heating and 

consequently junction stability.[46] This in turn raises the important problem of heat 

conduction by molecular junction. A stable steady state operation of a biased molecular 

junction depends on the balance between heat generation in the junction and heat 

dissipation by thermal conduction.(Section 9). 

 In addition, some of the most important properties of molecular junctions are 

associated with the strong dependence of the junction transport properties on the bridge 

nuclear conformation. This static limit corresponds to “frozen” vibrations – that is, 

configurational modulation of the electronic properties, leading to changes in the 

conductance spectrum due to displacement of nuclear coordinates[47-56, 43, 57, 58] 

similar to the well known geometry-dependence of optical spectra.  A recent 

demonstration of a rather extreme situation is a system where conduction can take place 

only when the bridge is vibrationally excited.[59] This is essentially a breakdown of the 

Condon approximation for conductance, which assumes that the transport is 

independent of the geometry. Experimentally this is observed in the so-called 

“stochastic switching” phenomenon.[47-49] An example of this behavior is shown in 

Figure 2, demonstrating the rapid changes in the current observed in a MTJ based on a 

self-assembled monolayer (SAM) using a transporting impurity molecule in an alkane 

thiol host.[60, 61, 47] The simplest understanding of such stochastic switching is very 

similar to that involved in the understanding of spectral diffusion in single-molecule 

spectroscopy,[62] where evolution of the environment results in shifting of the peaks in 

the absorption spectrum in a random, stochastic fashion. In molecular junctions, 

changing the geometry in which the transport occurs similarly modulates the electronic 

Hamiltonian, and therefore changes the conductance. Because these geometric changes 
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occur by  random excitations, the process appears to be stochastic.  Recent electronic 

structure studies[43, 57, 63, 58] demonstrate quite clearly that modulation of the 

geometry at the interfacial atom (still usually gold/thiol) can result in changes in the 

conductance ranging from factors of several fold for the most common situations to 

factors as large as 1000 if coupling along the electrode/molecule tunneling direction 

changes.[64-67] Under some conditions switching can be controlled, indicating the 

potential for device application.[68-76] Note that switching is sometimes associated 

with charging (changing the oxidation state) of the molecular bridge, that may in turn 

induce configurational change as a secondary effect.[77-81]) See also Section 8 for a 

simple model for this effect. 
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Figure 2:  Stochastic switching in a molecular junction.  The conjugated phenyleneethynylene 
oligomer is present on a gold surface, as an impurity molecule in a film of alkane thiol.  The 
current is measured for 180 minutes using an STM tip.  Notice the fluctuations in the 
magnitude, particularly in the area between 30 and 40 time frames. From Ref. [82] 
 
 While the discussion in this review focuses on structures in which a molecule or 

molecules bridge between the source and drain electrodes, a substantial part of the 

relevant literature focuses on nanodots – mostly small metal or semiconductor particles 

– as the bridging unit. It should be emphasized that to a large extent the difference is 

only semantic; in both cases the essential character of the bridge results from its finite 

size, assumed small enough to show quantum effects in the ensuing dynamics. In some 

aspects the differences are real even if the borderline is never well defined: molecules 

can be considered as small and flexible nanodots. The smaller bridge sizes encountered 

in molecular junctions imply that their energy level spacing is relatively large, larger 

than Bk T  at room temperature, and that charging energies are large so multiple 

charging is rare (see however Ref. [28]). In addition, molecules are less rigid and more 
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amenable to structural changes that can strongly affect transport behavior. Molecules 

are therefore expected to show strong consequences of coupling between electronic and 

nuclear degrees of freedom.  

Molecular physics relies on the Born-Oppenheimer (BO) separation between 

electronic and nuclear dynamics as a crucial theoretical and interpretative tool, and as a 

starting point for discussing the consequences of electron-vibration interaction. For 

molecules interacting with metal electrons this separation is not obvious. Still, because 

for weak molecule-metal interactions the isolated molecule picture is a reasonable 

starting point, the BO picture and the concept of nuclear molecular potential surfaces 

are useful for interpreting vibronic effects in conductance spectroscopy. In addition to 

standard molecular timescale considerations, one should consider the so called 

tunneling traversal time (see Section 3c). Such considerations suggest that in many 

experiments vibrational interactions constitute only small perturbations on the electronic 

transmission process. In gated MTJs that exhibit resonance tunneling transport, the 

tunneling traversal time can be of the order of or longer than vibrational period, and 

strong interactions are expected and observed.[83-92, 27] 

Electron-phonon models are pervasive in the condensed matter and molecular 

physics literatures, and most theoretical discussions of effects of electron-phonon 

interaction in MTJs use extensions of such generic models. In general, treatments of 

many-body dynamical processes use a convenient separation of the overall system into 

the system of interest, henceforth referred to as the system, possibly subjected to 

external force(s) (e.g. a radiation field or a deterministic mechanical force), and a bath 

or baths that characterize the thermal environment(s). The choice of system-bath 

separation depends on the particular application. When we focus on the electron 

transmission process it is natural to consider the molecular bridge as the system 

interacting with several baths: the left and right leads are modeled as free-electron 

metals, each in its own thermal equilibrium, and the nuclear environment is modeled as 

a thermal boson bath. In studies of electron-vibration interaction by inelastic tunneling 

spectroscopy it is convenient to take those vibrational modes that are directly coupled to 

the tunneling process as part of the system. Such modes are referred to below as 

‘primary phonons’. They are in turn coupled to the rest of the thermal nuclear 

environment, which is represented by a boson bath (‘secondary phonons’). Finally, we 

may be interested mainly in the dynamics in the primary vibrational subspace, for 

example when we focus on heating and/or configuration changes induced by the 
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electronic current. In this case the relevant vibrational modes constitute our system, 

which is driven by its coupling to the biased electrodes and to the thermal environment.  

 This overview starts with a brief description of experimental issues (Section 2) 

and a discussion of the important time and energy scales in the problem (Section 3). 

Following these introductory sections we focus on the important physical phenomena 

associated with electron-phonon interactions in molecular junctions: the crossover from 

coherent to incoherent transport (Section 4), inelastic electron tunneling spectroscopy 

(section 5) together with manifestations of electron-electron interaction (Section 6) and 

noise (Section 7) in this spectroscopy. We also discuss non-linear conductance 

phenomena such as hysteresis and negative differential resistance (NDR) that may result 

from electron-phonon interaction (Section 8),and processes that center on the phonon 

subsystem: heating and heat conduction (Section 9) and current induced chemical 

reactions (Section 10). We end with a brief summary and outlook in Section 11. 

 

 2.  Experimental Background – Test Beds 

The experimental realization of MTJs has been strongly associated with the 

development of both the appropriate chemical methodologies for preparing 

molecule/electrodes interfaces and the development of nanoscale characterization and 

preparation techniques, particularly scanning probe microscopy.  The interest in MTJ 

has led to development of test beds, generalized methods for aligning molecules 

between electrodes and making conductance measurements.  There are several different 

ways in which test beds can be characterized.   

(1) The simplest measurements, and some of the most important, were made by placing 

the molecule on a surface, then inquiring about the nature of that molecule and transport 

through it using a scanning tunneling microscope tip. This implies that in general there 

is a large vacuum gap between a non-bonded molecular terminus and the tip edge.  This 

results in effectively all the voltage drop occurring in that vacuum gap, and also in the 

validity of the Tersoff-Hamann picture,[93-95] which implies that conductance is 

proportional to the local density of electronic states at the tip position and at the Fermi 

energy.  These STM type measurements have been crucial in understanding many 

transport properties of molecules,[32, 33, 96-100] however their structure is not that of a 

typical MTJ because only one of the electrodes is in close contact with the molecule. 
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(2) Two terminal vs. three terminal junctions.  When a molecular adlayer is aligned 

between two electrodes, in the absence of a third gate electrode, one simply measures 

the current/voltage spectroscopy with no reference potential.  This has been so far the 

most common measurement experimental observation in MTJs.[101, 102] A third, gate 

terminal, can be assembled.  Because the gate length (source to drain distance) for 

MTJ’s is generally much smaller than in CMOS transistors, large gating voltages are 

required to modulate the electronic levels of the molecule in the junction. Such 

setups[39, 83, 84, 86-92, 27] can be used to change the injection gap and consequently 

the nature of the transport process from coherent tunneling to hopping behavior (see 

Section 4). 

(3) Electrodes – metal or semiconductor.  Because of the facility with which thiol/gold 

structures can be self-assembled, nearly all MTJ’s reported to date have used metals, 

nearly always gold, as either one or both electrodes.  Work using semiconductor 

electrodes including silicon,[103-107] carbon[108-110] and GaAs,[111] have been 

reported; because transport involving semiconductors is dominated by their band gap, 

much richer transport behavior can be expected there.[112-114] Moreover the covalent 

nature of many molecule-semiconductor bonds implies the potential for reducing 

geometric variability and uncertainty.  Nevertheless, the assembly of such structures is 

more difficult than the thiol/metal structures, and such measurements are still unusual 

although they are beginning to appear more often. 

(4) Single molecules vs. molecular clusters.  In the ideal experiment, one would 

assemble a single molecule between two electrodes, in the presence of a gate electrode, 

and with well defined geometry.  It is in fact difficult to assure that one single molecule 

is present in the junction.  Many measurements have been made using self-assembled 

monolayers (SAM’s) on suitable substrates, with counter electrodes developed using a 

series of methods ranging from so-called nanopores[115] to metallic flakes[116] to 

metal dots[117] to indirectly deposited metals.[118, 119] Measurements using SAM 

structures include so-called crosswire test beds,[120] suspended nanodots test beds, [74] 

nanopores, [115] mesas[121] and in-wire junctions.[122] The effect of intermolecular 

interactions is relevant here: while theoretically one might expect measurable 

dependence on such interactions as well as possible coherence effects over several 

neighboring tunnel junctions,[123] for the most part the interpretation in terms of simple 

additivity have been successful.[124, 125]   
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(5) The presence of solvent can substantially modify transport, both due to effects of 

solvent polarization (that dominate traditional molecular electron transfer)[18, 126] and 

because of possible changes in the molecule-lead interaction at the interface due to the 

presence of a solvent molecule (particularly water).[106] On the other hand, 

electrochemical break junctions[79] are one of the newest and most effective ways to 

make statistically significant multiple junction measurements.[89, 80, 127, 51, 128] 

Electrochemical gating[129] in such structures permits observations of different limits 

of transport, and the rich statistics obtainable from such measurements increase 

understanding of the transport spectroscopy.[127] On the other hand, solvated junctions 

cannot be studied below the solvent freezing point while, as already indicated, low 

temperatures are generally required for complete characterization of vibrational effects 

on conductance spectroscopy.  

(6) Single junctions or junction networks.  Most MTJ measurements are made on one 

molecular bridging structure (single molecule or SAM) suspended between two 

electrodes.  Recent work in several groups has considered instead a two dimensional 

network of gold nanoparticles, with molecular entities strung between them, terminated 

at both ends by thiol groups.[130-132] Transport through such a sheet is more easily 

measured than through a single junction, and certain sorts of averaging make the 

interpretation more straightforward.  The molecular wires connecting the gold dots have 

ranged from simple alkane dithiols to more complicated redox wires, in which a 

transition metal center is located that can undergo oxidation state changes. 

While data from all of these test-beds is important for understanding 

conductance spectroscopy, vibrational effects have generally been studied only with 

metallic electrodes, in STM junctions and in two terminal or three terminal geometries.  

Both single molecule break junctions and molecular SAMs have been used as samples, 

and nearly all vibrationally resolved measurements have been made in the solvent free 

environment, using a single junction rather than a network. 

 

3. Theoretical approaches 

3a. A microscopic model 

We consider a two-terminal junction with leads (left, L and right, R) represented by free 

electron reservoirs each in its thermal equilibrium, coupled through a bridging 

molecular system. A third lead, a gate G, capacitively coupled to the bridge, may be 
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present as well (see Fig. 3). This gate provides a potential that changes the energies of 

molecular states relative to the leads. The molecular bridge, possibly with a few of the 

lead atoms on both sides, constitutes the “extended molecule” that will be considered as 

our system. Electron-phonon coupling is assumed to be important only on the extended 

molecule, and will be disregarded elsewhere. Nuclear motions, within the bridge, on the 

leads and in the surrounding solvent are described as two groups of harmonic 

oscillators. The first group includes those local vibrations on the extended molecule that 

directly couple to the electronic system on the bridge; it is sometimes referred to as 

‘primary’. The second, ‘secondary’ group, includes modes of the nuclear thermal 

environment that are assumed to remain at thermal equilibrium with the given 

laboratory temperature T.5 Under steady state operation of a biased junction the primary 

vibrations reach a non-equilibrium steady state driven by the nonequilibrium bridge 

electronic system on one hand and by their coupling to their electronic and nuclear 

thermal environments on the other.  

Reduced units, 1, 1e = ==  and me=1, are used throughout this review, although 

at times we write these parameters explicitly for clarity. The Hamiltonian of this model 

is given by 

†
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1
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5 In the discussion of heat conduction, Section 9, the secondary modes include modes of the two leads, 
represented by thermal baths that may be at different temperatures. 
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 †

, ;

ˆ ˆ ˆˆ a
ij i j

i j
V M Q d dα

α
α

= ∑�        (10b) 

where ˆ ˆanda bQ Qα β  are vibration coordinate operators 

  † †ˆ ˆˆ ˆˆ ˆa bQ a a Q b bα α α β β β= + = +      (11) 

and for future reference we also introduce the corresponding momentum operators 

  ( ) ( )† †ˆ ˆˆ ˆˆ ˆa bP i a a P i b bα α α β β β= − − = − −     (12) 

†ˆ ˆ( )a a and †ˆ ˆ( )b b  are annihilation (creation) operators for system (bridge) and bath 

phonons while †ˆ ˆ( )d d  and †ˆ ˆ( )c c   are similar operators for the system and leads 

electrons. In (5) the terms on the right are, respectively, the molecular bridge 

Hamiltonian, an external controllable potential (e.g. a gate potential, ext
gΦ = Φ ) which 

is assumed to affect only the bridge, the interaction between the molecular bridge and 

the external reservoirs (usually the leads) and the Hamiltonian for these external 

reservoirs. The latter, ˆ
outH  (Eq. (6)), contains the free electron Hamiltonians for the 

right (R) and left (L) electrodes as well as the Hamiltonians for the external phonon 

baths that represent nuclear motions in the bridge, leads and surrounding solvent which 

are not directly coupled to the bridge electronic subsystem. Eq. (7) represents a simple 

model for the bridge Hamiltonian in which the electronic part is modeled as a 1-particle 

Hamiltonian using a suitable molecular basis (a set of atomic or molecular orbitals, real 

space grid points, plane waves or any other convenient basis), the vibrational part is 

represented by a set of harmonic normal modes and the electron-phonon interaction is 

taken linear in the phonon coordinate. The interaction terms in Eq. (8)  are respectively 

the molecule-electrodes electron transfer coupling and the coupling between primary 

and secondary phonons, which is assumed to be bilinear.6 The sets of system ({ }α ) and 

bath ({ }β ) phonons constitute respectively the “primary” and “secondary” phonon 

groups of this model. Eqs. (9-10) represent different separation schemes of the total 

                                                 
6 The bilinear form ˆ ˆa b

aU Q Qβ α β∑  is convenient as it yields an exact expression for the self energy of the 
primary phonons due to their interactions with the secondary ones. This form is however not very realistic 
for molecular interaction with condensed environments where the Debye cutoff frequency cω  is often 
smaller than that of molecular vibrations. Relaxation of molecular vibrations is then caused by 
multiphonon processes that result from non-linear interactions. Here we follow the workaround used in 

Ref.[133] by introducing an effective density ( )2 exp / cω ω ω−  of thermal bath modes. Such a bath, 
coupled biliniarly to the molecule mimics the multiphonon process. 



 13

Hamiltonian into “zero order” (exactly soluble) and “perturbation” parts. In particular, 

with focus on the electron-phonon interaction, we will often use the scheme (10) where 

the bilinear couplings of the system electrons with the external electron reservoirs and 

of the primary (system) phonons with the secondary phonon reservoirs are included in 

the zero order Hamiltonian (implying renormalization of electronic energies and 

vibrational frequencies by complex additive terms).  

This model is characterized by several physical parameters. In addition to the 

coupling parameters appearing explicitly in (5)-(10), two other groups of parameters are 

often used:  

( )2( ) 2K
ik i ki k K Vπ δ ε ε∈Γ = −∑ ; ,K L R=     (13)  

represents the molecule-lead coupling by its effect on the lifetime broadening on a 

molecular level i (see also Eq. (30) below for a more general expression) and 

( )2( )
, 2K
ph K Uαβ α βα βγ π δ ω ω

∈
= −∑     (14) 

 are similarly the lifetime broadenings of the primary phonon α due to its coupling to the 

bath of secondary phonons (in this case on the lead K). Also, in the popular polaron 

model for electron-phonon coupling, where (7) is replaced by the diagonal form 

†
,

ˆ ˆ ˆˆ a
i i iiV M Q d dα

αα= ∑�  we often use the reorganization energy of electronic state i, a 

term borrowed from the theory of electron transfer, 

( )2
/ri i aE M α

α ω= ∑ ,       (15) 

as a measure of the electron-phonon coupling. 

Below we will often use a simple version (see Fig. 3) of the model described 

above, in which the bridge is described by one electronic level of energy ε0 

(representing the molecular orbital relevant for the energy range of interest) coupled to 

one primary vibrational mode of frequency ω0. The electron-phonon coupling in (7) 

then becomes ( )† †
0 00 0

ˆ ˆ ˆ ˆMd d a a+ . Further issues associated with the electron-phonon 

coupling are discussed in the next Section.  
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Figure 3. The single bridge level/ single bridge oscillator model. The shaded areas on the right 
and left denote the continuous manifolds of states of the two leads where dark and light shades 
correspond to occupied and unoccupied states and the line separating them is the Fermi energy. 
G denotes a gate electrode. The molecular vibration of frequency ω0 is coupled linearly to the 
electronic population in the molecular level of energy 0ε  and to a bath of secondary phonons 

{ }β . 

 
 
3b. The electron-phonon coupling  

As in most computational work on inelastic effects in molecular electronic processes, 

the small amplitude of vibrational motion is usually invoked to expand the electronic 

Hamiltonian to first order in the deviations of nuclei from their positions in the 

equilibrium molecular configuration. This leads to the interaction (10b) with 

coefficients derived from 

 ( )| |
2 nij n R el

n an
M C i H j

M
α

αω
= ∇∑ R= ,    (16) 

where ( )elH R  is the electronic Hamiltonian for a given nuclear configuration and the 

sum is over all atomic centers. In (16) { }nR=R  is the vector of nuclear coordinates, 

nM  are the corresponding masses, αω  are the molecular (primary) normal mode 

frequencies, nC α  are coefficients of the transformation between atomic and normal 

mode coordinates and the derivatives are evaluated in the equilibrium junction 

configuration. The matrix elements are evaluated as part of the electronic structure 

calculation that precedes the transport analysis. 

 Simplified models are often used to study particular issues of the transport 

process. Often, only diagonal terms i j=  are taken in (10b), implying that the electron-

phonon coupling is derived from the nuclear coordinate dependence of the energies 
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| |eli H i .  The physics of such a model depends on the electronic basis used. When 

the single electron states { }i  are molecular orbitals it is hard to justify such 

simplification. However when { }i  represents a local (atomic or physically motivated 

choice of molecular sites) basis, one may argue that a change in the local energy 

| |eli H i  reflects polarization of the local configuration when the electron occupies the 

corresponding site, while | |eli H j  is small for i j≠  because of small overlap 

between functions localized on different sites. 

 It should be kept in mind however that such an approximation may miss an 

important part of the tunneling physics. Consider for example two neighboring atoms in 

the molecular structure. When their relative orientation is such that they lie along the 

tunneling direction, a motion that modulates the distance between them (and therefore 

change the overlap between the corresponding atomic orbitals) may strongly affect the 

tunneling probability. Indeed it is found[44] (see Section 5g) that modes associated with 

such motions appear prominently in inelastic tunneling spectra. Such motion also 

dominates shuttle transport in nanojunction[134-141] A different motion with similar or 

even stronger effect is torsional or rotational motion, that can modulate electronic 

overlap between neighboring molecular sites.[58] Obviously, disregarding i j≠  terms 

in Eq. (10b) will miss such effects. 

 

3c. Time and energy scales 

The measurements discussed throughout this review, and consequently their theoretical 

consideration, focus on steady-state transport in molecular junctions. Still, time plays a 

decisive role in the behavior of the system and the nature of the transport process. 

Indeed, the existence of several important timescales (and associated energies) is what 

makes the problem rich and interesting as well as complex and sometimes difficult.  

Consider first the important energy parameters of the transport problem. ΔE, the 

injection gap, is the energy difference between the leads Fermi energy and the relevant 

bridge levels (e.g., the molecular HOMO or LUMO).4 Γ  (Eq. (13)), γph (Eq. (14)) and 

rE (Eq. (15)) measure respectively the lifetime broadening of molecular electronic 

states due to molecule-lead coupling, the broadening of molecular vibrations due to 

coupling to thermal phonons on the leads and in the environment, and the electron-

phonon coupling. In addition, if the molecule is an ordered chain we may consider the 
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bandwidth BV  of its “conduction band” (a single electron property). The charging 

energy U represents electron-electron interactions on the bridge. Finally the thermal 

energy Bk T  is another important energy parameter. 

These energy parameters are directly related to important timescales. / KΓ=  

measures the lifetime of a bridge electron for escaping into the corresponding lead and 

/ phγ=  is the relaxation time for bridge phonons to their thermal phonon environment, 

with Γ  and γ representing the corresponding rates. For coherent (band) motion on the 

bridge, / BV=  measures the electron lifetime on a single bridge site.  

Some derived time scales (and corresponding rates) that can be obtained from 

the model Hamiltonian are less obvious. The most important of these is the dephasing 

time, a measure of the time it takes for the electron to lose its phase due to interactions 

with its electron and phonon environments. When this time is short enough (see below) 

the electronic motion becomes incoherent and can be described by successive classical 

rate processes, sometime referred to as hopping. Another, more elusive and sometimes 

controversial concept, is the tunneling traversal time, a measure of the time an electron 

spends in the barrier region as experienced by another degree of freedom, e.g. a 

vibrational mode, that resides in that region. Using the dynamics of that mode as a 

clock, the traversal time obtained in the deep tunneling limit for a square barrier of 

energy height EΔ  and width D  is[142] 2D m Eτ = Δ  where m is the electron mass. 

If, instead, the bridge is represented by a 1-dimensional lattice of N equivalent sites, 

N Eτ Δ= = .7 It should be emphasized again that these times correspond to the deep 

tunneling limit. In the opposite case of resonance tunneling the lifetime of the electron 

on the bridge is determined by the escape rate Γ  and/or the bandwidth VB. Sometimes a 

unified expression 

 ( ) 1
2 2~ Eτ

−
Δ + Γ=        (17) 

is used as an estimate of the traversal time per molecular site. For more complex 

barriers this time can be evaluated numerically.[144] 

 The relative magnitudes of these energy and time scales determine the physical 

nature of the transport process. When either EΔ  or Γ is large relative to the timescale 

for electron-phonon interaction dephasing and energy loss can be disregarded and the 

                                                 
7 These two results are limiting cases of a general formula, See Ref. [143] . 
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electron transmission is a coherent quantum process; described as ballistic transmission 

when 0EΔ �  (resonance). In the opposite case, near resonance transmission in the 

weak electronic coupling limit, transmission often proceeds by successive hopping. The 

latter term refers to a process in which the electron hops between the leads and the 

molecule and between successive sites on the molecule, where at each site complete 

local thermalization is achieved. The corresponding hopping rates are then calculated 

from the theory of electron transfer between localized sites[20, 145, 146, 22] or between 

a molecular site and a metal electrode.[147, 22]  

These limits, as well as intermediate situations, can be experimentally monitored 

by inelastic electron tunneling spectroscopy (Section 5). In the analysis of such 

experiments we distinguish between weak and strong electron-phonon coupling cases 

by comparing the magnitudes of the coupling M and the energy parameter 

( )22 / 2EΔ + Γ . For small electron-phonon coupling, ( )22 / 2 1M EΔ + Γ � , 

inelastic tunneling can be treated perturbatively with this small parameter using the 

Migdal-Eliashberg theory.[148] [149] In the opposite limit this treatment breaks down. 

A transient intermediate molecular ion (essentially a polaron) may form in the junction 

and its vibrational structure may appear in the inelastic signal as satellite peaks 

(sidebands) in the conduction/voltage plot near the conduction threshold. For this 

structure to be resolved another inequality, 0 / 2ω > Γ , (where 0ω is the relevant 

vibrational frequency), has to be satisfied between the system time/energy scales. 

These timescale considerations have to be incorporated together with other 

factors that make the issue more involved. First, temperature plays an important role in 

determining the dominant transport mechanism. In the framework of the previous 

paragraph, a finite temperature system is characterized by a distribution of EΔ values 

and the ensuing flux is an ensemble average of contributions that can be of different 

physical nature. Low temperature coherent transmission associated with electron 

injection with large EΔ  can cross over to incoherent transmission at higher 

temperature where injection at small EΔ  dominates. Secondly, molecular chain length 

is another important factor: incoherent transport becomes more important for longer 

chains both because dephasing is more effective in such systems and (for off resonance 

tunneling) because of the exponential falloff of the coherent component. These issues 

are discussed in Section 4. Finally, the presence of an electron on the molecular bridge 
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can change the physical nature of the bridge itself. Polaron formation is essentially 

solvation of the electron by the nuclear environment on the bridge (and in the 

surrounding solvent if present).8 The reorganization energy (15) is essentially this 

solvation energy, and the corresponding solvation, or polaron formation, time, is 

another important and non-trivial time parameter in the problem. When this time is short 

relative to the time (17) for the electron to remain on the undistorted bridge a transient 

polaron may form. It is important to note that this process is characterized by an 

intrinsic feedback mechanism, because as the polaron formation proceeds, the bridge 

continuously distorts. This changes the relevant energy parameters and consequently the 

relative timescales. Furthermore, polaron formation brings into play another significant 

timescale, the polaron lifetime, which now dominates the electron lifetime on the 

bridge. This feedback property of molecular junctions, associated with their tendency to 

respond to charging by structural changes, is what sets them apart from junctions based 

on semiconductor and metal nanodots. Junctions based on molecular bridges that can 

support charged states by such polaron formation (so called redox molecules) show 

interesting non-linear transport properties such as multistability, hysteresis and negative 

differential conductance (see Section 8), and are currently subjects of active research.  

The passage of electronic current through a molecular bridge can be 

accompanied by heating of nuclear degrees of freedom. Junction stability requires that 

this heating is balanced by thermal relaxation, which brings up the issue of timescales 

relevant to these processes. The relaxation rate γph, Eq. (14), is one contribution to this 

process, however for molecules connected to metal surfaces another route for 

vibrational relaxation is excitation of electron-hole pairs in the metal. It is found that the 

electronic component, γel, often dominates the total rate ph elγ γ γ= + . 

To end this discussion we reiterate again the emerging general picture. The two 

extreme limits of junction transport process are (a) an overall transmission process 

(“cotunneling”) whose efficiency is determined by the tunneling probability between the 

two metal contacts through the molecular barrier and (b) a sequential process in which 

the electron is transiently localized on the molecule (or successively at several 

molecular sites) en route between the two contacts. The first occurs when 

( )22 / 2EΔ + Γ  is large enough, i.e. in off resonant transmission or for strong 

                                                 
8 The term “polaron” usually refers to a charging-induced distortion in a polar environment and is usually 
discussed with the latter represented in the harmonic approximation. The use of this term here should be 
understood more generally, as any charging-induced configurational change.  



 19

molecule-metal coupling. The second characterizes resonance transmission in weak 

molecule-lead coupling situations. In the latter case effects of electron-phonon coupling 

often change the dynamical character of the transmission process, loss of coherence 

often accompanied by transient stabilization of localized electron states results in 

hopping conduction with the possibility of strongly non-linear transport.  

These two limiting cases translate into the factors that affect the conduction 

process. In the non-resonant regime the magnitude of the observed current is dominated 

by the metal-to-metal tunneling probability. In the resonant case the most important 

factor is the electron lifetime on the bridge. Assuming that electrons move singly 

through the junction, the observed current I provides an upper bound to the electron 

lifetime on the bridge according to /e Iτ ≤ .  This upper limit, about 10-9s for I = 1 nA, 

indicates that time on the bridge may be long enough for electron-phonon interaction to 

take effect. 

 

3d. Theoretical methods 

Theoretical studies of electron-phonon interaction effects in condensed phase dynamics 

have a long history,[150] still the observation of their consequence in the current-

voltage characteristics of metal-insulator-metal junctions, including STM junctions and 

other types of MTJs, has raised new points for consideration. Treatments of inelastic 

tunneling are usually done using models similar to those defined by Eqs. (5)-(8). 

Several theoretical issues are of particular interest 

(a) Evaluation and/or estimation of the electron-phonon coupling parameters. 

(b) Effects of the thermal environment, as a source of activation, dissipation and 

dephasing on the electron transport process. 

(c) Effects of the non-equilibrium electronic process on dynamical processes in the 

primary vibrational subsystem, including heating, change of conformation and 

dissociation. 

(d) Evaluation of vibrational signatures in current-voltage spectroscopies. 

(e) Manifestation of strong electron-nuclear coupling in resonance transmission 

situations, in junctions involving redox molecules and in shuttle conduction 

mechanisms. 

(f) The effect of electron-phonon interaction on the current-noise characteristics of the 

junction. 

 Electron-phonon coupling, e.g. the parameters defined by Eq. (16), can be 
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estimated from reorganization energies measured in electron transfer reactions,[151] 

from the lifetime broadening of infrared lineshapes of molecules adsorbed on metal 

surfaces,[152] and from simple considerations of electron-ion scattering cross-

sections.[153] It can also be evaluated from pseudopotential models that were very 

useful in studies of hydrated electrons[154] and, using first principle calculations, from 

the nuclear coordinate dependence of the electronic matrix elements (see, e.g., 

references [155, 44, 156, 157]). A substantial number of recent papers[158, 156, 159-

164, 155, 41, 44, 165-167] use the latter approach in combination with some level of 

transport theory (see below) to make quantitative interpretations and predictions for 

inelastic tunneling spectra. 

Points (b) and (c ) above consider opposite ends of the electron-phonon problem 

in junction transport. On one end we are interested in the way electron transport is 

affected by thermal interactions. A conceptually simple approach is to consider the 

transporting electron(s) as a system interacting with its thermal environment, and to 

seek a reduced equation of motion in the electronic subspace by projecting out the 

thermal part. In most applications this results in a generalized master equation for the 

electronic motion,[168-171, 151, 172-177] that can show crossover from coherent 

tunneling or band motion to activated diffusive transport. For example, Segal and 

Nitzan[170, 171, 151] have studied an N-site tight binding bridge model coupled at its 

edges to free electron reservoirs, with a general local coupling to a thermal bath: 

 , ,
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where the thermal bath and its interaction with the system are characterized by the time 

correlation function  

( ) 1
' '( ) (0) (0) ( ) ;i t i t

n n n n Bdte F t F e dte F F t k Tω β ω ω β
∞ ∞

−

−∞ −∞

= =∫ ∫=  (19a) 



 21

for example, a convenient model choice for some applications is 

 ( )' , '( ) (0) exp | | /
2n n n n c

c
F t F tκδ τ

τ
= −     (19b) 

This model within the Redfield approximation[178-180] was used[168, 170, 171] to 

obtain a quantum master equation for electron transport that includes the effect of 

phonon-induced relaxation and dephasing on the bridge. This equation was in turn 

applied to evaluate the differential transmission coefficients, ( ),L R out inE E→T  and 

( ),R L out inE E→T , for an electron entering from the left lead with energy inE  and 

scattered into the right lead with energy outE , and same from right to left, in the 

presence of dissipation and dephasing. These resulting transmission coefficients can be 

used as input for junction transport calculations (see below). A simpler though cruder 

description of junction transport in the presence of dephasing can be achieved[181-185] 

by applying a generalized Buttiker probe[186] technique to affect a distribution of phase 

breaking processes along the conducting channel. We return to these issues in Section 4. 

On the opposite end we are concerned with the dynamics in the subspace of the 

primary phonons. These vibrations are driven out of equilibrium by their interaction 

with the current carrying electronic system, and their steady state is determined by this 

interaction together with their coupling to the dissipative environment of the secondary 

phonons and the thermal electrons in the leads. These phenomena pertain to the issues 

of heating described in Section 9 and current-induced reactions discussed in Section 10. 

Theoretical approaches to this problem focus on the balance between the energy 

deposited into the primary vibrations by the electronic current and the dissipation 

caused by coupling to the thermal environment. It is usually assumed that this balance is 

dominated by incoherent dynamics that can be described by kinetic equations in the 

primary nuclear subspace[187] or in the combined electronic-primary nuclear 

subspace,[188, 189] and distinction is made between consecutive single phonon 

excitation processes and multiphonon pathways induced by the formation of a transient 

molecular ion.[190] Another way to discuss heating and energy balance in the primary 

nuclear subspace of an MTJ is within the non-equilibrium Green function (NEGF) 

methodology,[191-195] presented below and further discussed in Sections 5 and 9. This 

approach makes it possible to describe electronic and energy currents consistently and 

simultaneously in the electronic and nuclear subspaces, but its complexity limits its 

applicability to relatively simple models. 
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Experimentally, the simplest and most direct consequence of electron-phonon 

interaction in MTJs phenomenology is inelastic tunneling spectroscopy (see Section 5), 

where vibrational signatures are observed in the current-voltage characteristic of the 

junction (issue (d)). As in the Landauer approach to transport in static junctions,[196-

199] it makes sense to consider also inelastic transport in nanojunctions using scattering 

theory. Indeed, inelastic electron scattering and tunneling involving vibrating targets in 

vacuum can be handled essentially exactly.[200-203] Applications to transport in metal-

molecule-metal junctions suffer from the fact that scattering cross-sections or 

transmission coefficients calculated in vacuum do not properly account for the Fermi 

statistics of the electronic populations in the metal electrodes (see Section 5d). 

Nevertheless scattering theory based calculations of inelastic junction transport are 

abundant,[204-211, 158, 212, 156, 213-219, 155, 41, 44, 58, 220] and despite their 

questionable theoretical basis (see below), appear to provide a practical working 

approach in the weak (electron-phonon) coupling limit.  

A common heuristic way to accommodate scattering theory input in the 

description of metal-molecule-metal transport is to use Fermi population factors 

together with vacuum-based transmission coefficients. The core calculation in these 

approaches is done for the tunneling transmission probability in a scattering-like 

configuration, where the incoming and outgoing electron is essentially in vacuum. For 

example an inelastic transmission coefficient ( ),out inE ET  associated with a process 

where an electron enters the junction from one electrode, say L (see Fig. 1), with energy 

Ein and leaves to the other electrode (R) with energy Eout, is multiplied by 

( ) ( )( )1L in R outf E f E− . Here ( ) ; ,Kf E K L R=  are the corresponding Fermi 

distribution functions 

( ) ( )( )( ) 1
exp / 1K K Bf E E k Tμ

−
⎡ ⎤= − +⎣ ⎦      (20) 

Perturbative scattering theories, e.g. the Herzberg-Teller-like analysis of the 

molecular Green’s function or the electron propagator,[155, 41, 44] which provide 

practical methods for calculations involving realistic molecular models in the weak 

coupling limit(see Section 5d) rely on a similar approach. Such heuristic correction 

factors are also used in several master equation descriptions of junction transport, see 

e.g. References [170, 151, 171, 173-175]. As noted above, this approach should be 

regarded as an approximation (see also Section 5d below and Ref. [199] section 2.6) 

that is uncontrolled in the sense that it does not become exact when a small parameter 
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vanishes. In addition, many of these approaches disregard the effect of the non-

equilibrium electronic system on the phonon dynamics. 

In contrast to such heuristically corrected scattering theory methods, a consistent 

approach to inelastic junction transport is provided by the non-equilibrium Green 

function (NEGF) formalism.[221-223, 199, 224] In this approach the objects of interest 

are the Green functions (GFs) of the  electron and the primary vibrations on the Keldysh 

contour[221, 225, 222, 150, 199]  

  ( ) †ˆ ˆ, ' ( ) ( ')ij c i jG i T d dτ τ τ τ= −      (21) 

 ( ) †
, ' '

ˆ ˆ, ' ( ) ( ')cD i T Q Qα α α ατ τ τ τ= −      (22) 

(where the Keldysh time τ  starts and ends at −∞  and where cT  is a contour time 

ordering operator), their projections , , ,r aG G G G> <  (and similarly for D ) onto the real 

time axis, and the corresponding self energies (SEs) Σ  and Π  and their projections. 

These functions satisfy the Dyson equations 

0 0
r r r r rG G G G= + Σ ;      0 0

r r r r rD D D D= + Π     (23) 

(and similar equations for aG  and aD ) and the Keldysh equations 

 r aG G G> >= Σ ;     r aD D D> >= Π      (24) 

(and similar equations for G<  and D< ). At steady state we focus on the Fourier 

transform to energy space of these functions. Approximate ways to calculate these 

functions are described in Sections 5 and 6 below. In particular, in the non-crossing 

approximation the self energy of any subsystem is made of additive contributions from 

different interactions that couple it to other components of the overall system. Once 

evaluated, the electronic GFs and SEs can be used to calculate important observables. 

The relaxation rates (in general matrices of rate coefficients) for electrons and phonons 

are given by 

 ( ) ( ) ( )r aE i E E⎡ ⎤Γ = Σ − Σ⎣ ⎦       (25a) 

 ( ) ( ) ( )r aE i E Eγ ⎡ ⎤= Π − Π⎣ ⎦ ,      (25b) 

the molecular spectral function (density of states projected on the molecular subspace) 

is   

( ) ( ) ( )r aA E i G E G E⎡ ⎤= −⎣ ⎦       (26) 

 and the net steady state current, e.g., from the lead K into the molecule, is obtained 
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from[226, 227] 

 ( ) ( ) ( ) ( )
2K K K

e dEI E G E E G E
π

< >> <⎡ ⎤= Σ − Σ⎣ ⎦∫=     (27) 

where ,
K
< >Σ  are lesser/greater projections of the self-energy due to coupling to the lead 

K (K = L,R). The latter are given by 

 ( ) ( ) ( )K K KE if E E<Σ = Γ       (28) 

 [ ]( ) 1 ( ) ( )K K KE i f E E>Σ = − − Γ      (29) 

with ( )Kf E  the Fermi distribution in the lead K, Eq. (20), and 

[ ] ( )( ) 2K ik kj kij
k K

E V V Eπ δ ε
∈

Γ = −∑      (30) 

The NEGF formalism provides a powerful, consistent and systematic framework 

for describing transport phenomena in interacting particle systems and has been 

extensively applied to electron tunneling in the presence of electron-phonon 

interaction.[228, 181, 229, 182] [192, 191] Its complexity, however, usually limits its 

usefulness to relatively simple molecular models and makes it necessary to explore 

approximate schemes for evaluating the needed GFs and SEs. The most common of 

these approximations is the Born approximation (BA) and its extension, the self 

consistent Born approximation (SCBA).[228, 230] [158, 231-239] In particular, Ueba 

and co-workers[231-233] and Galperin and co-workers[234, 235] applied the NEGF 

formalism to the resonant level model of phonon assisted tunneling. Similarly, Lorente 

and Persson[230] have generalized the Tersoff-Hamann approach to the tunneling in 

STM junctions, using many-body density functional theory in conjunction with the 

NEGF formulation of Caroli et al.[228] This formalism was later applied to formulate 

symmetry propensity rules for vibrationally inelastic tunneling.[158] A recently 

proposed simplified version of the BA approach[161, 166, 240] can handle relatively 

large systems within its range of validity. 

The BA and the SCBA approximation schemes are very useful in weak electron-

phonon coupling situations such as those encountered in analyzing inelastic tunneling 

spectra under off-resonance conditions. Important physical phenomena associated with 

strong electron-phonon coupling cannot be described within these approximations. Such 

strong coupling effects arise in resonance inelastic electron tunneling spectroscopy 

(RIETS) as well as in phenomena controlled by transient electronic population in the 

bridge. The latter situation is known as the Coulomb blockade regime in the nanodots 
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literature[136-139, 241-246, 140] and its molecular analog is getting increasing 

attention in studies of molecular bridges with several accessible oxidation states.[28, 

129, 247, 80, 86] On the theoretical side published works can be roughly divided into 

three groups: 

(1) Works based on scattering theory considerations, either using multichannel 

scattering theory[204-211] or a Green function methodology.[203] These are the strong-

coupling counterparts to the perturbation-theory based calculations discussed above, e.g. 

Refs. [155, 41, 44, 248]. As was pointed out above, including the Fermi statistics 

associated with the electronic population in the metal is done heuristically. 

(2) Approaches based on many-body physics methodologies, in particular the non-

equilibrium Green function technique. Some of these works[249-252] achieve 

simplification by disregarding the Fermi population in the leads, rendering them 

equivalent to the scattering theory approaches. Other workers, e.g. Král[253] (using a 

generalization of the linked cluster expansion to nonequilibrium situations9), 

Flensberg[254](using the equation of motion approach), Galperin et al[255] (using a 

small polaron (Lang-Firsov) Hamiltonian transformation within the NEGF framework) 

and Hyldgaard et al,[256] Mitra et all[257] and Ryndyk et al[258](based on the self 

consistent Born approximation) go beyond this simplification.10 With the exception of 

Refs. [257] and [255], in the works mentioned above the phonon subsystem is assumed 

to remain in thermal equilibrium throughout the process.  

Another important class of techniques is based on path integrals.[259, 260] This 

technique has been very useful in studies of equilibrium properties of electron-boson 

systems, e.g. in the context of dynamical image effects in scanning tunneling 

spectroscopy,[261] [262] [263] where marked differences of the dynamical image 

potential from its static analog were found when the tunneling time is of the order of or 

shorter than the inverse surface plasmon frequency. Also, tunneling suppression 

resulting from strong correlations associated with electron-electron and electron-phonon 

interactions in single electron traps in metal-oxide-semiconductor field-effect transistors 

was studied using this approach.[264] [265] Path integrals on the Keldysh contour were 

used to study effects of strong electron-phonon interactions in tunneling of electrons via 

magnetic impurities,[266] inelastic tunneling in quantum point contacts[267] and in 

                                                 
9 This approach appears however  to be unstable for diagrammatic expansion beyond the first order linked 
cluster expansion.. 
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resonance tunneling,[268] in particular non-linear conduction phenomena associated 

with electron-phonon interactions.[269, 270, 92] 

Finally, numerical renormalization group methodology was used to study 

inelastic effects in conductance in the linear response regime.[271, 272, 245, 273]  

(3) Many workers[135, 274, 275, 137, 257, 241, 242, 276, 188, 277-280] treat strong 

electron-phonon coupling situations using kinetic equations that are based on the 

assumption that the time spent by the transporting electron on the molecule is long 

relative to decoherence processes (due to electron-electron interactions or the nuclear 

thermal environment) on the molecular subsystem. This assumption is expected to hold 

in the weak molecule-leads coupling, the so called Coulomb blockade limit of junction 

transport. It leads to a kinetic description of the electron hopping in and out of the 

bridge and coupled to the oscillator motion. For example, Gorelik et al[135] discuss a 

bridge-shuttle mechanism for electronic conduction in nanojunctions (see Sect. 10) 

using a classical damped harmonic oscillator model that couples to the electronic 

process through the bridge charging 

 mx kx x qγ α= − − + Φ�� �        (31) 

where the charge q is obtained from the probability nP  to have an excess number n of 

electrons on the bridge, nnq e nP= ∑  which is assumed to satisfy the master equation 

( ) ( ) ( ) ( )/ / / /
1 1

2 1, 1, , 1 , 1x x x x
n n n nP e n n P e n n P e n n e n n Pλ λ λ λ

ν
− −

− + ⎡ ⎤= Γ − + Γ + − Γ + + Γ −⎣ ⎦
�

          (32) 
In Eqs. (31) and (32) the oscillator mass m, force constant k, damping coefficient γ and 

the parameters α , λ and ν are constants. The physical picture behind Eq. (32) is that of 

a junction in which electrons are injected onto the bridge from the source electrode and 

are absorbed by the drain electrode, at rates that depend on the oscillator coordinate x: 

the latter is assumed to alternately change the tunneling distances between the bridge 

and these electrodes, in a way that reflects center of mass motion in the tunneling 

direction.  

Later works use a quantum mechanical oscillator model by invoking a master 

equation in both the electronic and nuclear state-spaces. Most relevant to our discussion 

is the work of Koch, von Oppen and coworkers,[276, 277, 188] who have used a master 

                                                                                                                                               
10 Note however that Refs. [256], [257] and [258] treat resonance situations in weak coupling situaions 
characterized by M < Γ . 
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equation for the joint probability n
qP  for the molecular bridge to be in a state with n 

excess electrons and a vibrational level q 

' ' '
' ' ' , ''

' , '

1n
q n n n n n n n n n

q q q q q q q q eq qq
n n q

dP
W P W P P P P

dt τ
→ →

→ →
≠

⎡ ⎤⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦∑ ∑  (33) 

The transition rates on the right are of two kinds: direct vibrational relaxation is taken to 

be characterized by a single relaxation time τ. The rates W , calculated from the golden 

rule, correspond to processes that change the bridge electronic occupation and are 

proportional to the corresponding Franck Condon (FC) factors 2( ) | '( ')q n q n  and the 

appropriate Fermi factor.  

 Such rate equation approaches are very useful in particular for Coulomb 

blockade situations with strong electron-phonon coupling, where the focus is on the 

state of the molecular oscillator (see Sections 9 and 10). While the more general NEGF 

methodology should in principle yield these equations in the appropriate limit, such 

bridging between the different approaches has not been achieved yet. A promising 

advance in this direction is offered by the recent work of Harbola et al[281] who have 

cast the desription of inelastic tunneling in molecular junctions in terms of the density 

matrix and its evolution in Liouville space. 

A special manifestation of strong electron-phonon coupling in the operation of 

molecular junctions is the occurrence of molecular configuration changes caused by the 

induced current or by molecular charging.[69, 282, 70, 72, 75, 283-285] In favorable 

cases such configurational changes can lead to dramatic non-linear current/voltage 

behaviors such as switching, negative differential resistance and hysteresis in the I/Φ 

behavior. A full theoretical analysis of these phenomena is complicated by the need to 

account for the junction transport and the bridge configuration in a self consistent way. 

Several models and theoretical methods have been recently discussed,[286, 287, 252, 

257, 270, 91, 92, 55, 56, 42, 43, 58, 190, 288] however a conclusive theoretical picture 

is still in formative stage. We return to these issues in Sections 8 and 10. 

In addition to the I/Φ behavior, current noise characteristic is another observable 

that provides important information about the junction operation.[289] Vibrational 

effects on nanojunction noise were considered by several workers,[290, 275, 291-294] 

including related work on ac-driven junctions.[295, 296] Substantial work on this issue 

has been done within the scattering theory approach.[297-300] whose shortcomings 
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were discussed above. NEGF treatments of this problem, discussing resonant shot noise 

spectra of molecular junctions were published by Zhu and Balatsky[250] and by 

Galperin et al.[301] Experimental noise studies in MTJs are also beginning to 

appear[302]. This subject is further discussed in Sect. 7. 

 

3e. Numerical calculations 

The importance of inelastic phenomena associated with electron transmission 

through molecular junctions, in particular the emergence of inelastic electron 

tunneling spectroscopy as a major diagnostic tool in need of theoretical support, 

has led to a considerable effort to develop relevant transport theories into 

practical numerical tools. Different numerical approaches to inelastic tunneling 

spectra[230, 158, 164, 156, 213, 162, 163, 167, 41, 155, 44, 165, 236-238, 303-305, 

161, 166, 240] are reviewed in Sect. 5g. The same numerical methodologies have 

been used also to compute other consequences of inelastic electron transport in 

nanojunctions, such as mechanical effects including current induced forces[306-

309, 160, 190, 219, 141, 310, 31, 157, 288] and junction heating.[212, 213, 165, 161, 

166] The latter issues are discussed in Sections 9 and 10. 

 

 

4.  Incoherent vs. Coherent Transport 

Two very important consequences of the electron interaction with its nuclear 

environment are the crossovers from tunneling to activated transport and from coherent 

to incoherent transmission under appropriate conditions. While these effects are not 

identical (e.g. thermal electron transfer from lead to molecule can be followed by 

coherent propagation along the molecule), energy and timescale considerations (Section 

3c) indicate that they occur under similar conditions: when activated transport 

dominates it is likely that decoherence within the molecular bridge will be effective. 

The predicted experimental manifestations of these changes in the nature of the 

conduction process are, first, a transition from temperature independent to activated 

transport upon temperature increase, and second, an exponential drop with molecular 

chain length in the tunneling regime becoming an ohmic 1/length dependence for 

activated hopping conduction (or independence on length for activated band motion). 
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These phenomena where discussed by us elsewhere[7, 13] and here we give only a brief 

overview with emphasis on recent developments. 

 Early measurements of molecular transport junctions (the field is only a decade 

old) were made with relatively short molecules connecting metallic electrodes (usually 

gold).[311] Transport in these systems takes place in the coherent tunneling regime 

even at room temperature. Indeed, timescale estimates (Section 3c) suggest that the 

electron-molecule interaction time is in the sub-femtosecond range, implying weak 

effect of the electron-vibration interaction. The incoherent limit can be approached 

when gating is possible, such that the injection gap becomes small, giving sufficient 

time for decoherence resulting from electron-phonon interaction. Indeed, the onset of 

hopping conduction was recently seen[28] in a measurement of the heptamer of 

phenylenevinylene within a molecular transport junction. In this system, the long range 

of the transport, the presence of solvent and the relatively small injection gap partly 

caused by image effects in the electrodes, result in transient electron localization and 

phase loss. Another interesting demonstration is seen in DNA junctions, Figure 4,[89] 

where an exponential length dependence of tunneling through a DNA segment with a 

large injection gap is replaced by an inverse length dependence in the small gap, near 

resonance case. 
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Figure 4.  Mechanistic turnover from tunneling to hopping in short strand duplex DNA.  The 
curve on the left shows tunneling through the AT segment, resulting in exponential decay of 
conductance with length.  The segment on the right is for poly GC where transport occurs by 
hopping and the conductance scales like the inverse length (as it must for diffusion).  From Ref. 
[89]. 

 
 On the theory side, decoherence and thermal relaxation effects in junction 

transport have been described using the Buttiker probe technique,[186, 181-185] or by 

generalized master equations[312, 168, 170, 171, 173, 174] that were already mentioned 
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in Section 3d. Such treatments predict the transition from exponential ( )exp xβ−  to 

algebraic ( ) 1a bx −+  (with β, a and b constant parameters) bridge length (x) dependence 

of the junction conduction for a finite injection gap 0EΔ >  as well as the transition 

from tunneling to activated transport for increasing temperature. We note in passing that 

understanding decoherence and its proper description in the context of condensed phase 

transport is still an ongoing process.[313, 314] 

With some variation in details, similar predictions are reached by invoking the 

finite temperature Fermi distribution of electrons in the leads without adhering to 

dynamical relaxation effects, see e.g. Ref. [315]. Indeed, the authors of Ref. [87] 

interpret their results on the temperature dependence of conduction in the large injection 

gap regime (Fig. 5) in the latter way. 

 

 
Figure 5. Onset of activated transport in a non-conjugated molecule.  At low temperatures, 
quantum mechanical tunneling is seen, and the current is independent of temperature.  As room 
temperature is approached, the transport becomes activated.  The argument made by the authors 
is that the small activation energies describe the overlap of the Gaussian spectral density tail 
with the Fermi occupation tail.  From Ref. [87]. 
 

The experimental studies described above are still quite rare in the molecular 

conduction literature. Many cases of such transitions have been seen in the closely 

related phenomena of intra-molecular electron transfer reactions.[316-320, 170, 18] 
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These are particularly common in biological or biomimetic systems, where clear 

transitions in the distance dependence of the rates and in the thermal behavior (from 

temperature independent in the tunneling limit to activated transport in the hopping 

limit) have been seen.[321] 

 

 

5. Inelastic electron tunneling spectroscopy (IETS) 

Inelastic electron tunneling spectroscopy was originally developed nearly one half 

century ago for studying metal-insulator-metal junctions.[322, 323] Its later and 

ongoing application in studies of MTJs has been of great importance.[29-45] Indeed, it 

is the most direct experimental manifestation of electron-vibration coupling in current-

carrying molecular junctions and the most extensively studied consequence of this 

interaction. In addition, the combination of IETS measurements and parallel 

computational work has made this phenomenon a subject in which the 

experiments/theory interaction is the closest in all the MTJ literature. Indeed, 

computational results mirror experiments so well that theory has become a central tool 

for connecting IETS data to junction structure and dynamics. IETS is used both for 

demonstrating the presence of particular molecules within the junction and (in 

conjunction with propensity rules inferred from calculations) for obtaining structural 

information, e.g. molecular position and orientation in the junction. For example IETS 

has served to ascertain the presence of a hydrogen molecule in what appeared to be the 

smallest molecular junction[39], to distinguish between sigma and pi bonding at the 

molecular termini[44] and even allowing the monitoring of changes in the transport 

structure due to molecular reactions, such as the binding of water in thiol based gold 

junctions.[37]  

5a. Experimental background 

Experimental observations of inelastic electron tunneling may be classified according to 

its electronic resonance or non-resonance nature. In non-resonance inelastic 

tunneling[324, 322, 323, 32, 325-327, 100, 121, 328] [34, 329, 35] the energy of the 

incoming electron inE  is far from any electronic energy difference EΔ  between the 

original molecular state and the intermediate molecular ion. Consequently the 

interaction time between the molecule and the tunneling electron is short, of order 
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/ inE EΔ −= , and inelastic effects are small. In the opposite resonance case[310, 83, 

330] [331] inE EΔ − < Γ  where Γ is the inverse lifetime of the intermediate molecular 

state. In this case the interaction time is of order / Γ= and strong inelastic effects are 

expected if Γ is not too large. These inelastic processes are analogous to the 

corresponding optical phenomena, ordinary (non-resonance) and resonance Raman 

scattering (RS and RRS, respectively). In particular, the non resonance inelastic signal 

reflects the vibrational structure of the original molecular state – the ground electronic 

state in the RS case or the molecular state in the unbiased junction in the IETS process. 

The corresponding resonance signal reflects mostly the vibrational structure of the 

excited electronic state (in RRS) or the transient molecular ion (in RIETS). In spite of 

these similarities between the optical and tunneling processes some important 

differences exist as detailed next.    

Consider first regular (non-resonance) IETS. In single electron language such 

processes involve tunneling of electrons whose energy is far from vacant molecular 

orbitals. (Some processes are more conveniently viewed as tunneling of holes far from 

resonance with occupied molecular orbitals). Inelastic signal associated with a 

molecular mode of frequency ω is observed in the current-voltage response of the 

junction at the inelastic threshold voltage sde ωΦ = = , i.e. when the electron energy 

associated with the applied bias is just enough to excite the corresponding vibration. If 

the energies Ein and Eout of the incoming and outgoing electron could be resolved, we 

would have expected a peak in the electron flux plotted against the difference 

in outE E−  at the point where this difference equals ω= . This is similar to the 

analogous light scattering process or to inelastic electron scattering off molecular 

species in vacuum. In the language of the light scattering literature the peak at 

in outE E ω− = =  is a Stokes signal while that at in outE E ω− = −=  is an anti-Stokes 

signal whose intensity vanishes at 0T → . These energies are however not resolved in 

the tunneling current, which is an integral over all incident and outgoing energies of the 

Fermi-weighted energy-resolved spectrum. Therefore the peak structure is expected, 

and often observed, in the second derivative, 2 2/ sdd I dΦ .  

In spite of the similarities described above, it is important to keep in mind that 

there is no full analogy between Raman scattering or vacuum electron scattering and 

IETS. An important difference stems from the fact that in the latter the incoming and 

outgoing state manifolds are partly occupied, given rise to important effects associated 
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with the fermion nature of the scattered electrons. In particular, as discussed below, this 

results in contribution to the scattering intensity 2 2/ sdd I dΦ  at sde ωΦ = =  of quasi-

elastically scattered electrons,11 as well as interference between the elastic and 

quasielastic amplitudes. This can modify the observed feature which may appear as 

peaks (Fig. 6), dips (Figs. 7, 8), or derivative-like features (Fig. 9) in the 2 2/ sdd I dΦ  

spectrum. 

 

Fig. 6. Inelatic tunneling spectrum ( 2 2/ sdd I dΦ )acquired by STM on top of a single benzene 
molecule (continuous line) and on the bare silver surface (dashed line). The peaks at ±4 mV and 
±19 mV represent a change of the junction conductance of about 1% and 8%, respectively. 
(From Ref. [327]) 

                                                 
11 The term quasielastic scattering is used to describe electrons that emerge at essentially the incoming 
energy following interaction with the phonon subsystem. For example, to second order in the electron-
phonon interaction this is an electron that has (virtually) absorbed and emitted phonons of the same 
frequency. The implication of the Fermi function in the corresponding contribution to the scattering signal 
leads to a distinct spectral feature at sde ωΦ = = .  
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Figure 7. 2 2/ sdd I dΦ  tunneling spectrum of CH3NC (methyl isocyanide) molecules bonded to 
alumina supported rhodium. The infrared absorption spectrum (R.R. Cavanagh and J. T. Yates, 
Jr. Surf. Sci. 99, L381 (1980)) is shown for comparison. The dip in the tunneling spectrum is 
seen at the same position where the IR spectrum has an intense peak due to the NC stretch 
vibration. (From Ref. [324]). 

 

 

Figure 8. Single molecule inelastic tunneling spectra ( 2 2/ sdd I dΦ ) obtained by STM-IETS for  
16O2 (curve a), 18O2 (curve b), and the clean Ag(110) surface (curve c). The difference spectra 
(curve a-c, curve b-c) are also shown. (From Ref. [326]). 
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Figure 9. Inelastic electron tunneling spectra, 2 2/ sdd I dΦ , of octane dithiol SAM obtained from 
lock-in second harmonic measurements with an AC modulation of 8.7 mV (RMS value) at a 
frequency of 503 Hz (T = 4.2 K). Peaks labeled * are assigned by the authors to background due 
to the encasing Si3N4. (From Ref. [34]) 

 

Next consider resonance inelastic electron tunneling. In this case the energy of 

the initial state, i.e. the original molecular state plus the incoming electron, is close to 

that of intermediate molecular state on the bridge, and the dominant vibrational 

structure is associated with the vibrational levels of the latter. In the language of single 

electron states, the energy of the incoming electron is close to that of the available 

electronic orbital (usually the lowest unoccupied or the highest occupied electronic 

orbital (LUMO or HOMO)4) in the molecular bridge. This happens when this orbital 

enters the window between the Fermi energies of the source and drain leads, a situation 

realized by imposing a higher potential bias or by shifting the molecular energy with a 

gate potential, and is marked by a step in the current when plotted against Φsd, i.e. a 

peak in the conductance / sddI dΦ . Vibrational states of the intermediate molecular ion 

serve as additional resonance levels,12 however the corresponding conductance peaks 

are weighted by the corresponding Franck Condon (FC) factor. 

 Mathematically, provided that Γ is not too large, this process corresponds to the 

strong electron-vibration coupling limit, whose physical signature is multiple phonon 

peaks, sometimes referred to as phonon sidebands, in the / sddI dΦ  spectrum when 

plotted against sdΦ  or gΦ .[331] This structure is often observed as satellite lines above 

                                                 
12 In analogy to resonance Raman spectroscopy one also expects overtone features associated with the 
vibrational structure of the neutral molecule. These features are expected to show mainly in the second 
derivative spectrum and their presence is not usually taken into account in analysis of RIETS spectra. 
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the conduction thresholds in the diamond structures that represent the conductance 

plotted in the g sdΦ − Φ  plane[310, 83] [330] as seen in Fig. 10. It is of interest to note 

that vibrational effects in resonance tunneling were seen also in the observation of 

vibrational structure in the light emitted by molecules in biased STM junctions.[96] 

 
 Fig. 10. Conduction of a C60 molecule seated between gold leads, plotted against the source-

drain and gate potentials. The bright purple areas indicate conducting regimes and the 

vibrational satellites (attributed to the center of mass oscillations of the C60 species between the 

two leads) are the white lines indicated by white arrows. (from Ref. [310]) 

Such IETS and RIETS measurements provide effective fingerprints of the 

corresponding molecular junctions. However, their applicability, particularly for single 

molecule junctions, is limited by the variability between different measurements, which 

reflects the structural uncertainties and variance that characterize such junctions. This 

can be observed for molecules adsorbed at different sites[327] or in junctions prepared 

by different methods.[35, 34] Nevertheless, IETS and RIETS can provide important 

information on the presence of molecules in the junction (by its spectral fingerprint), on 

its orientation (by propensity rules on the electron-vibration coupling[41, 44, 45]) and 

on its dynamic characteristics (by the lineshapes and linewidths of inelastic features). 

Extracting this information relies strongly on theoretical interpretation, as discussed 

next. 

5b. Theoretical considerations – the weak vibronic coupling limit 

As discussed in Section 5b, the weak electron-phonon coupling limit is realized when 

the electron-phonon interaction (M in Eq. (7)) is small relative to the energy gap EΔ  

and/or the electronic lifetime broadening Γ (Eq. (13)). In this limit we can apply a 

standard perturbation approach on the Keldysh contour, where the contour ordered 

exponent of the evolution operator 
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 ˆˆ exp ( )c Ic
iS T d Vτ τ⎡ ⎤= −⎢ ⎥⎣ ⎦∫ �
=

      (34) 

is expanded into Taylor series and truncated in some manner. Here ˆ
IV�  is the coupling, 

Eq. (10b), in the interaction picture defined with respect to the zero-order Hamiltonian 

(10a). Using the Hamiltonian separation scheme (10) is suggested by the fact that within 

the non-crossing approximation (or when M = 0) the electron self energy (SE) due to 

the molecule-leads coupling, and the primary vibration SE due to its coupling to the 

secondary phonon (thermal) bath can be obtained exactly, while the SE due to electron-

vibration coupling can be obtained only using perturbation theory. The perturbation 

expansion itself can be done on different levels. The simplest approach is to expand the 

current, Eq. (27), to lowest order in the electron-phonon interaction.13 A better strategy 

is to focus the expansion on the self energy. Truncating this expansion at second order 

in ˆ
IV�  leads to the Born approximation (BA) for the electron-vibration interaction. 

Pioneering considerations of inelastic effects on this level were presented by Caroli et 

al.[228] A higher level approximation is the Self Consistent Born Approximation 

(SCBA), where the electron self energy is expressed in a BA form in which the zero 

order GF is replaced by the full GF, then the GFs and SEs are calculated self-

consistently by iterating between them.14 These BA and SCBA methodologies were 

used in several theoretical studies.[332, 256, 165, 237, 57, 238, 257, 333, 240, 334, 258]  

The SCBA scheme can be used also in a way that treats both electron and 

phonon Green functions self consistently. This makes it possible to account for the non-

equilibrium distribution of the primary phonons in the biased junction. The SCBA 

expressions (on the Keldysh contour) for the electron and the primary phonon SEs, Σ  

and Π , respectively, are given by 
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13 This implies an expansion of the Green functions in Eq. (27) to this lowest order. A similar expansion 
within the scattering theory approach[155], [41], [44] is discussed in Sect. 5g. 
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Π is sometimes referred to as the polarization operator, and G and D are the electron 

and phonon GFs, respectively. G and D are  given in terms of these SEs using the 

Dyson equations 

 ( ) ( ) ( ) ( ) ( )0 1 2 0 1 1 2 2, ' , ' , , , '
c c

G G d d G Gτ τ τ τ τ τ τ τ τ τ τ τ= + Σ∫ ∫   (37) 

 ( ) ( ) ( ) ( ) ( )0 1 2 0 1 1 2 2, ' , ' , , , '
c c

D D d d D Dτ τ τ τ τ τ τ τ τ τ τ τ= + Π∫ ∫  (38) 

Eqs. (35)-(38) provide a self-consistent scheme, where the GFs of the electrons and the 

primary vibrations are given in terms of the corresponding SEs while the latter depend 

on these GFs. These equations (or, at steady state, the Fourier transforms to energy 

space of their projections on the real time axis) are solved by iterations, starting from 

some reasonable choice for the GFs, e.g. their values in the absence of electron-

vibration coupling, and proceeding until convergence is achieved.  

 The procedure was used in several theoretical studies of inelastic effects in 

molecular junctions.[257, 335, 336, 231, 258] We[235, 234] have recently applied this 

approach to describe generic features in the IETS lineshape, 2 2/ sdd I dΦ  plotted 

against the applied voltage Φsd. Fig. 11 compares results obtained using the three levels 

of approximation discussed above: the simplest perturbation theory, the BA and the 

SCBA. This comparison shows that simple perturbation theory can account for the 

positions of the fundamental inelastic peaks but not for their shapes, and may fail 

completely when interference phenomena, such as those giving rise to dips in the 

tunneling spectrum (see below), dominate the process. Quantitative difference between 

BA and SCBA is noted as well. It is seen that the inelastic features may appear as peaks 

(observed in the far off-resonant regime) and dips (observed at particular energetic 

situations when an electron tunnels from one lead to another through a wide tail of a 

broadened molecular orbital) as well as derivative-like features in 2 2/ sdd I dΦ  (seen in 

intermediate situations). This interference behavior is reminiscent of Fano 

lineshapes,[337] known in atomic and molecular spectroscopy, which result from 

interference between transitions involving coupled discrete levels and continuous state 

manifolds. The observed signal depends on junction parameters, in particular on the 

energy and width of the bridge electronic orbital. This suggests that the shape of IETS 

features may depend on the applied gate voltage, the molecule-lead coupling and the 

                                                                                                                                               
14 This corresponds to a partial resummation the Taylor series expansion, so that SCBA goes beyond the 
simple second-order approximation for the self energy. 
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way the bias potential falls on the bridge molecule, as shown in figures 12 and 13. In 

particular we see that such features may change from peak to dip through intermediate 

derivative-like shapes as junction parameters are changed. 
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Figure 11. 2 2/ sdd I dΦ  plotted against sdΦ for the single resonant level model characterized by 
the parameters T=10K, 0 0.6ε = eV, 0.05LΓ = eV, 0.5RΓ = eV, EF=0, 0 0.13ω = eV, 

0.001phγ =  eV and M=0.3 eV.   The full line shows the result of the SCBA calculation; the 
dashed line – the BA result and the dotted line – the result of simple 2nd order perturbation 
theory. An expanded view of the latter is shown in the inset. (From Ref. [235]) 

 

Figure 12. IETS threshold feature in 2 2/ sdd I dΦ  for the one resonant level model with the 
parameters T=10K, 0.5L RΓ = Γ = eV, EF=0, 0 0.13ω = eV, 0.001phγ = eV and M=0.3eV. The 
different lines correspond to different positions of the resonance level relative to the Fermi 
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energy (as may be changed by a gate potential): 0 0.7ε = eV (solid line, red), 0.6 eV (dashed 
line, green), and 0.55eV (dotted line, blue). (From Ref. [235]). 
 

 
Figure 13. The IETS threshold feature in 2 2/ sdd I dΦ  for the one resonant level model 

characterized by the parameters T=10K, 0 0.6ε = eV, 0.5L RΓ = Γ = eV, EF=0, 0 0.13ω = eV, 
0.001phγ = eV, M=0.3eV. The full line corresponds to the case where the Fermi energies are 

shifted under the bias according to ( )L F sdRE eμ = + ΦΓ Γ , ( )R F sdLE eμ = − ΦΓ Γ , 

while the dashed line was produced for the model L F sdE eμ = + Φ , R FEμ = . (From Ref. 
[235]). 

 

As in other spectroscopies, the widths of IETS features contain in principle 

information about the underlying dynamical processes. This information can be masked 

by thermal effects – the thermal width of the Fermi distribution in Eqs. (28) and (29) 

incorporates itself into threshold features obtained from the integral (27), as well as by 

inhomogeneous broadening in junctions containing many molecules. However, intrinsic 

linewidths may be uncovered by careful elimination of these factors.[121, 328, 34] Of 

particular interest is the nature of the relaxation process that dominates the intrinsic 

IETS width. The model (5)-(8) is characterized by two such processes: the relaxation of 

molecular (primary) vibrations to phonon baths in the leads and the rest of the 

surrounding environment (affected by the interaction parameters Uαβ  in Eq. (8)) and 

the relaxation of these vibrations to electron-hole pairs in the leads (via the interactions 

ijM α  and ikV  in Eqs. and (7) and (8)). Using order of magnitude estimates we have 

found[234] that the latter mechanism is dominant, contributing an order of ~ 1 meV to 
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the width of IETS features in agreement with experimental data[121, 328, 34] and with 

analysis of infrared spectral linewidths of molecules adsorbed on metal surfaces.[338, 

152] An alternative explanation of the widths observed in Refs. [121, 328, 34], in terms 

of congestion of unresolved IETS features, was offered by Seminario and 

Cordova.[159] 

5c. Theoretical consideration – moderately strong vibronic coupling 

The weak coupling methodology described above is used mostly in off resonance 

situations encountered in standard IETS experiments. SCBA has been used also in the 

resonant tunneling regime,[256, 257, 240, 334, 258] in cases where weak vibronic 

coupling results from strong electronic coupling to the leads (large electronic width Γ) 

that insures short electron lifetime on the bridge. Electron transport through the junction 

in the strong electron-vibration coupling case is different from the weak coupling limit 

discussed above both in the physical nature of the process and in the mathematical 

approach needed for its description. Physically, in the course of the transmission process 

the electron occupies the bridge long enough to affect polarization of the bridge and its 

environment. In the ultimate limit of this situation dephasing (decoherence) and thermal 

relaxation are sufficient to render the processes of bridge occupation and de-occupation, 

and often also transmission between different sites on the bridge, independent of each 

other. This makes it possible to treat the transmission process as a sequence of 

consecutive statistically decoupled kinetic events (see Section 4). Here we focus on 

intermediate situations of this strong coupling limit where effects of transient polaron 

formation on the bridge have to be accommodated, however dephasing is not fast 

enough to make simple kinetic description possible.15 This is a difficult situation to 

describe theoretically, as standard perturbation theory of the kind described in Section 

5c breaks down while simple kinetic schemes cannot be applied. In scattering situations 

(without the presence of the partially occupied electronic manifolds of the leads), in 

particular in models involving a bridge with a single electronic level, the solution is 

obtained by applying the small polaron (Lang-Firsov) transformation[150, 339] (see 

below) to the Hamiltonian[203, 249, 250], which replaces the additive electron-phonon 

coupling (third term on right-hand side in (7)) by a renormalization of the electronic 

coupling elements by phonon displacement operators. The renormalized electronic 

                                                 
15 Another reason for the treatment presented here to be possibly inadequate for very strong electron-
phonon coupling is that vertex corrections are inadequately treated in the many body perturbation theory 
applied here. 
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coupling now contains the effects of electron-phonon interaction to all orders, however 

the transformed Hamiltonian is not amenable to standard many-body perturbation 

theory techniques. Several attempts to approach this problem within the NEGF 

formalism[249, 250] introduce approximations which make them effectively equivalent 

to the scattering approach. 

We have recently advanced two computational schemes based on the equation-

of-motion (EOM) approach to deal with these issues. In both we restrict our 

considerations of the model (5)-(8) to the case of a single molecular electronic orbital of 

energy 0ε  coupled to one primary vibrational mode of frequency 0ω . The first 

approach,[91] discussed in Section 8, disregards vibrational dynamics and uses a mean-

field approximation to describe the effect of electronic occupation on the nuclear 

configuration. Here we describe another approach[255] that takes into account both 

vibrational dynamics and (to some extent) electron-vibration correlations, that can 

account for the phenomenological aspects of resonance inelastic electron tunneling 

spectroscopy (RIETS).  

This approach[255]  is based on the EOM method applied on the Keldysh 

contour and treats both electron and vibrational degrees of freedom in a self-consistent 

manner. It is similar to the Non-equilibrium Linked Cluster Expansion (NLCE)[253] in 

using a cumulant expansion to express correlation functions involving the phonon shift 

operator in terms of phonon Green functions, but its present implementation appears to 

be more stable. This scheme is self-consistent (the influence of tunneling current on the 

phonon subsystem and vice versa is taken into account), and reduces to the scattering 

theory results in the limit where the molecular bridge energies are far from the Fermi 

energy of the leads. As in Ref. [254] the equations for the GFs are obtained using the 

EOM method, however we go beyond Ref. [254] in taking into account the non-

equilibrium dynamics of the molecular phonon subsystem.  

The starting point of this approach is again the small polaron (Lang-Firsov) 

transformation.[150, 339] Applied to the one level one primary phonon version of the 

Hamiltonian (5)-(8) it leads to 

 
( )† † †

0
, ,

† †
0

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ . .

ˆ ˆ ˆ ˆˆ ˆ

k k k k k
k L R k L R

H d d c c V c d X h c

a a b b U QQβ β β β β
β β

ε ε

ω ω

∈ ∈
= + + +

+ + +

∑ ∑

∑ ∑
   (39) 

where 
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 0 0ε ε= − Δ ;           
2

0

M
ω

Δ ≈       (40) 

Δ is the electron level shift due to coupling to the primary phonon and 

 ˆ ˆexpX i Pλ⎡ ⎤= ⎣ ⎦              
0

Mλ
ω

=      (41) 

is the primary vibration shift generator. The operator P̂  was defined by Eq. (12) Note 

that in this minimized model, indices associated with the bridge electronic state and 

primary phonons have been dropped. 

As already mentioned, the Hamiltonian (39) is characterized by the absence of 

direct electron-phonon coupling present in (7). Instead, the bridge-contact coupling is 

renormalized by the operator X̂ . The electron GF on the Keldysh contour,Eq. (21), now 

becomes 

 ( ) † †
1 2 1 1 2 2

ˆ ˆˆ ˆ, ( ) ( ) ( ) ( )c H
G i T d X d Xτ τ τ τ τ τ= −    (42) 

where the subscript H  indicates that the system evolution is determined by the 

Hamiltonian (39). Next we make the approximation 

 ( ) ( ) ( )1 2 1 2 1 2, , ,cG Gτ τ τ τ τ τ≈ K      (43) 

 ( ) †
1 2 1 2

ˆ ˆ, ( ) ( )c c H
G i T d dτ τ τ τ= −      (44) 

 ( ) †
1 2 1 2

ˆ ˆ, ( ) ( )c H
T X Xτ τ τ τ=K      (45) 

which assumes that electron and phonon correlation functions can be decoupled.16 

Using second order cumulant expansion on the Keldysh contour to express the 

correlation function K  in terms of the primary phonon GF leads to 

 ( ) ( ){ }2 2
1 2 1 2, exp ,PPiD Pτ τ λ τ τ= −⎡ ⎤⎣ ⎦K     (46) 

 ( )1 2 1 2
ˆ ˆ, ( ) ( )PP cD i T P Pτ τ τ τ= −      (47) 

The EOM approach is next used to get Dyson-like equations for the electron and 

primary phonon GFs. It leads to[255]   

                                                 
16 This approximation is the most sensitive step of this approach and is by no means obvious. In 
molecular physics it is usually justified by timescale separation between electronic and vibrational 
dynamics and is inherent in the Born-Oppenheimer approximation, however in problems involving 
electron transfer the timescale for the latter process is usually slower than that of molecular vibrations. 
The application of the Born-Oppenheimer approximation in such cases are done in the diabatic 
representation[22] and this is how the approximation (43) should be understood, however it has to be 
acknowledged that its use here has not been fully justified. 
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( ) ( )

( ) ( ) ( )

0

0 0
1 2 1 1 2 2

, ' , '

, , , '
PP PP

PP PP PPc c

D D

d d D D

τ τ τ τ

τ τ τ τ τ τ τ τ

= +

Π∫ ∫
  (48) 

 
( ) ( )

( ) ( ) ( )

0

0 0
1 2 1 , 1 2 2

,

, ' , '

, , , '
c c

c c K cc c
K L R

G G

d d G G

τ τ τ τ

τ τ τ τ τ τ τ τ
∈

= +

Σ∑ ∫ ∫
 (49) 

where the zero order Green functions are solutions of 

( ) ( ) ( ) ( )1 2 2 2 0
0 02 , ' , 'PPDω τ ω τ τ δ τ τ−− ∂ ∂ + =  and ( ) ( ) ( )0

0 , ' , 'ci Gτ ε τ τ δ τ τ∂ ∂ − =  and 

where the functions PPΠ  and ,c KΣ  are given by 

( ) ( )

( ) ( ) ( ) ( )

2
1 2 1 2

22
1 2 1 2 1 2 1 2

,

, ,

, , ,

PP P P

k k c
k L R

U D

i V g G

β ββ
β

τ τ τ τ

λ τ τ τ τ τ τ τ τ
∈

Π =

− + ↔⎡ ⎤⎣ ⎦

∑

∑ K
 (50) 

( ) ( ) ( )2
, 1 2 1 2 1 2, , , ; ,c K k k

k K
V g K L Rτ τ τ τ τ τ

∈
Σ = =∑ K   (51) 

Here kg  is the free electron Green function for state k in the contacts. The functions 

PPΠ  and ,c KΣ  play here the same role as self-energies in the Dyson equation. 

Equations (46)-(51) constitute a closed set of equations for the non-equilibrium 

system under strong electron-primary vibration interaction. Their solution is obtained by 

an iterative procedure similar in principle to that applied for Eqs. (35)-(38). In addition 

one may consider the lowest order approximation obtained by stopping after the first 

iteration step, i.e. using the equations 

( ) ( ) ( )0 0
1 2 1 2 1 2, , ,cG Gτ τ τ τ τ τ≈ K      (52a) 

( ) ( ){ }0 2 0 2
1 2 1 2 0
, exp ,PPiD Pτ τ λ τ τ⎡ ⎤= −⎣ ⎦K    (52b) 

Some results obtained from this calculations are shown in figures 14 and 15. 

Figure 14 depicts the projected density of states ( )A E  (Eq. (26)) of the equilibrium 

junctions for different positions (controllable by a gate potential) of the molecular 

electronic level relative to the leads Fermi energy while Fig. 15 shows the conductance-

voltage spectrum of this junction. The following points are noteworthy:  

(a) Strong coupling situations are characterized by pronounced progressions of 

vibrational peaks observed in the spectral function and in the conductance spectrum 

( / sddI dΦ  plotted against the bias voltage  sdΦ ) As discussed above, this structure is 
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associated with the vibrational levels of the intermediate bridge electronic state. 

(b) The combination of electron-phonon interaction plus the interaction with the 

partially occupied electronic manifolds in the leads has a profound effect on the spectral 

lineshape. In particular, the relative spectral shifts displayed in Figs 14a,b,c result from 

the phonon-induced renormalization of the bridge electronic energy that depends on its 

electronic occupation. Obviously, this shift cannot be obtained in a scattering theory-

based approach (See Section 5d). 

(c) As seen in Fig. 14, the lowest order approximation can account for qualitative 

aspects of the spectrum, however in the strong coupling case it fails quantitatively, in 

particular for the partially-occupied bridge situation.  

(d) The non-equilibrium electronic process affects the primary phonon distribution. 

Ultimately this results in heating the phonon subspace (see Section 9). In the present 

calculation this is seen by the appearance of a phonon peak on the negative energy side 

of the elastic signal (corresponding to phonon absorption) in Fig. 15. Obviously, this 

feature cannot be obtained in the lowest order calculation. 

(e) The relative intensities of the observed vibronic lines reflect the overlap (Franck-

Condon factors) between nuclear wavefunctions in the initial and intermediate bridge 

electronic states. As in molecular optical spectroscopy such “renormalization” of 

spectral intensities results in a shift of the signal peak from its electronic origin. This 

phenomenon has been nicknamed “Franck-Condon blockade” in the nanojunction 

conduction literature.[276, 340] For very strong electron-phonon coupling, the width of 

the vibronic components in Figures 14 and 15 may exceed their spacing. In this limit, as 

in molecular spectroscopy, the vibronic lineshape appears as a broad Franck-Condon 

envelope as seen, e.g. in Ref. [341]. 
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Figure 14. The equilibrium DOS for a system characterized by the parameters T=10K, 
ε0 = 2 eV, 0.02eV; ,K K L RΓ == , 0 0.2ω = eV, M=0.2eV and 0.01phγ = eV. Solid line: self-
consistent result. Dashed line: lowest order result. The dashed vertical line indicates the position 
of the DOS peak in the absence of coupling to vibrations. Shown are cases of filled (a), partially 
filled (b), and empty (c) electron levels obtained for different positions of the lead Fermi energy 
EF  which is placed at 3.8 eV in (a), 1.8 eV in (b) and -0.2 eV in (c). (This figure follows Fig. 2 
of Ref. [255] but with the parameters used in Fig. 4 in that paper).  
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Figure 15. (Fig. 4 of Ref. [255]) Differential conductance vs. source-drain voltage for the 
junction model of Fig. 14 with 0.FE =  Shown are the self-consistent (solid line) and zero-
order (dashed line) results. An expanded view of the phonon absorption peak on the negative 
side of the elastic signal is shown in the inset.  

 

The qualitative similarity of these results to optical spectra, in particular 

resonance Raman scattering (RRS), is evident, however important differences exist as is 

seen by the relative spectral shifts seen in Fig. 14. Another interesting difference is 

related to the trivial observation that in RRS changing the incident frequency (the 

analog of changing the bias voltage sdΦ  in the junction case) and changing the energy 

of the excited electronic state (the analog of imposing a gate potential gΦ ) are 

completely equivalent. In the junction case they are not. Indeed the vibrational structure 

seen when the conductance is plotted against sdΦ  is absent in the conductance vs. gΦ  

spectrum at small bias potentials. This observation, first made in Ref. [257] in 

contradiction to earlier assertions,[203, 249, 250] is confirmed by the calculations 

described above. This statement, while seemingly profound by optical spectroscopy 

standards is a common experimental observation in junction inelastic spectroscopy and 

would probably be regarded as trivial by experimentalists used to display conduction 

data in the sdΦ  / gΦ  plane. 
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5d. Comparison of approximation schemes 

Above (see also Section 5g below) we have described different approximations used in 

the literature to evaluate, analyze and predict IETS spectra. It should be emphasized at 

the outset that the quantitative success of such calculations depends to a large extent on 

the quality of the underlying electronic structure calculation that determines the junction 

configuration and the relevant molecular electronic energies and vibrational frequencies. 

Here we briefly address another factor – the approximation used in the transport 

calculation. We will consider several approximation schemes, already discussed above: 

(a) The scattering approach, using standard scattering theory methods or the Tersoff-

Hamann approach[93, 94], is frequently used in IETS calculations. The basis for this 

approximation is the Landauer conduction formula that expresses elastic conduction in 

terms of a scattering property – the transmission coefficient ( )T E  that is calculated for 

the isolated molecular target. The actual current is calculated by weighting this 

transmission with the proper Fermi occupation numbers in the leads, 

 ( ) ( )2 ( )
2 L R

e dEI T E f E f E
π

= −⎡ ⎤⎣ ⎦∫=      (53a) 

It is remarkable that this result is exact for elastic transmission even though a scattering 

calculation disregards the fact that at steady state of the conduction process the 

electronic molecular levels involved can be partly occupied. Eq. (53a) can be written in 

the form 

 ( ) ( )( ) ( ) ( )( )2 ( ) 1 1
2 L R R L

e dEI T E f E f E f E f E
π

⎡ ⎤= − − −⎣ ⎦∫=   (53b) 

where the integrand has the appealing form of a difference between two fluxes, each 

written as a product of the transmission coefficient and the probability that the initial 

level is occupied while the final is not.  

In the scattering theory approach to inelastic conduction Eq. (53b) is generalized 

to take the electronic energy change into account 

( ) ( )( ) ( ) ( )( )2 ( , ) 1 1
2
i f

i f L i R f R i L f
dE dEeI T E E f E f E f E f E

π
⎡ ⎤= − − −⎣ ⎦∫=   (54) 

where ( ),i f fT E E dE  is the probability that an electron incident on the molecular target 

with energy iE  will be transmitted with energy fE . For elastic transmission 

( ) ( ) ( ),i f i i fT E E T E E Eδ= − .  
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 Eq. (54) is often used in the IETS literature, where ( ),i fT E E  is usually 

computed by low order perturbation theory (see, e.g. Refs. [155, 41, 248]) but can be, 

for simple models, also calculated exactly[202, 203, 200] or to high order in the 

electron-phonon coupling.[204, 205, 211, 342] It is well known however[199] that the 

cancellation of terms that makes Eq. (53) exact for elastic process does not happen for 

inelastic conduction. Also, for large bias potential the transmission becomes bias 

dependent, which is of course missed in the scattering calculation. The resulting error is 

hard to assess because (54) is not a first term in a systematic expansion. In what follows 

we refer to (54) as the ‘ ( )1f f−  approximation’.  

(b) The lowest order perturbation theory (LOPT) approximation to the NEGF-based 

conduction. In this approximation Eq. (27) is evaluated keeping only terms up to the 

lowest (second) order in the electron-phonon coupling. The phonon distribution is 

assumed to remain in thermal equilibrium. 

(c) The Born approximation (BA). Here the GFs needed in Eq. (27) are calculated by 

applying the lowest (second) order approximation to the self energies used in (23).  

(d) The self consistent Born approximation (SCBA). In the second order expressions for 

the SEs used in the BA, the zero order electron and phonon GFs are replaced by their 

exact counterparts. The resulting set of equations is solved self consistently by 

iterations. In one variant of this approximation only the electronic GF is evaluated self 

consistently and the phonons are assumed to remain at thermal equilibrium. In the other 

the calculation is performed self consistently for both electron and phonon subsystems.  

 Approximations (b)-(d) are expected to be appropriate in weak coupling 

situations, with the SCBA doing better for stronger electron-phonon coupling. 

Intuitively we expect also that Eq. (54) may provide a reasonable approximation for 

small coupling. When the electron-phonon coupling becomes stronger, e.g. under 

Coulomb blockade conditions (near resonance tunneling in systems where the bridge-

leads coupling is small) we need to use a formalism that accounts for changes in the 

nuclear configuration associated with the electron-phonon interaction: 

(e) The self consistent strong coupling (SCSC) scheme of Section 5c.[255] In this 

approximation the polaron transformation is applied to the Hamiltonian (5)-(8) and the 

factorization approximation (43)-(45) is made for the resulting GF (42). This leads to 

the set of Eqs. (46)-(51) that are solved self consistently by iterations. 
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(f) Strong coupling lowest order (SCLO) approximation to Eqs. (46)-(51). This is 

obtained by using the zero-order expressions for cG  and K (i.e. their forms in the 

absence of electron-phonon coupling) in Eqs (43)-(45).17 

 It is instructive to obtain the ( )1f f−  approximation from the full NEGF 

formalism. This can be done by noting that in scattering theory we do not evaluate the 

net flux but (separately) the scattering flux for the left-to-right and the right-to-left 

processes. Indeed, the term involving ( ) ( )L E G E> <Σ  in (27) reflects electronic 

population in the molecular target ( ( ) ( ) ( )G E in E A E< =  where ( )n E  and ( )A E  are, 

respectively, the population and the electronic density of states associated with the 

molecular resonance level), which should be taken 0 (or 1 if we consider hole transport) 

in a scattering calculation. For example, it can be shown[343] that the ( )1f f−  

approximation to the left-to-right flux is obtained from (cf. Eq. (27)) 

( ) ( )/ 2 ( ) ( )L LI e dE E G Eπ < >= Σ∫= , provided that we disregard back-reflection to the L 

lead, i.e. terms containing ( )1L Lf f−  (this implies that the contribution of L
>Σ  to G>  is 

disregarded), and take the phonon bath to be at thermal equilibrium.  

 

 

Fig. 16. Comparison between different approximations used in IETS calculations. Left –  a 
weak coupling (off resonance) case: T=300K, 0 1ε =  eV, EF=0, 0.1L RΓ = Γ = eV, 0 0.1ω =  
eV, M=0.5 eV, 0.005phγ = eV. Lines are indicated according to their order from top to bottom 
on the right side of the figure: Full NEGF-SCBA calculation, SCBA with phonon kept at 

                                                 
17 The difference between this approximation and the version of scattering theory based on exact 
evaluation of the inelastic vacuum transmission coefficient is that here information about the steady state 
population of the bridge electronic level is taken into account. Therefore standard scattering theory deals 
with either electron or hole transport, while SCLO accounts for both additively. 
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thermal equilibrium, ( )1f f− (scattering theory) calculation, NEGF LOPT calculation and 
NEGF-BA calculation. The LOPT curve is almost not seen because it overlaps the BA 
calculation. Right –  Strong coupling (resonance) situation: T=10K, 0 2ε =  eV, EF=0, 

0.02L RΓ = Γ = eV, 0 0.2ω =  eV, M=0.2 eV, 0.01phγ = eV. Full line – SCSC calculation, 

Dashed line – SCLO calculation, dotted line – ( )1 )f f−  (with exact scatteing theory 
evaluation of transmission)  calculation. 
  

 

Figure 16 shows how these approximations perform. Both figures were obtained 

using a single electronic level/ single ocsillator model. The left panel depicts a off 

resonance weak coupling situation that characterizes regular IET spectra. It is seen that 

despite its fundamental limitation, the scattering theory approach performs well in this 

limit where the intermediate level is essentially unoccupied. Indeed the different 

approximation schemes yield practically identical results for the I/Φ characteristic and 

small differences are seen only in the derivatives. The right panel corresponds to a 

strong coupling (resonance) situations. Here the difference between different 

calculations is considerable, and in particular a scattering theory approach fails to 

account for the line intensities.   

 We have pointed out that the quality of computed IET spectra depends on the 

input from electronic structure calculation. We end by emphasizing that in principle the 

electronic structure calculation should be carried out at the non-equilibrium steady state 

relevant to the experimental conditions. Standard (non-resonant) IETS experiments are 

done in low bias situations where equilibrium structures are relevant, however 

calculations pertaining to high bias far from equilibrium systems have to take this into 

account, as done (with uncertainties related to the use of the Hellman-Feynman theorem 

in far from equilibrium situations) in the more advanced NEGF-based molecular 

transport codes available.  

 

5e. Asymmetry in IETS 

The prediction and observation of rectification, i.e. asymmetry in current-voltage 

response of molecular junctions beyond the linear response regime have been driving 

forces in the development of molecular electronics.[344-347] Normal IETS 

measurements are usually carried for the low-voltage linear response regime, where the 

elastic contribution to junction conduction is symmetric with respect to voltage reversal. 

Inelastic features, normally observed in the second derivative 2 2/ sdd I dΦ  often preserve 
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this symmetry, i.e, the relationship ( ) ( )2 2 2 2/ /
sd sd

sd sdd I d d I d
Φ −Φ

Φ = − Φ is satisfied 

within experimental deviations, however asymmetry may be observed and, as discussed 

below, may convey interesting implications. 

To elucidate the possible source of such asymmetry we follow Ref. [348] where 

the model (5)-(8) is again restricted to the case of a single bridge electronic orbital and a 

single primary vibrational mode. In the Born approximation (which is applicable in the 

weak electron-phonon coupling limit relevant for normal IETS experiments) and in the 

non-crossing approximation, the overall current, Eq. (27), is made of additive 

contributions of elastic and inelastic components.[235]  In particular, the inelastic 

contribution takes the form[348] 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

2 22

0

2
2 2

1 1

r r
inel ph

L R L R R L L R

e dE dI M G E G E

f E f E E E f E f E E E

ω ρ ω ω
π π

ω ω ω ω

∞ ∞

−∞

= −

× − − Γ Γ − − − − Γ − Γ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∫ ∫=

           (55)  

The first term in the curly brackets in (55) is responsible for the current at 

0L Rμ μΦ = − > , while the second term contributes at 0Φ < . It is evident from (55)  

that if LΓ and RΓ  are constants independent of energy, or even if ( ) ( )L RE EλΓ = Γ  

with an energy independent constant λ, these two terms are mirror images of each other, 

implying a symmetric inelastic current, ( ) ( )inel inelI IΦ = − −Φ . On the other hand 

asymmetry may reflect a difference between the energy dependence of LΓ  and RΓ  in 

the energy range between the two chemical potentials. Note that the elastic part of the 

current is symmetric, because the elastic transmission coefficient ( )T E  in Eq. (53) 

depends only on the product ( ) ( )L RE EΓ Γ  and sum ( ) ( )L RE EΓ + Γ .18 

The asymmetry in the inelastic signal may be cast explicitly by considering the 

conduction derivative, 2 2/ sdd I dΦ . Assuming symmetric distribution of the bias 

potential along the junction, Eq. (55) yields 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2 22

2
2~ sgn r r

sd ph sd L R L L R R
sd

d I eM G G
d

ρ μ μ μ μΦ Φ Γ Γ
Φ =

 (56) 

in addition to smooth background terms, with / 2L F sdEμ = + Φ  and 

                                                 
18 This can be shown to hold also for higher order contributions to the elastic flux that enter in Eq. (60) 
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/ 2R F sdEμ = − Φ . Because the phonon DOS ( )phρ ω  is sharply peaked near 0ω ω=  

this leads to corresponding features at 0sd ωΦ = ±  with intensities proportional to 

( ) ( )0 0/ 2 / 2L F R FE Eω ωΓ ± Γ ∓ . This implies that asymmetry to voltage reversal in the 

inelastic structure follows from, and indicates the presence of, different energy 

dependencies of ( )L EΓ  and ( )R EΓ . 

As a specific example assume that the junction can be modeled as a rectangular 

double barrier, where the molecular site is separated from the leads by barriers of height 

KU  and width KD  (K = L, R). In this case the energy dependence of KΓ  reflects the 

tunneling probability 

  ( ) ( )2
2exp 2 ; ,K K K K

mE A U E D K L R
⎛ ⎞

Γ = − − =⎜ ⎟
⎝ ⎠=

  (57) 

For L RU U=  a different energy dependence of LΓ  and RΓ  arises from different barrier 

widths LD  and RD , i.e. from asymmetric positioning of the molecule (or the molecular 

level) between the two leads. Figure 17 shows a specific example of this phenomenon. 

0.0 0.1 0.2 0.3 0.4 0.5

DL/(DL+DR)

0.6

0.7

0.8

0.9

1.0

ra
tio

of
|d

2 I in
el

./d
sd

2 |
at

=
+

0
an

d
-

0

 
Figure 17.Asymmetry in a model calculation of IETS intensities: The ratio between 

2 2/ sdd I dΦ  evaluated at 0sd ωΦ = +  and 0sd ωΦ = −  is plotted against the positional 

asymmetry ( )L L RD D D+  using the model (57) with the parameters 0 0.1ω = eV, 

0 1ε = eV, EF=0, M=0.3eV, 0.001phγ = eV. (From Ref. [348]). 
 

5f. The origin of dips in IETS signals 

At the threshold for inelastic tunneling, 0sde ωΦ = = , an inelastic transmission channel 

opens up showing as a step in conductance. It is natural to expect that this step will be 
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positive, showing as a peak in the conduction derivative 2 2/ sdd I dΦ . While this is 

quite common, dips in the IETS signal have been observed,[324, 326, 39, 349, 350] as 

well as more complex features,[34] as shown in Figures 6-9. A common explanation, 

first advanced by Davis[351] and later elaborated on by many workers[352, 338, 353, 

231-233, 235, 165, 354, 161, 240] attributes this observation to renormalization of 

elastic channel upon opening of the additional inelastic one. As a simple demonstration 

consider the single level-single vibration bridge model connecting two free electron 

reservoirs L and R. The non-equilibrium GF formalism in the Born and the non-crossing 

approximations leads to the following result for the current up to second order in the 

electron-phonon interaction19 

 (0)(2) (2)
elI I Iδ= +        (58) 

 ( ) ( ) ( )(0)
0

2
2 L Rel

e dEI T E f E f E
π

= −⎡ ⎤⎣ ⎦∫=     (59) 

( )
( )

( )
( )

( ) ( ) ( ) ( ) ( )

(2) (2)(2)

2

0 0
2 1

2 2

el inel

ph
L R

L R

I I I

E Ee dE T E T E f E f E
E E E

δ δ δ

π

= +

⎧ ⎫Γ Γ⎪ ⎪= − −⎡ ⎤⎨ ⎬⎣ ⎦Γ Γ Γ⎪ ⎪⎩ ⎭
∫=

(60) 

In Eqs. (58)-(60) ( ) ( ) ( ) ( ) ( )0 0 0
r a

L RT E E G E E G E= Γ Γ  is the elastic transmission 

coefficient, ( ) ( )*
0 0
r aG E G E=  ( ) 1

0 ( ) / 2E i Eε −= − + Γ� , 0ε�  is the resonance level energy 

shifted by the real part of the electron self energy and ( ) ( ) ( )L RE E EΓ = Γ + Γ  is 

obtained from the imaginary part of the same self energy.  ( )ph EΓ  is twice the 

imaginary part of the phonon contribution to the electron self energy, which on the 

SCBA level takes the form 

( ) ( )

( ) ( ) ( ) ( ) ( )( ){
( ) ( ) ( ) ( ) ( )( )}

2

0 2

1 1

1

ph ph

eq el el

eq el el

dE M

N n E E n E E

N n E E n E E

ω ρ ω
π

ω ω ρ ω ω ρ ω

ω ω ρ ω ω ρ ω

∞

Γ =

⎡ ⎤ ⎡ ⎤× + − − − + + +⎣ ⎦⎣ ⎦

⎡ ⎤+ − + + + − −⎣ ⎦

∫

 (61) 

where ( )el Eρ  and ( )n E  are respectively the electronic density of states associated 

with the resonance level and the steady state occupation of this level. In lowest order 

they are given by 

                                                 
19 These relatively simple fiorms are obtained under the simplifying assumption ( ) ( )R LE c EΓ = Γ , 
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( ) ( ) ( ) ( )
( ) ( ) ( )

2
0 0
r

el
L R

E
E E G E T E

E E
ρ

Γ
= Γ =

Γ Γ
   (62) 

( ) ( )
( ) ( ) ( )

( ) ( )L R
L R

E E
n E f E f E

E E
Γ Γ

= +
Γ Γ

    (63) 

and ( ) ( ) 1exp / 1eq B KN k Tω ω −
⎡ ⎤= −⎣ ⎦  is the phonon thermal population. Note that the 

second order correction (2)Iδ  contains the inelastic current as well as the additional 

elastic contribution that can be identified as arising from interference between the zero 

order elastic amplitude and the second order amplitude of the process in which a phonon 

quantum was created and destroyed. For small bias and low temperature, and when the 

resonance energy 0ε�  is far from the Fermi window, the integrand in (60) apart from the 

Fermi functions depends weakly on energy. Approximating in (61) 

( ) ( )02phρ ω πδ ω ω≈ − , ( ) ( )0el el FE Eρ ω ρ± ≈ , ( ) ( )0K K FE EωΓ ± ≈ Γ , 

( )0 0eqN ω =  and ( ) ( )K Kf E Eθ μ≈ − , leads to ( ) 2
ph E MΓ = ×  

( ) ( ){ ( ) ( ) }0 0 0 0L L L R R RE E E Eξ θ ω μ θ μ ω ξ θ ω μ θ μ ω⎡ ⎤ ⎡ ⎤− − + − − + − − + − −⎣ ⎦ ⎣ ⎦ ,where 

( ) ( ), ,K K F FE E K L Rξ = Γ Γ = . Substituting this this into (60) then leads to 
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⎧ ⎫Γ⎪ ⎪= −⎨ ⎬Γ Γ Γ Γ⎪ ⎪⎩ ⎭

× Φ Φ − − −Φ Φ −

=  (64) 

Since ( )0 1FT E �  in this off resonance situation this current correction is positive. On 

the other hand, when the resonance level is inside the Fermi window the dominant 

contribution to (60) comes from the neighborhood 0ε� . If Γ is not too large the sign of 

(2)Iδ  is then determined by the sign of 
( )

( ) ( ) ( )
2

0
0 0

0 0
1

2 L R
T

ε
ε

ε ε
Γ

−
Γ Γ

�
�

� �
 and because 

( )0 0T ε�  is of order 1, it can be negative. It is seen that inelastic threshold dips are 

expected near resonance tunneling. 

An alternative explanation of inelastic threshold dips, pertaining to situations 

encountered in point contact spectroscopy, has been given by Agraït et al[355] and Smit 

et al.[39] following Refs. [356] and [357]. Point contact spectroscopy is inelastic 

electron tunneling spectroscopy carried in open channel situations where the elastic 

                                                                                                                                               
with c a constant independent of E. 
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transmission probability (per channel) is close to 1, independent of energy (i.e. voltage). 

Obviously, when the electron is transmitted with probability 1 the effect of inelastic 

interactions can only be reduction of current beyond the inelastic threshold, as indeed 

observed. The elegant argument provided by the above papers relies on the assumption 

that when the transmission probability is unity the electronic distribution in the leads at 

energies within the Fermi window is such that only forward moving electronic states are 

populated. In other word, it is assumed that thermal relaxation within the leads is not 

fast enough to relax the biased distribution formed at the contact region. (In contrast, 

development that leads to Eq. (58) relies on the assumption that the leads are in thermal 

equilibrium). Beyond the inelastic threshold, an electron that loses energy ω=  to a 

phonon must end up in a backward going state (since all the forward states are 

occupied), leading to current reduction. 

It is interesting to note that while the two proposed mechanisms for current 

reduction appear to be based on different physical models, they lead to similar 

qualitative predictions under similar conditions (large transmission) and can not 

therefore be unambiguously confirmed by available experimental results. It should also 

be kept in mind that observed vibrational features in MTJ conduction can result from 

more complex situations. A very recent observation of spikes in the conductance 

( /dI dΦ ) spectrum at the threshold for vibrational excitation in Pt-CO-Pt and Pt-H2-Pt 

junctions[358] was interpreted by the authors in this spirit as due to vibrationally 

induced transitions between two molecular configurations in the junction.  

 

5g. Computational approaches 

The wealth of data obtained from IETS experiments has been a strong motivating force 

for numerical calculations aimed at interpreting and predicting the observed spectra. In 

general, such spectra reflect the effects of several factors, including the vibration of the 

bare molecule, the bonding between the molecule and the metallic surfaces, the overall 

junction structure and symmetry, the electron-phonon interaction and the non-

equilibrium nature of the transport process. Anticipating that non-equilibrium effects are 

small in the low bias conditions used in IETS, many workers[359] [159, 359, 360] have 

focused on evaluating equilibrium vibrational spectra of molecules adsorbed on metal 

surfaces or on metallic clusters. Such studies can be compared with IETS data or with 

other methods of surface vibrational spectroscopy such as surface Raman 
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spectroscopy[361] or high resolution electron energy loss spectroscopy 

(HREELS).[362-364]  

 In these and most other studies described below, the main tool for electronic 

structure calculations is density functional theory (DFT). The applicability of DFT for 

transport problems is questionable,[365-367] however it is the only first-principle 

technique available today to general practitioners that is capable of dealing with large 

organic molecules often used as molecular wires. 

 Going beyond equilibrium cluster and surface calculations, the simplest way to 

account for the electron-phonon interaction and its dynamical implications is to cast the 

calculation within the framework of scattering theory. This has been done either using 

the Tersoff-Hamann approach,[93, 94] which has been developed for tunneling in STM 

configurations, or using extensions of the Landauer methodology.[196, 197] Such 

approaches to transport are single-particle in nature, and disregard many-body effects 

(important even for non-interacting electrons because of their fermion nature) in the 

transport process.  

In the Tersoff-Hamann approach,[93, 94] which is applicable to STM 

configurations, the signal is dominated by the phonon-modified local density of states 

(DOS) at the tip position  and by the occupation of the tip and substrate electronic 

states. Early applications[338] of this approach to inelastic tunneling have used 

phenomenological models with parameters fitted to experimental data.[324] First 

principles calculations based on this approach (with the required DOS obtained within a 

NEGF-DFT framework) were carried by Lorente, Persson and coworkers[230, 158, 

164] and used to interpret experimental data of Ho and coworkers.[368, 369, 325, 361] 

In particular, Ref. [158] represents a first attempt to formulate propensity rules for 

inelastic tunneling spectra. 

In a generalized  Landauer theory one considers the generalization to inelastic 

scattering of 1-particle transmission probability through the junction. The current is 

related to this transmission probability weighted by the electronic state population 

(Fermi function f and its complement 1 f− ) of the source and drain leads, Eq. (54). 

Electron-phonon interactions can be taken into account exactly in such approach, as is 

done in the multi-channel mapping method.[204, 342] Interesting attempts to generalize 

this approach so as to take into account Pauli exclusion of transmission/reflection events 

into the same state were made, and a corresponding self-consistent procedure was 
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proposed,[370] still the approach is essentially a one-particle picture in which scattering 

channels are considered independent of each other.  

Other scattering-type calculations[156, 213] [162, 163, 167, 43, 41, 155, 44, 45] 

use perturbation expansions in the electron-phonon interaction about the Landauer 

theory for elastic transmission. In contrast to the multi-channel mapping method this is a 

low order calculation, however good agreement with experiment is reported for off 

resonance inelastic tunneling properties of various molecular bridges. Two general 

observations of these calculations are the high sensitivity of the computed spectra to the 

structure of the molecular bridge[156, 163, 371] and the significance of modes with 

large longitudinal component, i.e. motion along the tunneling direction.[156, 213, 371] 

In particular, Chen et al,[213] studying inelastic tunneling in alkanethiols, have found 

an interesting alternating behavior with chain length, in agreement with HREELS 

data[364] that is due to the alternating direction of the CH3 group motion with respect to 

the tunneling direction. Jiang et al[163] have explained the difference between 

experimental inelastic tunneling spectra of alkanethiols in Refs.[34, 35] by different 

molecular conformations, postulating linear[34] and twisted[35] molecular backbone 

structures. Propensity rules for the importance of vibrational modes in the inelastic 

signal were recently formulated by Troisi and Ratner.[44, 45] Again the importance of 

modes with large component in the tunneling direction is emphasized, so for a linear 

chain with one orbital per atom only totally symmetric modes contribute to IETS signal. 

For molecules with side chains any normal mode dominated by side-chain motion will 

contribute only weakly to IETS. The authors employ group theory to identify the main 

normal modes for planar conjugated molecules with C2h symmetry. This concept 

appears to be useful in spite of its application to the isolated molecules, which 

disregards the contact effects on the electronic structure and the molecular symmetry. 

On the other hand the mechanism observed by Grobis et al[162] in STM studies of 

Cd@C82 on Ag(001) associates the observed feature at 52mev with a cage vibration that 

affects the localization length of the electronic wavefunction, stressing the point that 

modes that affect electron localization will be important in IETS irrespective of the 

spatial extent of the mode itself. 

A significant point regarding this approach to computational IETS is the fact that 

perturbative scattering theory based approximation provides a useful and practical tool 

for non-resonant inelastic tunneling in spite of the weakness of its theoretical foundation 

(see Section 5d). As a case in point we focus on the Troisi-Ratner approach,[41, 155, 
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44, 45] (see also Ref. [248]). The starting point is the Landauer expression for the 

elastic conductance 

†
0( ) Tr ( ) ( ) ( ) ( )el L r R r

F F F F Fg E g E G E E G E⎡ ⎤= Γ Γ⎣ ⎦   (65) 

with 2
0 /g e π= = . Connection to IETS spectra is made by evaluating the dependence of 

the GFs in (65) on the nuclear configuration and using the lowest order expansion of 

these in the normal mode coordinates, 
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      (66) 

The electronic and vibrational structure needed as input are obtained from Hartree-

Fock[155] or DFT[41, 44] calculations. The resulting IETS spectrum ( 2 2d I dΦ plotted 

against Φ) consists of a series of peaks, whose position is determined from e αωΦ = =  

and their intensity is given by 

 ( ) ( ) ( ) ( )†
0Tr L F F L F FW g E G E E G Eα α

α
⎡ ⎤= Γ Γ
⎣ ⎦

   (67) 

The individual peak intensities and positions are obtained directly. The lineshape, 

however, cannot be obtained from this low order calculation and needs to be fitted. It 

should be emphasized that these results are valid only in the Landauer-Imry regime, far 

from the electronic resonance.  In particular, when electronic resonances are 

approached, Eq. (67) is no longer valid and other effects such as strong vibronic 

coupling can dominate the I/Φ characteristic. 

Actual calculations can be done for particular bridge models.  The simplest 

model assigns only molecular modes to the primary set, but more extended analysis can 

be done.[45] One first optimizes the structure and does vibrational analysis on the 

isolated molecule; this includes the evaluation of the coupling elements (66).  This 

optimized structure and normal modes can be translated directly into the geometry of 

the junction after choosing the molecular orientational placement. This approach 

provides a simple computational tool for non-resonant inelastic tunneling that was 

successfully applied to several organic molecules. Because the expansion in Eq. (66) is 

in normal modes, contributions to the IETS spectrum can be classified according to the 

point groups of the molecular entity within the junction. Because the expression for 

IETS can be written as a pathway sum, it is clear that particular pathways will make 

larger contribution to the overall sum than will others. The combination of the pathway 

aspect and the symmetry aspect leads to a set of propensity rules – these are analogous 
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to the symmetry selection rules seen in vibrational spectroscopy (Raman, infrared), but 

are based not on the symmetry of the radiation/matter interaction, but rather on global 

and local symmetries and on dominance of certain pathways. These rules are developed 

and discussed elsewhere.[44] They are important because they can help lead to 

understanding both the pathways along which electrons travel within the molecule, and 

the possible geometries of the molecule within the junction. 

 

Figure 18.  IETS spectrum of phenyleneethynylene trimer.  The computations and 
experiment[35] agree nicely with respect to position and strength of the various IETS peaks, 
that can be assigned to specific normal coordinates.  Line shapes are more complicated, and 
require more sophisticated theory.  From reference [41]. 
 

Figure 18 demonstrates the accuracy of these calculations – the trimer of 

phenyleneethynylene has been measured using IETS. The figure compares experimental 

and computational results. The linewidths in the computation are arbitrary, but the 

intensities (the area under each curve) and the positions come directly out of the DFT 

calculation. Note that the higher frequency regime (above 400 cm-1) is dominated by 

totally symmetric )a( g1  modes. Only in the low frequency regime do modes others than 

g1a  appear with real intensities, as indeed follows from the propensity rules. 

The calculation appears to be quite accurate for describing IET spectra. This 

accuracy makes this spectroscopy, in combination with theory, a useful diagnostic tool.  

Observing the molecular signal in the IETS spectrum indicates the molecular 

involvement in the tunneling process. Of greater utility, probably, is the geometrical 

information. Figure 19 shows calculations on pentane dithiol, once again using DFT 

methods (B3LYP, dzp basis).  The comparison between calculations and experiment 

demonstrates that the alkane dithiol is not aligned perpendicular to the electrodes, but 
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rather at an angle of roughly 50 degrees.  This information is consistent with what is 

generally believed about alkane thiols in many situations, but constitutes an 

experimental observation whose computational explanation provides information on the 

in-junction geometry that is very difficult to obtain in any other way. 

d2I/dV2

cm-1
 

Figure 19.  Use of IETS to describe geometry.  The red curves are calculated at different tilting 
angles in the plane.  It is clear that the experimental spectrum[35] (black trace) best fits the top 
computed spectrum, corresponding to a tilt angle of 40° (the lower ones are for 30°, 20°,10° and 
0° respectively).  From Troisi and Ratner Phys Chem. Chem. Phys, submitted for publication. 
 
 
 

O
HS

 

Figure 20.  Alkyl naphthylthiol ether molecule. Its experimental IETS study combined with 
theoretical analysis, demonstrate clearly the nature of the tunneling pathways. J. Kushmerick 
et.al to be submitted. 
 

From the point of view of chemical transport mechanism, new work on actual 

pathways is perhaps the most interesting. The naphthalene chromophore in Fig. 20 is 

linked to a thiol on one end, and an alkyl ether on the other. By comparison of the 

measured IETS spectrum of this molecule with the computed one, it is possible to 

examine the relative intensities of the different vibrational normal modes, thereby to 

deduce the pathway for transport. We find that the electrons are injected through the 

terminal methyl group, tunnel through the sigma bridge to the etheric linkage, mix with 

the pi electrons, pi tunnel through the aromatic, and switch back to the sigma tunneling, 

through the thiol and out onto the counter electrode.  This pathways information is more 

detailed than has been obtained for other important applications of pathways concepts, 
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such as motion through proteins and peptides, and constitutes (we believe) a sweet 

application of vibronic coupling theory associated with molecular transport. 

 Putting computational simplicity aside, the most sophisticated ab-initio approach 

used today for inelastic tunneling spectroscopy is based on the combination of 

electronic structure calculations using DFT (or its tight-binding based variation, TFTB) 

and evaluation of transport properties using the NEGF framework.[165, 236-238, 161, 

166, 240, 303-305] While the theoretical framework is general, current applications to 

IETS do not allow for charge transfer to/from the molecule, and the non-equilibrium 

character is introduced as potential boundary conditions. The effects of electron-phonon 

coupling are usually treated at the BA or the SCBA level. Again, correlation between 

inelastic signal intensity and mode motion in the tunneling direction is reported[165, 

305] although Solomon et al[238] also point out an interesting correlation with modes 

that reflect motion in regions where the electron density is high in the low bias limit. 

Generally good agreement with experiment is found. Thus, Frederiksen et al [165] 

report quantitative agreement between their calculation of the IETS signal for atomic 

gold wires and experimental results.[355] Another interesting result of this calculation is 

the decrease in conductance with increase in the inelastic signal and softening of the 

inelastic mode resulting from straining the wire.  Similarly, using DFT based tight-

binding approach to electronic structure, Pecchia et al [237] report reasonable 

agreement between their calculations on Au-octanethiolate-Au junction IETS results of 

Ref. [34], while calculations of Mehl and Papaconstantopoulos[304, 305] on atomic 

gold chains compare well with the experimental results of Agrait and coworkers.[350] 

Finally, Paulsson et al[161, 166] have proposed a computationally inexpensive scheme 

based on the lowest order expansion in the electron-vibration coupling within a SCBA 

calculation. This simplification, valid for weak electron-vibration coupling and slow 

variation of the leads DOS in a range of a few vibrational frequencies around the Fermi 

energy, was used to calculate IETS spectra of gold wires as well as H2 molecular 

junction. With one fitting parameter good agreement is obtained with the experimental 

results of Refs. [350] for gold wires, [39] [349] for H2 junctions and [35] for several 

organic bridges. A similar approach (expanding the Born approximation rather than 

SCBA expressions) was used in Ref. [240]. 

 

  

 



 63

6. Effects of electron-electron (e-e) interactions 

Our discussion of electron-phonon interactions in molecular junctions has disregarded 

so far e-e interactions. Such interactions are the source of Coulomb blockade 

phenomena, where transport through a bridge that is coupled weakly to the contacts can 

be blocked due to the needed charging energy, or in the Kondo effect where strong 

correlation between bridge and contact electrons leads to formation of a tunneling 

channel in the zero-bias region. The rational for disregarding such interactions in much 

of the molecular electronics literature is that the small molecular size makes charging by 

more than one electron energetically too costly, and that the Pauli principle is enough to 

take care of restrictions relevant to single electron transport. However, recent work from 

several groups[311, 83, 372, 84, 373, 28, 330, 244, 87, 86, 374, 88] has observed 

Coulomb blockade (CB), Kondo effect or both in molecular junctions. These are often 

accompanied by vibrational features that indicate effects of electron-vibration coupling. 

Such features may correspond to the center-of-mass motion of the bridge[310] or to 

intramolecular vibrations.[372, 84, 373, 330, 244] Furthermore, electron-phonon 

interaction may cause the effective e-e interaction to become attractive, with interesting 

consequences. [251, 252, 375, 376, 278]  

Early theoretical approaches to transport in the CB regime were based either on 

linear response theory carried near equilibrium[377-379, 271, 272] or on treating 

transport at the level of quasiclassical rate equations.[380-389]. These approaches are 

valid close to equilibrium and/or for weak molecule-lead coupling at relatively high 

temperatures. Stronger molecule-leads coupling relevant (for example) to the 

observation of nonequilibrium Kondo resonance should be treated at a more 

sophisticated level. Recent approaches to this problem are based on the slave-boson 

technique,[390-395] on the equation-of-motion method,[394, 396-401] or on 

perturbation theory on the Keldysh contour.[402-412]  

Such studies are usually carried in the framework of a Hubbard-type 

Hamiltonian. A model of this type, generalized to include phonons and electron-phonon 

interaction can be described by the Hamiltonian  

( )

† †† †
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Eq. (68) is written for a bridge characterized by one electronic level coupled to a single 

primary phonon. Here ,σ =↑ ↓  is the electron spin index, ( )†ˆ ˆ, kkc c σσ  and ( )†ˆ ˆ,d dσ σ  

create (destroy) electrons in the leads and the molecular level, respectively, †ˆ ˆ,a a  and 

†ˆ ˆ ˆQ a a= +  are operators for the molecular vibration while †ˆ ˆ,b bββ  and †ˆ ˆQ̂ b bβ ββ= +  are 

similar operators for the bosonic thermal bath. †ˆ ˆn̂ d dσ σ σ=  is the electron number 

operator on the molecular bridge for spin σ. The parameters M and U characterize 

respectively the electron-phonon and electron-electron interactions on the bridge while 

Uβ represents the interaction between bridge and environmental phonons. A small 

polaron (Lang-Firsov) transformation identical to that used to obtain (39) now leads to 

( )

† †† †
0 0
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†
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where  

 2
0 0 0/Mσ σε ε ω= −        (70) 

 2
02 /U U M ω= −        (71) 

 ˆ
k kV V Xσ σ=         (72) 

and where X̂  is the phonon shift generator (41) that now takes the form 

( )†

0

ˆ ˆ ˆexp MX a a
ω

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
      (73) 

In addition to renormalization of parameters discussed in Sect. 5c, the electron-phonon 

interaction is seen, Eq. (71), to induce an effective attractive interaction between 

electrons. Although no conclusive observations of this effect in molecular transport 

junctions have been so far reported, this bi-polaronic attraction can potentially change 

the physics of the transmission process[251, 252, 375, 376, 278]. 

 Vibrational features of single electron transistors were considered within this or 

similar models, using approximations based on either near-equilibrium 

considerations[252, 271, 272, 413] or master equation approaches. [274, 414, 276, 415, 

136] Alexandrov and Bratkovsky [252] use exact results for the isolated molecule in an 

expression for the current obtained by coupling it to the leads. Cornaglia and 

coworkers[271, 272] use numerical renormalization group to describe the linear 

response regime of junction conductance, while Al-Hassanieh et al[413] use exact 
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diagonalization supplemented by a Dyson equation embedding procedure to study the 

influence of center-of-mass motion on linear conductance of the junction. Braig and 

Flensberg[274, 414] use a quasiclassical master equation approach to study the U → ∞  

limit of Coulomb blockade in the presence of equilibrium vibrations.  Similar 

approaches were used by Koch and von Oppen[276] to predict a significant current 

suppression (Franck-Condon blockade) at low bias and large noise enhancement at 

higher bias due to strong electron-phonon coupling, and to study vibrational 

heating[188] and anharmonic effects,[277] in model molecular junctions, by Siddiqui et 

al[415] to discuss similar effects in nanotube quantum dots and by Armour and 

MacKinnon[136] to study the effect of quantized vibrational mode (center-of-mass 

motion) on electron tunneling within Coulomb blockade regime. Finally, a more 

advanced approach was recently proposed in Ref. [273] to study vibrational sidebands 

of the Kondo resonance. The authors use a perturbative renormalization group (in the 

limit of weak electron-vibration coupling) to study an STM-like situation, where the 

molecular level is in equilibrium with the substrate side of the junction. 

We[195] have recently extended the equilibrium equation-of-motion approach 

used in Refs. [378] and [416] to the case of nonequilibrium transport, and have used an 

approximate scheme akin to the Born-Oppenheimer approximation to further generalize 

it to the presence of electron-phonon interactions. This leads to a generalization of the 

computational scheme discussed in Section 5c[255] to the model (68). This approach is 

capable of grasping the main vibrational features observed in Coulomb blockade 

transport situations in molecular junctions. Inelastic resonant cotunneling peaks appear 

in the conductance plot (left panel of Figure 21) as satellites parallel to the diamond 

boundaries, and inelastic non-resonant cotunneling peaks are better seen in the 
2 2/d I dΦ  plot (right panel of Figure 21) as horizontal features in the blockaded regions 

of the plot. It can also reproduce inelastic satellites of the Kondo peak in the limit of 

small population fluctuations when the Kondo effect is due mainly to spin 

fluctuations.[195]  
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Figure 21. A countour map of the differential conductance, / sddI dΦ  (left) and the 

conductance derivative, 2 2/d I dΦ ,  plotted in the sd gΦ − Φ  plane for the model (68) 

characterized by the parameters T=10K, 0 0.3σε = eV, (0) 0.01KΓ = eV, U = 2.6eV, EF = 0, 

0 0.2ω = eV, M=0.4eV and 0.01phγ = eV. Non-resonance (IETS) features are seen in the 

conductance derivative map (right) in the non conducting regions of this diamond diagram. 

 

 

7. Noise 

In addition to the current-voltage characteristics, noise in the current signal provides an 

important source of additional information on junction transport properties.[289] 

Inelastic effects in the noise spectrum were studied recently, first in connection with 

nanoelectromechanical systems (NEMS).[290, 275, 291-294] Several works use the 

scattering theory approach[297-300] and a recent work utilizes the NEGF 

methodology.[250] Here we discuss several important aspects of this issue following on 

our recent NEGF-based analysis[301] and focusing on inelastic effects on the zero 

frequency noise in the tunneling current. 

  Standard analysis of current noise usually considers its spectrum, defined as the 

Fourier transform of the current correlation function 

( ) ( )2 i tS dtS t e ωω
∞

−∞

= ∫       (74) 

( ) ( ) ( ) ( ) ( )1 ˆ ˆ ˆ ˆ0 0
2

S t I t I I I t= Δ Δ + Δ Δ     (75) 

where 
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 ( ) ( )ˆ ˆ ˆI t I t IΔ = −        (76) 

While at steady state the average current Î  does not depend on position along the 

wire, more care is needed when time dependent fluctuations are considered. Following 

Ref. [417] we write 

 ( ) ( ) ( )ˆ ˆ ˆ
L L R RI t I t I tη η= +       (77) 

where 

 ( ) ( ) ( ) ( ) ( )( )† †

;

2 ˆ ˆˆ ˆ ˆK ki k i ik i k
k K i
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and 

 ;R L
L R

C C
C C

η η= = −          L RC C C= +     (79) 

where CL and CR are junction capacitance parameters that describe the response to 

charge accumulation at the corresponding bridge-lead interfaces. Other important 

parameters are the voltage division factor δ that describes the way in which the bias 

voltage Φ  is distributed between the two molecule-lead interfaces 

 L F F LE e E eμ δ= + Φ ≡ + Φ       (80a) 

 ( )1R F F RE e E eμ δ= − − Φ ≡ + Φ      (80b) 

and the asymmetry in the leads-molecule couplings defined by 

 Lα
Γ

=
Γ

             1 Rα
Γ

− =
Γ

      (81) 

Here the wide band approximation is invoked by disregarding the energy dependence of 

the latter parameters. Equivalent circuit arguments[301] suggest the following 

relationship between these parameters 

  1 1
1

α δ η
α δ η

− −
=

−
       (82) 

This leaves two undetermined parameters in the theory. In what follows these will be 

represented by /Lα = Γ Γ and /L LC Cη η= = . 

Within the NEGF formalism and the non-crossing approximation with respect to 

coupling to the leads, the noise spectrum is obtained in the form[301] 
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where we use the notation 
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An essentially equivalent result was obtained by Bo and Galperin[418]. We restrict our 

discussion to the zero frequency noise which is the relevant observable when the 

measurement time is long relative to the electron transfer time, a common situation in 

usual experimental setups. The results presented below correspond to a bridge 

characterized by one electronic level coupled to a single (primary) vibrational mode. In 

the absence of electron phonon interaction it can be shown that (83) simplifies to a sum 

of a thermal contribution due to thermal excitations in the contacts and a shot noise term 

associated with the discrete nature of the electron transport.[289] Also, in this ballistic 

transport process the zero-frequency noise does not depend on the junction capacitance 

factors ηK. Fig. 22 shows the results obtained from (83) with 0ω = . The shape of the 

noise characteristic as a function of applied source-drain voltage depends on asymmetry 

parameter α , and changes from a double-peak structure for symmetric coupling to 

single-peak shape for a highly asymmetric junction. Specifically, the condition for 

double-peak structure is found[301] to be 

 2 1 0
8

α α− + <        (85) 

and the asymmetry in this structure results from the thermal noise contribution. The 

difference between peak heights can be shown to be of order ~ /T Γ . 
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Figure 22. (Fig. 1 of Ref. [301]) Conductance and differential noise vs. applied source-drain 
voltage in the elastic transmission case. Shown are the conductance  / sddI dΦ  (dotted and 

dash-dotted lines) and the differential noise ( )0 / sddS dω = Φ  (solid and dashed lines) for 

0.5α =  and 0.1α =  respectively. Other parameters of the calculation are (0) 0.04Γ = eV, 

0 2ε = eV, T=10K. 

 

To account for phonon effects on the noise spectrum we consider Eq. (83) in the 

0ω =  limit. The GFs and SEs that appear in this expression are evaluated for the one 

bridge state/ one bridge oscillator version of the model (5)-(8), using the weak[235] or 

strong[255] coupling procedures described in Sections 5b,c. It is found that the noise 

spectrum can no longer be cast in terms of additive thermal and shot noise 

contributions, and that its character depends strongly on the electron-phonon interaction 

in addition to the junction parameters α and η. Some examples are shown in Figures 23-

25. Figs. 23 and 24 show the current I, the zero frequency noise S and the Fano factor 

/S I , normalized by their counterparts in the absence of electron-phonon coupling (I0, 

S0 and F0) and plotted against the applied voltage. These results belong to the weak 

coupling case ( M < Γ ), however Fig. 23 corresponds to the off resonance situation 

( 0E ε− > Γ , where E is the energy of the tunneling electron) while Fig. 24 corresponds 

to the resonant case where the opposite inequality is satisfied. In the off-resonant limit 

the 0/F F  ratio is smaller than 1 for any choice of parameters α and Kη . In contrast, in 

the resonant case, this ratio is greater than 1 and increases with sdΦ  in symmetric 
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junctions with α =0.5, but is smaller than 1 and decreases with sdΦ  in the highly 

asymmetric junctions.  
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Figure 23. Ratios of Fano factors (solid line), zero frequency noises (dotted line), and currents 
(dashed line) with and without electron-vibration coupling, plotted against the applied voltage in 
the off-resonant tunneling regime. Parameters of the calculation are T=10K, 0 5ε = eV, 

0.5Γ = eV, 0.5α = , EF=0, 0 0.1ω = eV, M=0.1eV, 0.01phγ = eV. (From Ref. [301]). 
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Figure 24. Ratios of Fano factors (solid line), zero frequency noises (dotted line), and currents 
(dashed line) with and without electron-vibration coupling, plotted against the applied voltage in 
the resonant tunneling regime. Shown are (a) symmetric 0.5α =  and (b) asymmetric 0.01α =  
coupling cases. Parameters of the calculation are the same as in Figure 23 except 0 0.05ε = eV. 
(From Ref. [301]) 

 

Figure 25 shows an example for the noise characteristic in the strong electron-

vibration coupling case, ( ) ( )2 2
0 2FM E ε> − + Γ  which characterizes many 

resonance tunneling situations. The general shape of the ( )0 / sddS dω = Φ   vs. sdΦ  

spectrum is similar to the conductance-voltage spectrum, with a central elastic feature at 

the energy of the bridging orbital accompanied by phonon sidebands. An important 

difference between the noise and conductance lineshapes is the form of the elastic 

feature, which appears as a single peak in the conductance spectrum. In the differential 

noise spectrum this feature crosses from a double-peak structure to a single-peak shape 

as the coupling M or the coupling asymmetry parameterα  increase. This lineshape 

dependence on junction properties can be used to estimate junction coupling parameters 

from noise spectra.  
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Figure 25. (Fig. 11 of Ref. [301]) Differential noise vs. applied source-drain voltage for a 
junction characterized by the symmetry factor 0.5α = . (a) Surface plot of the differential 
noise, ( )0 / sddS dω = Φ , as function of sdΦ  and M as obtained from a lowest order 
calculation. (b) Differential noise plotted against gate potential for weak ( 0.04M = eV, solid 
line) and strong ( 0.3M = eV, dashed line) electron-vibration coupling, obtained from a self-
consistent calculation using the strong coupling procedure described in Sect. 5c. Other 
parameters of the calculation are T = 10K, EF = 0, 0 2ε = eV, (0) 0.04Γ = eV, 0 0.2ω = eV, 

0.01phγ = eV. 

 
Strong electron-phonon coupling can give rise to noise phenomena that are not 

described by the model presented above. For example, such strong coupling may lead to 

multi-stable behavior that can appear as intermittent noise in the junction current (see 

Section 8). More generally, large amplitude conformational fluctuations, e.g. dynamical 

structural variations that are not described by our harmonic model, may contribute to the 

observed noise. Finally, it has been pointed out[276, 340] that strong electron-phonon 

coupling associated with pronounced Franck-Condon blockade behavior leads to 
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electron transport by avalanches. Such avalanche behavior results from repeated 

sequences of junction heating followed (once the blockade threshold is overcome) by 

transfer of a large number of electrons across the junction, and is manifested by noise 

behavior characterized by very large (102-103) Fano factors.   

     

 

8. Non-linear conductance phenomena 

In section 5c we discussed spectroscopic manifestations of strong electron-phonon 

coupling. Here we address other possible consequences of such strong coupling, where 

charging of the molecular bridge (stabilized by this interaction) can lead to non linear 

transport behavior.  Indeed, ‘stabilization of molecular charging’ may often appear as 

modification of molecular geometry and can therefore give rise to substantial and 

sometimes striking effects of negative differential resistance, multistability and 

hysteresis phenomena. Such structural changes are characteristic of molecular entities, 

and will therefore be of major importance in the ongoing investigation of molecular, as 

opposed to solid state or mesoscopic, transport structures. 

 
 
Figure 26  NDR of a junction based on monolayer of 2’-amino-4-ethynylphenyl-4’-
ethynylphenyl-5’-nitro-1-benzenethiolate embedded between gold wires at 60K. Shown on the 
left is the reported I-Φ characteristic with NDR peak to valley ratio 1030:1. The temperature 
dependence of the current and voltage values at the peak is shown on the right. (From Ref 
[419]). 
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Figure 27. Conducting atomic force spectroscopy measurements of current-voltage 
characteristics (A) for 1-nitro-2,5-di(phenylethynyl-4’-thioacetyl)benzene (red and blue curves) 
and 2,5-di(phenylethynyl-4’-thioacetyl)benzene (black curve) molecules. The first molecule 
exhibits both NDR and wide range of background ohmic currents, distribution of resistances is 
shown by the histogram inset (B). The second molecule shows no NDR-like features and 
resistance in the ohmic region is much more tightly clustered, see inset (C). Distribution of 
NDR peak voltages for the first molecule is shown in inset (D). (From Ref. [420]). 

 

 

 
Figure 28. Typical current-voltage curves of the Pd/molecular wire/Au SAM junctions on  
Si/SiO2 substrate for molecules containing electron-withdrawing nitro or pyridine groups. (From 
Ref. [421]) 
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Figure 29. Current-voltage measurements on individual BPDN molecules by STM with BPDN 
embedded into C11 alkane matrix (a) and cross-wire tunneling junction (c) are presented in Figs. 
(b) and (d) respectively. (From Ref. [74]). 

 

Examples of such behaviors are shown in Figures 26-29. Figures 26[419] and 

27[420] show negative differential resistance, while Figs. 28[421] and 29 [74] show 

hysteresis in different molecular junctions. The molecules involved in these junctions 

are characterized by the presence of redox centers, i.e. centers that support long-living 

excess electron states. Such “redox molecules” have been implicated in several other 

observations of multiple conduction states and non-linear response in molecular 

junctions operating in a polar (aqueous) environment.[422, 247, 129, 423, 424, 80, 425] 

This suggests the possibility of polaron formation on the molecule as a possible factor. 

Indeed, the model (5)-(8) has a positive feedback character: the energy of the resonant 

level shifts by polaron formation that depends on the electronic occupation of that level. 

The latter, in turn, depends on the level energy. 

Ref. [91] is a study of the nature and possible consequences of this feedback 

character on the conduction behavior of such junctions, using the reduced one bridge 

level/ one bridge (primary) oscillator version of the model (5)-(8). This study invokes a 

mean field approximation akin to the Born-Oppenheimer approximation, which is based 

on the assumption that the primary vibrational mode is slow relative to the rate at which 

electrons enter and leave the bridge, i.e. 0ω Γ� . In this case the oscillator responds 

only to the average bridge occupation.[426, 427] The system dynamics is then described 

by the electronic and oscillator Hamiltonians 
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( ) ( )† † † * † †
0

, ,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆel k k k k k k k
k L R k L R

H Q d d c c V c d V d c MQd dε ε
∈ ∈

= + + + +∑ ∑  (86a) 

† †
0 0

ˆ ˆˆ ˆ ˆˆ ˆ ˆoscH a a MQn b b U QQβ β β β β
β β

ω ω= + + +∑ ∑ ;     †
0

ˆ ˆn d d=   (86b) 

 †† ˆˆ ˆˆ ˆ ;Q a a Q b bβ ββ= + = +       (86c) 

The steady-state result for oscillator shift coordinate is obtained from (86b) 

 
( )

0
022

0

2ˆ
/ 2ph

Q Mnω

ω γ
= −

+
      (87) 

( phγ  is the damping rate of the primary oscillator due to its coupling to the phonon 

bath) and is used for Q in Eq. (86a). This leads to an effective purely electronic 

Hamiltonian with level energy that depends on its occupation 

 ( ) ( )† † † * †
0 0

, ,

ˆ ˆˆ ˆ ˆ ˆ ˆ,el k k k k k k k
k L R k L R

H eff n d d c c V c d V d cε ε
∈ ∈

= + + +∑ ∑  (88a) 

 0 0 0 0( ) 2 rn E nε ε= −        (88b) 

Here rE  is the reorganization energy (compare Eq. (15)) 
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ω
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+
       (89) 

Eq. (88) implies that the steady-state solution for the average electronic population in 

the bridge level is given by the equation 

  
[ ] [ ]

0 2 2
0 0

( ) ( )
2 ( ) / 2

L L R Rf E f EdEn
E nπ ε

∞

∞

Γ + Γ
=

− + Γ
∫ ;   L RΓ = Γ + Γ    (90) 

whose non-linear form allows for multiple solution and multistability properties. Similar 

models were recently discussed by several authors.[257, 270, 269, 92] The dynamical 

consequences of this multistability are still under discussion. Whether they can lead to 

hysteresis behavior and memory effect as suggested in [91] or to intermittent noise 

associated with transitions between two locally stable states as discussed in [270, 92] is 

an issue of relative timescales – the observation time vs. the rate of transitions between 

locally stable states. An interesting possibility that such a mechanism can be the cause 

of observed negative differential conduction phenomena has also been pointed out,[91] 

and may again depend on relative timescales.[90] On the other hand, a recent 

experimental study of hysteretic conductance in gated molecular junctions based on the 

redox molecule bipyridyl-dinitro oligophenylene-ethynylene dithiols (BPDN-DT)[86] 
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indicates that the observed behavior is not sensitive to the gate potential (in contrast to 

the ε0 dependence in (90)), suggesting that at least in this system the actual mechanism 

may go beyond the simple picture described above. 

 
 

9. Heating and heat conduction 

Localized Joule heating poses a crucial question for the functionality and reliability of 

molecular devices. The combination of small molecular heat capacity and inefficient 

heat transfer away from it might cause a large temperature increase that would affect the 

stability and integrity of molecular junctions. The rates at which heat is deposited in and 

transported away from the conducting junction are therefore crucial to the successful 

realization of nano electronic devices.  

 

9a. General considerations 

In insulators heat is conducted by atomic vibrations, while in metals electrons are the 

dominant carriers. For a molecular system connecting between two metal electrodes 

both carrier types exist and mutually interact. A unified description of their 

dynamics[133] starts again from the Hamiltonian (5)-(8), focusing now on the problems 

of heat generation and transport. A general framework for discussing these issues is 

again provided by the non-equilibrium Green function (NEGF) formalism, pioneered 

for this application by Datta and coworkers[191, 192] and further advanced recently by 

several groups. [193-195] Fluxes in this formalism are expressed in terms of the 

Keldysh Green functions (GFs) for electrons and phonons 

 ( ) †ˆ ˆ, ' ( ) ( ')ij c i jG i T d dτ τ τ τ= −      (91) 

 ( ) †
' '

ˆ ˆ, ' ( ) ( ')cD i T Q Qαα α ατ τ τ τ= −      (92)  

(and by their real time projections, , , ,a rG G G G> < , and same for D) and by the 

corresponding self energies (SEs). At steady state the net electronic fluxes into the 

junction at each contact, ,K L R= , are given by 

( )1
2K K
dEI i E
π

+∞

−∞

= ∫=    ;     ( ) ( ) ( )in out
K K Ki E i E i E= −    (93)  

where 
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⎡ ⎤= Σ⎣ ⎦
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      (94) 

and where ,
K
> <Σ , ,K L R= , given by Eqs. (28)-(29), are the greater and lesser self 

energy matrices in the space of the bridge electronic subsystem associated with its 

electron transfer coupling to the metal electrodes. The corresponding electronic energy 

fluxes into the junction at each contact are 

 ( ), 2
el
E K K

dEJ E i E
π

+∞

−∞

= ∫       (95) 

In the absence of particle and energy sources and sinks L RI I= −  and , ,
el el
E L E RJ J= − . In 

the presence of electron-phonon interactions in the junction, the primary phonons 

effectively enter as source/sink to the electronic energy balance. The rate of energy 

transfer between the electron and phonon subsystem on the molecular bridge is 

therefore given by  

, ,
el el el

E E L E RJ J JΔ = +         (96) 

(a positive el
EJΔ  indicates energy transfer from electrons to phonons). It is usually 

assumed that this energy appears as heat in the phonon subsystem, and Eq. (96) 

provides a starting point for the discussion of heat generation on the junction.20  

 Next consider heat conduction. While our main concern is the conduction of 

heat out of the junction, a standard heat conduction problem focuses on the heat carried 

by a system connecting two thermal reservoirs at different temperatures. The heat 

carried by the electronic current through the interface K is given by[150] 

 ( ) ( ), 2
el
Q K K K

dEJ E i Eμ
π

+∞

−∞

= − −∫      (97) 

In a biased junction this represents mostly Joule heating in the leads. For a molecular 

bridge connecting two reservoirs at different temperatures and without potential bias 

this is the heat carried by the thermoelectric (Seebeck) current. The latter contribution to 

the heat conduction in unbiased junctions is usually much smaller than that due to 

phonons. 

                                                 
20 In the absence of coupling to phonons on the bridge heat is generated only in the leads. (One still 
assumes the existence of a dissipation mechanism that keeps the leads in their corresponding equilibrium 
states). The heat generation rate in the lead ,K L R=  by the electronic current, is given by Eq. (97).  
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 Consider now the phononic heat transport.21 A general quantum expression for 

the phonon thermal flux within the NEGF formalism can be obtained for the model 

represented by Eqs. (5), (6) and (8)22 [193-195] The energy/heat flux from the phonon 

thermal bath K into the junction is given by  

( ) ( ) ( ) ( ), ,

0

Tr
2

ph ph ph
K K K

dJ D Dω ω ω ω ω ω
π

∞
< >> <⎡ ⎤= − Π − Π⎣ ⎦∫   (98) 

where Tr stands for summing over all the bridge (primary) vibrations, ,ph
K

>Π  and ,ph
K

<Π  

are the greater and lesser self energy matrices of these vibrations due to their coupling 

to the bath 
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    (99) 

where 
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and  

( ) ( ) ( ) 1, exp / 1K eq K B KN N T k Tω ω ω −
= ≡ −⎡ ⎤⎣ ⎦     (101) 

is the Bose-Einstein distribution in the contact K . A simpler expression can be obtained 

from (98) for the harmonic bridge model (7) in the case where the electron-phonon 

interaction does not cause energy exchange between these subsystems on the bridge. In 

this (artificial) situation, phonons may cause decoherence of electronic motion on the 

bridge but do not exchange energy with electrons on the bridge, so that at steady-state 

their flux is the same throughout the junction including the L and R interfaces. If, in 

addition, the matrices ( ) ( )andL Rω ωΩ Ω  are proportional to each other, i.e. 

( ) ( )L Rcω ωΩ = Ω  with c=constant, then Eq. (98) leads to[195] 

                                                 
21 For transport by phonons the energy and heat fluxes are equivalent, because in the absence of particle 
conservation there is no chemical potential for phonons. 
22 The simplified characteristics of the bridge model, Eq. (7),  are not needed here: Eq. (98) can be 
derived for a general molecular Hamiltonian (including, e.g., anharmonic interactions) provided that the 
interaction with the external (free phonon) bath(s) is bilinear. The derivation follows the steps of an 
analogous development for the electronic current[226], [225] and relies on the non-crossing 
approximation[393] which in the present context amounts to assuming that the interactions of the 'system' 
with different 'bath' environments are independent of each other.  
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(102) 

where ( ) ( ) ( )L Rω ω ωΩ = Ω + Ω  and ( ) ( )2Im r
el elω ω⎡ ⎤Ω = − Π⎣ ⎦  is the imaginary part of 

the retarded projection of the primary phonons SE due to their coupling to the electronic 

subsystem on the bridge. The result (102) contains additively the heat conduction by the 

pure harmonic bridge and a correction term associated with the electron-phonon 

interaction.23 We note that the latter term is responsible for the lifetime broadening of 

these phonons due to their coupling (induced by their interaction with the bridge 

electronic system) to electron-hole excitations in the leads, that was argued to dominate 

the broadening of vibrational features in inelastic electron tunneling spectroscopy at low 

temperatures[234] 

In the absence of electronic conduction, e.g. for a harmonic bridge connecting 

between dielectric thermal baths, Eq. (102) yields the pure phononic heat flux between 

two thermal phonon reservoirs connected by a harmonic bridge24 

( ) ( ) ( ) ( ) ( ) ( )( )
0

1 Tr
2

ph L r R a
L R

dJ D D N Nω ω ω ω ω ω ω ω
π

∞
⎡ ⎤= Ω Ω −⎣ ⎦∫=   (103) 

which was obtained in different ways before.[428-430]  In the most general case, where 

both electrons and phonons are transported and exchange energy in the junction, the 

general expressions(97) and (98) have to be used, although the phononic contribution 

(98) is expected to dominate in molecular junctions. 

 Junction heating is determined by the balance between the rate at which heat is 

deposited in the junction and the rate at which it is conducted away. Eqs. (91)-(103) 

present a general formalism for treating this problem, however the application to 

realistic junction models is prohibitively complex (some simple model results are 

presented below). Here we review earlier approaches to these problems that can be 

                                                 
23 It is interesting to note that the same formal form, Eq. (102)is obtained also in the more general case 
where anharmonic interactions exist between bridge phonons, except that ( )el ωΩ  is now replaced by a 
more general term that includes also the effects of these interactions. We will not discuss this issue further 
in this review. (For application of the NEGF formalism to anharmonic effects in molecular heat 
conduction see Ref. [194]) 
24 Note that while (102) relies on the equality ( ) ( )L Rcω ωΩ = Ω , Eq. (103) can be obtained from (98) 
without this restriction.  
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applied to complex system at the price of disregarding the (presumably small) electronic 

contribution to the heat conduction. Such considerations usually address separately the 

heat deposit and conduction processes.  

  

9b. Heat generation 

When a current I traverses a wire under potential bias Φ, the power converted into heat 

is W I= Φ . In nanojunctions with sizes small relative to the electron mean free path 

most of this power, ( )1 Wη−  with 1η � , is dissipated in the leads. However, as 

discussed in Sect. 4, conduction can take place also by electron activation and hopping. 

In this incoherent transport limit 1η = .  

We are concerned with the fraction η of the power that is converted into heat in 

the bridge region. To emphasize the importance of this issue note that in a junction 

carrying 1nA under a bias of 1V, the dissipated power is 1010 eV /sW = , while 10eV 

deposited locally on the bridge are more than enough to destroy a molecule. The 

magnitude of the fraction η is therefore of utmost importance as is the rate, discussed 

below, at which heat is conducted away from the junction. 

As stated above, heat generation in current-carrying molecular junctions is 

defined as the process of energy transfer from the molecular electronic subsystem to the 

underlying nuclear motion. In doing so we tacitly assume that the energy transferred 

appears in the nuclear subsystem as heat, i.e. randomized motion.25 Neither the above 

definition nor the assumption is obvious. For example, in metallic current carrying 

systems, electrons move systematically on top of a distribution, assumed thermal, that 

can be used to define their energy. Conversion of current energy to heat amounts to 

destroying the systematic part of this motion, transforming the associated kinetic energy 

into thermal motion expressed as a temperature rise. This randomization of electronic 

motion is caused by scattering off impurity centers, phonons or other electrons. A local 

equilibrium assumption is often invoked, with the electron and phonon distributions 

assumed to have the same temperature.26 It is only in molecular wires, where 

conduction is often described as a succession of single carrier (electron or hole) transfer 

events, that heating is naturally described as energy transfer from these carriers to the 

phonon subsystem.  

                                                 
25 Exceptions are known. Indeed, in shuttle conductance (see Section 10) some of this energy appears as 
coherent oscillations of a nuclear coordinate. 
26 Such a picture may break down in processes involving ultrafast optical excitation of metal electrons. 
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Experimental manifestations of this energy transfer appear mostly as current 

induced conformational and chemical changes in the molecular bridge[190, 288] (see 

Section 10). Current-induced heating was suggested as the reason for the observation 

that a hysteresis loop in the I/V response of a metallic nanojunction that undergoes 

voltage dependent configurational changes shrinks with increasing current and is 

eventually replaced by 2-level fluctuations between the two configuration/conduction 

states.[431] It was also implicated in the voltage dependence of the most probable 

breakdown force in an octanedithiol-gold conducting AFM breakjunction immersed in 

toluene, where the activated nature of the breakdown process was used to estimate the 

junction temperature.[432] The latter work has led to an estimate of the current-induced 

junction heating in that system, placing it at ~ 30K  increase above room temperature at 

a bias of 1V. 

Theoretical aspects of this problem were discussed by several groups. In the 

NEGF approach of Lake and Datta[191, 192] the model includes a single electron 

Hamiltonian and a set of localized phonons (phonon m localized at position mr ), kept at 

thermal equilibrium 

( )
2

†
0

ˆ 1ˆ ˆ ˆ
2 2m m m

m
H V a a

m
ω ⎛ ⎞= + + +⎜ ⎟

⎝ ⎠
∑p r =     (104) 

and a local interaction between them 

 ( )( )†ˆ ˆ ˆ' m m m
m

H U a aδ= − +∑ r r      (105) 

For a 1-dimensional conductor these authors calculate the particle current density 

( );NJ z E  per unit energy, which is related to the total (position independent) particle 

current, ( );N NI dEJ z E= ∫  and to the energy current 

 ( ) ( );E NI z dE EJ z E= ∫       (106) 

In this picture the power transferred to phonons, i.e. deposited as heat, can be described 

locally 

 ( ) ( )E
dP z I z
dz

= −        (107) 

In the low bias limit these authors find that this power contains two terms. One, 

quadratic in the applied bias, is identified with the Joule heat. The other, linear in the 

applied bias, is a manifestation of the Thomson thermoelectric effect in this system. 
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Another important result of this work is the strong enhancement of heat generation 

observed near resonance in a double barrier tunnel structure. 

 Segal and Nitzan[151] have studied this problem using the model (18)-(19) – the 

same model that was used[168] to describe the crossover from coherent tunneling to 

activated hopping transport (see Section 4). As discussed in Section 3d, the quantum 

master equation derived for this model[170, 171] can be used to evaluate differential 

transmission coefficients ( )0,L R E E→T  and ( )0,R L E E→T  for an inelastic transmission 

process in which an electron entering the lead with energy E0 is scattered out with 

energy E. Approximate expressions for the total particle current and the power left on 

the bridge are then given by 

 
[
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Note that (109) is the equivalent of ( )dzP z∫  where ( )P z  is the local power dissipation, 

Eq. (107). It can be shown[151] that in the low bias limit, 0Φ → , it is proportional to 
2Φ , as expected for the Joule heat, however no component linear in Φ is obtained in 

this approximation. Estimating the electron-phonon coupling strength from the order of 

magnitude of reorganization energies in organic systems, Segal and Nitzan estimate the 

order of magnitude fraction η of the available power NeI Φ  that remains on the bridge 

to be of order ~0.1, increasing with bridge length. As in the theory of Lake and Datta, it 

increases strongly when resonance transmission is approached. 

 Todorov and coworkers[214, 215, 153] have addressed this problem also within 

the tight binding model (18b) for the bridge, modeling the deviations nu  of the 

underlying ions from their equilibrium positions as independent harmonic oscillators 

and representing the electron-phonon interaction by the lowest order expansion of the 

tight binding elements ( ) , 'M n nH  in these deviations 

 ( )( ), '
1,2,3 '

' ' /MB n n n n n eq
n n

H F u n n n n H Rν ν ν
ν =

= + ∂ ∂∑ ∑ ∑  (110) 
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Here Rn are ionic positions, ν goes over the Cartesian directions and the derivatives with 

respect to ion positions are evaluated at the equilibrium configuration. The energy 

transfer rate is evaluated by low order quantum perturbation theory in the basis of 

delocalized electronic states { }α .27 When these are taken as Bloch states of a uniform 

1-dimensional chain, the net energy transfer rate into a single ion-oscillator n of mass M 

and frequency ω is obtained in the form (cf Eq. (11) of Ref. [153])  

 ( ) ( ) ( )
2

2 2
2 1 ' 2n

HP e e N
M H
π ω ω ω ω

π
⎡ ⎤≈ Φ − Θ Φ − −⎣ ⎦

= = = =   (111) 

where H and H’ stand for the equilibrium nearest-neighbor hopping element ( , 1n nV +  of 

Eq. (18b)) and its derivative with distance, Θ is the step function and 

( ) ( ) 1exp / 1BN k Tω ω −
⎡ ⎤= −⎣ ⎦=  (T  is the effective bridge temperature) is the oscillator 

thermal population. Eq. (111) implies that when this temperature is low only energy 

deposition into the oscillator is possible (provided e ωΦ > = ), while in general the 

direction of energy flow is determined by the balance between current-induced heating 

and cooling. An interesting outcome from this analysis is the observation[153] that in 

the high bias limit Eq. (111) can be approximated by the result of a classical analysis 

 4n
mP Ie
M

= Φ        (112) 

where m and M are electron and ion masses, respectively and I  is the electron current 

(so that IeΦ  is the available power). Accordingly, the fraction of the available energy 

converted to heat is determined by the mass ratio. Multiplying by the number of ions 

brings this perturbation theory-based estimate to the order of 1%. 

 Di Ventra and coworkers have combined a similar quantum perturbation 

methodology with ab-initio calculations of electron-vibrational coupling in realistic 

models of molecular junctions.[212, 213, 433] The net heat transfer between the 

electronic and nuclear subsystems is evaluated from a suitable generalization of Eq. 

(111). In conjunction with an estimate of heat conduction out of the junction vibrational 

subsystem, estimates of the expected temperature rise (a few tens of degrees in various 

alkanes[213]) could be made. 

 Finally, while not addressing the issue of power dissipation, several workers 

have investigated coupled electron and nuclear dynamics in a current carrying 

                                                 
27 A similar methodology was used by Galperin and Nitzan in a study of inelastic energy transfer to 
vibrations during electron tunneling transmission through water.[154] 
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junction.[135, 275, 137, 241, 242, 276, 277, 188, 279] Such studies are usually limited 

to simple models, addressing one oscillator as part of the molecular system (the rest of 

the nuclear environment can be regarded as a thermal bath) and are based on a kinetic 

description (expected to be valid in the weak molecule-leads coupling – the Coulomb 

blockade limit) of the electron hopping in and out of the bridge and coupled to the 

oscillator motion. We have discussed examples of such works in Section 3d. Thus, 

within its range of validity and for the simple model considered, Eq. (33) accounts for 

the balance between the heating and cooling processes in the current carrying junctions. 

However, in realistic situations energy loss by vibrational relaxation depends on 

junction geometry and on the molecular structure – the same factors that determine also 

an independent junction transport attribute – its heat conduction property. We turn to 

this issue next.   

 

9c. Heat conduction 

While heat conduction is an essential ingredient in the balance of processes that 

determine junction heating, it is easier to study and analyze as an independent process. 

To this end we may consider a molecular wire suspended between two heat reservoirs 

characterized by different temperatures. When these reservoirs are insulators heat is 

carried by nuclear motions, i.e. phonons. When they are metals, electrons contribute as 

well, and may dominate the heat transport. In the latter case cross transport 

(thermoelectric) phenomena are also encountered. 

Here we focus on phononic heat transfer. Theoretical interest in this issue goes 

back to Peierls' early work.[434] Recently it was found that thermal transport properties 

of nanowires can be very different from the corresponding bulk properties. For example, 

Rego and Kirczenow[428] have shown theoretically that in the low temperature ballistic 

regime, the phonon thermal conductance of a 1 dimensional quantum wire is quantized, 

and have obtained 2 2 / 3Bg k T hπ=  as the universal quantum heat conductance unit, 

where kB and h are the Boltzmann and Planck constants, respectively, and T is the 

temperature. Also of considerable interest are attempts to derive the macroscopic 

Fourier law of heat conduction in 1-dimensional systems from microscopic 

considerations. The Fourier law is a relationship between the heat current J per unit area 

A and the temperature gradient T∇  

/J K T= − ∇A �        (113) 
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where A is the cross-section area normal to the direction of heat propagation and K� is 

the thermal conductivity (the thermal conductance K is defined as /K J T= Δ ). Perfect 

harmonic chains were theoretically investigated by Rieder and Lebowitz[435] and by 

Zürcher and Talkner[436] who found that heat flux in these systems is proportional to 

the temperature difference and not to the temperature gradient. Consequently, the 

thermal conductivity diverges with increasing chain length. Anomalous heat conduction 

was also found in 1-dimensional models of colliding hard particles.[437, 438] Different 

models that potentially avoid this divergence and yield Fourier law conduction were 

discussed. Some invoke impurities and disorder[439, 440], others[441, 442] consider 

anharmonicity as the source of  normal heat conduction. Numerical simulations for 

chains with a random potential were performed by Mokross,[443] and the role of 

phonon-lattice interaction was studies by Hu et al.[444] Still, there is yet no convincing 

and conclusive result about the validity of Fourier law in 1D systems. Another aspect 

that was the subject of recent discussion is the possible asymmetry in the directionality 

of heat transfer, and several model nanojunction systems that show heat rectification 

behavior were discussed.[445-450] Rectification was associated with nonlinear 

(anharmonic) response, both in classical and quantum models. Strictly quantum effects, 

e.g. interference and quantum statistics, in heat and energy transport were also 

investigated.[451, 452] 

Experimentally, remarkable progress has been achieved in the last decade in 

nanoscale thermometry, and measurements on the scale of the mean free path of 

phonons and electrons are possible. Using scanning thermal microscopy methods one 

can obtain the spatial temperature distribution of the sample surface, study local thermal 

properties of materials, and perform calorimetry at nanometric scale.[453, 454] The 

thermal conductivity and thermoelectric power of single carbon nanotubes were studied 

both experimentally[455-457] and theoretically[458, 459] [460, 461]. In a different 

experiment, Schwab et al[462] have observed the quantum thermal conductance in a 

nano fabricated 1D structure, which behaves essentially like a phonon waveguide. Their 

results agree with the theoretical predictions.[428] These and other experimental and 

theoretical developments in this field have been recently reviewed.[463] 

  In the absence of electronic conduction and of electron-phonon coupling, and in 

the harmonic approximation, the heat flux through a molecular bridge connecting two 

thermal phonon reservoirs is given by Eq. (103). Segal et al [430] have evaluated this 

flux explicitly for a harmonic molecule characterized by a set of normal modes and 
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coupled through its end atoms to harmonic heat reservoirs. They have also performed 

classical mechanics simulations in order to assess the role played by anharmonicity. 

Application to the heat transport properties of alkane molecules has yielded several 

conclusions of general nature: 

(a) At room temperature and below, molecular anharmonicity is not an important factor 

in the heat transport properties of alkanes of length up to several tens of carbon atoms. 

(b) At room temperature, the efficiency of heat transport by alkane chains decreases 

with chain size above 3-4 carbons, then saturates and becomes length independent for 

moderate sizes of up to a few tens of carbon atoms. This observation agrees with a 

recent experimental observation of vibrational energy transfer in alkane chains [464] 

and of heat conduction in alkanedithiol SAMs.[465] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 30. Left: The heat transport coefficient (heat flux per unit T difference between hot and 
cold bath) displayed as a function of alkane bridge length, for a particular model of molecule-
heat baths coupling (Fig. 2 of Ref. [430]; see there for details) at 50K (full line), 300K (dotted 
line) and 1000K (dashed line). The inset shows the T=1000K result for a molecule-bath 
coupling which is 15 times stronger.  Right: Vibrational energy transfer times τIVR between 
Azulene and Anthracene species connected by alkane bridges of varying lengths, displayed  
against these lengths (From Ref. [464]). 
 

(c) At low temperature, the heat transport efficiency increases with chain size. This is a 

quantum effect: at low temperatures only low frequency modes can be populated and 

contribute to phonon transport, however such modes are not supported by short 

molecules and become available only in longer ones. 

 Theoretical results demonstrating points (b) and (c) are shown in the left panel 

of Fig. 30. The experimental dependence of vibrational energy transfer along an alkane 

bridge on its length, showing a similar high temperature trend, is shown in the right 

panel of that Figure. 
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 While vibrational energy transfer and heat conduction in molecular junctions are 

interesting by themselves, our interest in the present context is in the temperature rise 

that reflects the balance between electronic energy deposit onto the molecular 

vibrational subsystem and heat conduction out of the junction region. We discuss this 

issue next. 

 

9d. Junction temperature 

The combined effects of energy transfer from electronic to the vibrational degrees of 

freedom in a conducting junction, and heat conduction out of the junction, lead to 

energy accumulation in the vibrational (phonon) subspace that may result in molecular 

decomposition and junction disintegration. An attempt to describe this increasing 

energy contents as temperature rise, sometimes described locally at different parts of a 

junction, necessarily requires a proper definition of local temperature in a non-

equilibrium system, an obviously ambiguous concept.[463] A common practical 

definition is to associate this temperature with the average atomic kinetic energy 

( 2
Bk T m v= ) in local regions defined by some coarse graining procedure (a classical 

procedure valid only when the temperature is high enough) or the energy of local 

vibrational modes. An alternative method that was shown to be superior[195] uses a 

fictitious external phonon bath as a “thermometer”:  It is coupled to any desired mode in 

the system and the ensuing heat flux is calculated. The temperature of the examined 

mode is determined to be such, that when assigned to the fictitious bath renders the heat 

flux between it and the mode zero.  

 Given such ways to determine a junction temperature, the steady state 

temperature increase in a current-carrying junction can be examined. An example that 

demonstrates qualitative aspects of this phenomenon is shown in Figure 31. The main 

result conveyed by this figure is the existence of two thresholds: A low bias threshold 

marks the onset of phonon generation at 0e ωΦ = =  due to inelastic electron tunneling. A 

higher threshold in the vicinity of 02e εΦ =  marks the bias at which the molecular 

electronic level enters the window between the leads Fermi energies in the model used, 

where the applied bias is taken to distribute evenly at the two metal-molecule contacts. 
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Fig. 31. Temperature increase in a junction where the bridge includes one electronic level (ε0 = 
2eV above the unbiased Fermi energies) coupled to one local vibration (ω0 = 0.2eV). The 
electronic couplings to the leads are represented by the electron transfer rates, ΓL = ΓR = 0.02eV, 
the electron-phonon coupling on the bridge is taken M = 0.2eV and the leads temperature is 
T=100K. The damping rate of the local vibration due to its coupling to the secondary phonon 
environment is 0.01phγ = eV. The local temperature (full line, red; left vertical axis) is 

obtained by the measurement technique explained in the text and is plotted against the applied 
bias. The inset shows the low bias region. Also shown as function of the applied voltage is the 
current through the junction (dotted line, green; right vertical axis). 
  
 Quantitative estimates of the temperature rise in realistic models of molecular 

junctions where made by Di Ventra and coworkers.[212, 213, 433] These estimates are 

based on separate calculations of heat generation and dissipation in metallic and 

molecular wires. Calculations of heat transport in wires connecting between thermal 

reservoirs have to be supplemented by a relationship between this transport property and 

the rate of dissipation of heat generated on the junction itself. To this end the authors 

assume[212] that the steady-state temperature of a bridge connecting thermal baths of 

temperature TL and TR is ( ) / 2L RT T+ . Under this assumption the heat current between a 

bridge of temperature TBR and the environment of temperature TL is the same as the 

current going through the bridge when it connects between reservoirs with temperatures 

TL and TR that satisfies ( ) / 2L R BRT T T+ = , i.e. 2R BR LT T T= − . The steady state equality 

between the rate of heat generation and the rate of heat dissipation based on this 

estimate gives an equation for the bridge temperature TBR. The following observations 

based on these calculations were made: 

(1) Under the same voltage bias, the temperature rise at benzene dithiol junction is 

considerably smaller than that of a gold wire of similar size because of the larger 

conduction (therefore higher current) in the latter. In absolute terms, the temperature 
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rise is predicted to be about 15K and 130K above ambient temperatures at a voltage bias 

of ~1V.[212] 

 
Fig. 32. Estimated junction temperature as a function of bias in alkanethiols junctions of various 
chain lengths. (From Fig. 1 of  Ref. [213]).  
 

(2) In dithiolate alkane chains, estimated temperature rise resulting from the balance 

between heating and heat conduction is a few tens degrees at 0.5V and depends on chain 

length (see Fig. 32). The temperature rise is smaller in longer chains characterized by 

smaller electrical conduction.[213] Decreasing conduction with molecular lengths in 

these chains overshadows the less efficient heat dissipation in these systems.  Recent 

experimental estimates[432] of the temperature rise are somewhat lower, 

however these measurements are done in toluene solvent, where more channels 

to heat dissipation are open. 

(3) In contrast to alkanes, in Al wires the temperature rise in current carrying 

wires is more pronounced for longer chains.[433] In these good conductors the 

balance between the length effects on conduction and heat dissipation is tipped 

the opposite way from their molecular counterparts, because length dependence 

of conduction is relatively weak. Interesting results are obtained vis-à-vis 

junction stability: Even when the temperature rise is not substantial, junction 

breakup may be caused by current-induced forces. 

 It appears that theory has made substantial progress in the study of heating 

and heat conduction in nanojunctions in general and molecular junctions in 

particular. Progress in the field seems to depend now on future experimental 

work. 
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10. Current induced reactions 

Heating and heat conduction, discussed in the previous Section, pertain to the issue of 

junction stability. From this point of view our aim may be to minimize configurational 

changes induced by charge transport through the molecular bridge. We have seen 

however (Section 8) that charging-induced configurational changes may be instrumental 

in affecting junction functionality. A particular example already alluded to is the 

interesting phenomenon of shuttle transport, [134-141] which is associated with 

electrostatic feedback between bridge charging and its distance from (i.e. coupling to) 

the source and drain electrodes.   

 Taking these ideas a step further, molecular junctions may be studied not as 

components of electronic devices but as nanoreactors for controlled chemical 

changes.[187, 466-468, 369, 469-471, 287] From this point of view one is interested in 

affecting and controlling conformational changes and chemical reactions during the 

junction operation. Such changes originate from forces exerted on the molecule; short 

range forces as exerted, for example, by a tip used to push atoms, long range 

electrostatic forces arising from the imposed potential bias, and forces associated with 

the transporting current. The latter, current induced forces[306-309, 160, 190, 219, 141, 

310, 31, 157, 288] are obviously relevant to the subject of this review. The ultimate 

result of affecting chemical change depends on the balance between pumping energy 

into molecular bonds and processes that dissipate excess molecular energy, as already 

discussed in the previous Section. 

 Current-induced reactions in molecular junctions, in particular in STM 

configurations, may become an important tool for nano-fabrication. An extensive 

discussion of these issues should be a subject of a separate review. Indeed, several such 

treatments have been published in recent years,[471, 190, 472, 473, 288, 474] and they 

supplement the present review with regard to this important subject.  

 

 

11. Summary and outlook 

Scanning tunneling microscopy, with the associated ability to examine and prepare 

nanoscale structures, is only 25 years old.  The first measurements of actual molecular 

transport junctions, with the molecule suspended between two electrodes, are only a 

decade old.  The first inelastic tunneling spectra of molecules in such junctions are only 
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two years old.  In this short time of development, the preparation, measurement and 

understanding of molecular transport junctions has progressed very rapidly.  In some 

areas, such as inelastic electron tunneling spectroscopy far from electronic resonances, 

the situation is very attractive – reproducible experiments can be done,  theory can 

accurately describe the results, and these can be useful for answering questions such as 

the positions and identities of molecules within the junction, and even the way in which 

the currents flow through the molecule.   

But a general understanding of vibrational effects in nonequilibrium molecular 

junction transport is still far off.  While good measurements are beginning to appear in 

the Kondo, Coulomb Blockade and near-resonance regimes, our understanding there is 

far more limited.  This is partly because an appropriate general formalism is difficult – 

The Keldysh nonequilibrium Greens function approach, extensively introduced into 

molecular transport by Datta and now standard in the field, is very difficult for problems 

such as simultaneous electron/electron interaction and correlation, electron/phonon 

coupling and phonon anharmonieity. These are all encountered in such recent 

measurements as the observation of inelastic co-tunneling and Kondo lines in the 

Coulomb Blockade regime. 

This overview has focused on a general description of the major problems in the 

field, with brief remarks on their experimental observation and an outline of different 

theoretical and computational approaches taken.  Because the field is vast, our focus has 

been resolutely on vibrational effects, and even then we had to be very schematic in 

some areas, to present the rough outlines of the theory and modeling approaches.  

With the constant improvement of experimental capabilities, the field is 

becoming far more sophisticated and very challenging.  Attention thus far has focused 

on relatively simple molecular structures and geometries.  But the intrinsic molecular 

features of stereochemical change (the ability of a given molecular structure to occupy 

different points on the potential energy surface) and of vibrational reorganization 

(molecules and their ions are generally different in their geometries), coupled with a 

very strong electronic polarizability of almost all molecules (that result in the molecular 

orbital energies being different for anions, cations, and neutrals) substantially 

complicate the quantitative, and even qualitative, understanding of how current is 

transported in molecular junctions, and certainly of the vibrational effects on such 

currents. 
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The last three chapters of this overview discuss briefly some of the newest areas 

– utilizing current in molecular junctions to effect chemical transformation and bond 

breaking, heat and thermal transport in molecular junctions and the effects of strong 

electron correlations. We’ve not discussed issues such as the interplay between 

molecular stereochemical change and applied voltage/current or the reactivity of 

transmitting junctions, because there is only very fragmentary (if any) experimental 

information available.  Clearly these will be among the interesting fields of the future, 

as will transport, vibrational and heating effects in large biological entities. 

The similar statistics of photons and phonons implies that much of the work 

discussed here can also be used to approach problems of photoexcitation and 

photoemission in molecular junctions.  That field has some very interesting practical 

applications, as well as fundamental challenges. 

In the first six chapters, we have encountered many situations in which theories 

simply are not adequate to explain the phenomena, or where taking the theory beyond a 

minimalist model towards actual computation is exceedingly difficult.  Progress is being 

made on the Coulomb Blockade regime, where interesting effects such as frequency 

softening with partial charging on the diamond edges, and roles of molecular 

reorganization and polarization in such important phenomena as junction hysteresis and 

negative differential resistance can be investigated in a more quantitative fashion.  

Indeed, very early results are beginning to appear utilizing inelastic electron tunneling 

spectroscopy to examine the behavior in hysteretic ranges of the conductance spectrum 

– recent work from IBM has demonstrated the value of such structures acting as single 

molecule switches and memories, so that these issues are important for both applied and 

fundamental reasons. 

Strong interaction effects with vibrations, manifested both in the Franck Condon 

blockade and in unusual shapes and “fuzziness” in Coulomb diamonds for molecular 

junctions, as opposed to traditional quantum dot junctions, are puzzles that should be 

approached fairly soon.  The full understanding of the roles of electronic and phonon 

excitations and flows in nonequilibrium transport junctions represents an important 

component of the major, fundamental challenge involved in describing molecular 

systems in highly nonequilibrium situations. 
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