TOPICAL REVIEW

The Verwey transition - a topical review

Published 15 March 2002 Published under licence by IOP Publishing Ltd
, , Citation Friedrich Walz 2002 J. Phys.: Condens. Matter 14 R285 DOI 10.1088/0953-8984/14/12/203

0953-8984/14/12/R285

Abstract

This review encompasses the story of the Verwey transition in magnetite over a period of about 90 years, from its discovery up to the present. Despite this long period of thorough investigation, the intricate multi-particle system Fe3O4 with its various magneto-electronic interactions is not completely understood, as yet - although considerable progress has been achieved, especially during the last two decades. It therefore appeared appropriate to subdivide this retrospect into three eras: (I) from the detection of the effect to the Verwey model (1913-1947), being followed by a period of: (II) checking, questioning and modification of Verwey's original concepts (1947-1979). Owing to prevailing under-estimation of the role of crystal preparation and qualitiy control, this period is also characterized by a series of uncertainties and erroneous statements concerning the reaction order (one or two) and type of the transition (multi-stage or single stage). These latter problems, beyond others, could definitely be solved within era (III) (1979 to the present) - in favour of a first-order, single-stage transition near 125 K - on the basis of experimental and theoretical standards established in the course of a most inspiring conference organized in 1979 by Sir Nevill Mott in Cambridge and solely devoted to the present topic. Regarding the experimental field of further research, the remarkable efficiency of magnetic after-effect (MAE) spectroscopy as a sensitive probe for quality control and investigation of low-temperature (4 K<T<Tv) charge transport mechanisms is pointed out. Under theoretical aspects two concepts, going back to Mott and Ihle-Lorenz, presently appear most promising. Mott's view of the Verwey transition, as corresponding to the phase changing of a Wigner glass (T>Tv) into a Wigner crystal (T<Tv), describes most adequately the various low-temperature mechanisms in Fe3O4 in terms of tunnelling and variable range hopping of small polarons. On the other hand, the well-elaborated Ihle-Lorenz model, assuming a superposition of polaron-band and -hopping conductivity, is in better agreement with the high-temperature data (Tv<T<600 K).

Export citation and abstract BibTeX RIS

Please wait… references are loading.