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Abstract

We present analytic and numerical studies based on Landauer theory of

conductance antiresonances of molecular wires. Our analytic treatment is a

solution of the Lippmann-Schwinger equation for the wire that includes the

effects of the non-orthogonality of the atomic orbitals on different atoms ex-

actly. The problem of non-orthogonality is treated by solving the transport

problem in a new Hilbert space which is spanned by an orthogonal basis. An

expression is derived for the energies at which antiresonances should occur for

a molecular wire connected to a pair of single-channel 1D leads. From this ex-

pression we identify two distinct mechanisms that give rise to antiresonances

under different circumstances. The exact treatment of non-orthogonality in

the theory is found to be necessary to obtain reliable results. Our numerical

simulations extend this work to multichannel leads and to molecular wires

connected to 3D metallic nanocontacts. They demonstrate that our analytic

results also provide a good description of these more complicated systems pro-

vided that certain well-defined conditions are met. These calculations suggest

that antiresonances should be experimentally observable in the differential

conductance of molecular wires of certain types.
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I. INTRODUCTION

There has been renewed interest recently in molecular wires,1 stimulated in part by
experimental work that has begun to explore possible ways of measuring the conductance of
a single molecule.2–5 Theoretically, electron transport in molecular wires has been studied by
considering the transmission probability for electrons to scatter through the structure.3,6–10

As with other mesoscopic systems, the electrical conductance G of the molecule is related
to the transmission probability T at the Fermi level by the Landauer formula11 G = e2

h
T .

As expected for mesoscopic systems with discrete energy levels connected to continuum
reservoirs, molecular wires display resonances in the transmission probability. Another po-
tentially important transport phenomenon that has been predicted in molecular wires is
the appearance of antiresonances.7 These are defined to be zeroes of the transmission and
correspond to the incident electrons being perfectly reflected by the molecule. In molecular
systems this phenomenon was first recognised in theoretical studies of electron transfer be-
tween donor and acceptor sites of a molecule.12–14 At that time it was correctly attributed
to interference effects between the different molecular orbitals through which the electron
propagates. However, antiresonances have received less attention in the context of electrical
conduction through molecular wires connected to metallic contacts and we address this topic
theoretically in the present article.15

The occurrence of antiresonances has also been reported in other mesoscopic sys-
tems. They have been found in quantum waveguides16–22 where the transmission displays
resonance-antiresonance structure. These systems in the form of stub tuners have been
shown to operate as electronic gates. Antiresonances have also been proposed to occur in
double barrier resonant tunneling (DBRT) devices. There they have been explained using a
Fabry-Perot model of the DBRT23 and have also arisen in more sophisticated tight-binding
calculations of the same structures24. In the above devices it is the wave nature of the elec-
trons that leads to these interesting interference effects. Although the wave nature of the
electrons is also the cause of antiresonances in molecular wires, it will be seen below that
different mechanisms are responsible for their occurrence in the molecular systems.

We begin by considering a simple model of molecular wires exhibiting antiresonances
that we solve analytically. We then proceed to investigate the robustness of the analytically
predicted behaviour by studying more realistic models numerically.

Our analytic model of the molecular wire consists of a molecule attached to two ideal
single-channel 1D leads. Electrons are incident from the left lead in only one propagating
channel and scatter through the molecule to the single channel of the right lead. The
electronic structure of the molecule is described as a discrete set of molecular orbitals which
couple to the single mode leads. We show that in discussing molecular wire antiresonances it
is important to take into account explicitly the fact that the atomic orbitals on neighbouring
atoms overlap each other; in some of the systems that we consider antiresonances are only
found if this non-orthogonality is included fully in the theory. In our analytic calculations
the non-orthogonality is taken into account exactly by defining a new energy and overlap
dependent Hamiltonian in a basis that is orthogonal and spans a new Hilbert space.15 This
switching of Hilbert spaces greatly simplifies the analytic solution of the present problem and
should have broad applicability to other transport problems as well, whenever the mutual
non-orthogonality of tight-binding states is important. It is an alternative to standard
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orthogonalisation transformations such as the Wannier or Löwdin transformation. It has the
advantages of being much simpler to implement and much more flexible than the Wannier
transformation since it can be usefully applied to all systems described by tight binding
models in contrast to the transformation to Wannier states that is useful mainly in the
theory of crystalline solids. It also differs from the Löwdin transformation that is used in
quantum chemistry which defines a new set of orthogonal atomic orbitals in terms of the
original non-orthogonal atomic orbital set.25 We solve the Lippmann-Schwinger equation
in this new Hilbert space to find the transmission probability T of the electrons to scatter
through the molecule. We derive a simple condition controlling where the antiresonances
occur in the transmission spectrum. This condition only depends on the free propagator for
the molecule and the energy- dependent couplings between the molecular orbitals and the
ideal leads. For a molecule with N orbitals, the antiresonance condition predicts that there
can be at most (N − 1) + 2 antiresonances.

We then present numerical results for two more general molecular wire models in order
to show how antiresonances might be observable in real systems. Our analytic model is
applicable to π conjugated systems where the π orbitals are independent of the σ states
that are also present in realistic systems. It is able to predict the energies at which antireso-
nances occur in our more sophisticated calculations. The first of these uses polyacetylene-like
polymers for the two leads which are attached to a molecule that has a single π molecular
orbital. This molecular wire exhibits a transmission antiresonance in the occupied π band
of the leads.

Our second more realistic model is of a molecular wire bridging a mechanically controlled
break junction in a metal wire. In this case the molecular wire consists of an “active”
molecular segment connected to the two metal contacts by a pair of finite π conjugated
chains. In this calculation we show how an antiresonance can be generated near the Fermi
energy of the metallic leads. The differential conductance is calculated for this system
using Landauer theory and the antiresonance is characterised by a dip in conductance. We
find that for both of these calculations involving multi-mode leads our analytic theory of
antiresonances has predictive power.

In Sec. II, we describe the method that we use to treat the non-orthogonality of atomic
orbitals and present the solution to the Lippmann-Schwinger equation for our analytic model.
The antiresonance condition is then derived in Sec. III. Two calculations for more realistic
systems are presented in Sec. IV. We then conclude with Sec. V. The Appendix summarises
the calculation of the Green’s function for the semi-infinite 1D leads and takes the non-
orthogonality of atomic orbitals into account.

II. ANALYTIC THEORY: CHANGING HILBERT SPACES AND SOLUTION OF

THE LIPPMANN-SCHWINGER EQUATION

Most theoretical studies of molecular wires have used tight binding bases of atomic
orbitals for the molecular and lead Hamiltonians. The atomic orbitals on different atoms
are not orthogonal to each other and, as we will show below, this non-orthogonality can have
important physical consequences for molecular wire antiresonances. We treat this lack of
orthogonality exactly in our analytic Lippmann-Schwinger (LS) theory26 of antiresonances
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in a molecule connected to single-channel leads by solving the problem in a new Hilbert
space spanned by an orthogonal basis where we define a new energy-dependent Hamiltonian
matrix.15 We begin with a derivation and discussion of this change of Hilbert space which
will be vital to our definition of a LS equation below.

We start with Schrödinger’s equation for the eigenvectors {|Ψ〉} of a Hamiltonian H ,

H|Ψ〉 = E|Ψ〉. (1)

We wish to solve Eq.(1) for |Ψ〉. We begin by expressing |Ψ〉 in a non-orthogonal basis
{|n〉} of the usual physical Hilbert space A for the system as |Ψ〉 = ∑

nΨn|n〉. Inserting this
expression for |Ψ〉 into Eq.(1) and applying 〈m| we obtain

∑

n

Hm,nΨn = E
∑

n

Sm,nΨn (2)

where we define Hm,n = 〈m|H|n〉 to be the Hamiltonian matrix and Sm,n = 〈m|n〉 to be
the overlap matrix. We note that if the basis {|n〉} is incomplete then Eq. (2) becomes
an approximation that may be justified variationally.25 In either case, we will assume that
Eq.(2) provides an adequate description of the system of interest and our objective will be
to solve it exactly for the coefficients Ψn.

We will assume in the following that the sums in Eq.(2) (and similar summations in the
remainder of this article) converge absolutely27 so that the order in which the summations
are performed is unimportant. This assumption is justified for the physical applications
that we will be considering where the non-orthogonal basis states {|n〉} will be atomic tight
binding orbitals (or molecular orbitals confined to finite molecular segments) and only a
finite number of these orbitals are considered on any particular site. For such basis states
Hm,n and Sm,n decrease exponentially as the spatial separation between the tight binding
sites associated with basis states |m〉 and |n〉 becomes large. This guarantees the absolute
convergence of the summations in Eq.(2) even if the system is infinite in extent and |Ψ〉 is
a physical scattering state that extends throughout the system.

The absolute convergence of the series in Eq.(2) enables us to rewrite Eq.(2) as

∑

n

HE
m,nΨn = EΨm (3)

where

HE
m,n = Hm,n − E(Sm,n − δm,n). (4)

We are concerned with open systems that have a continuous spectrum of energy eigenvalues.
Thus our objective is to find the coefficients Ψn that satisfy Eq. (3) for every value of E
belonging to the continuum of energy eigenvalues of the Hamiltonian H . To do this we find
it convenient to consider the related matrix eigenproblem

∑

n

HE
m,nΨ

′

n = E ′Ψ′

m (5)

where E ′ is any eigenvalue of the matrix HE
m,n and the set of coefficients {Ψ′

m} form the
corresponding eigenvector. The solution {Ψm} of Eq. (3) that we seek is then identical to
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an eigenvector {Ψ′

m} of the matrix HE
m,n for which the eigenvalue E ′ in Eq. (5) is equal to

E.
We now re-interpret Eq. (5) as the matrix form of a new Schrödinger equation

HE|Ψ〉′ = E ′|Ψ〉′. (6)

involving a new Hamiltonian operator HE and its eigenvectors |Ψ〉′ in a new Hilbert space
A′. We construct this new Hilbert space as follows: We first form the vector space V ′ that
is spanned by an orthonormal basis (that we denote {|n〉′}) of the matrix HE

m,n.
28 [Note

that the basis vectors |n〉′ defined in this way are abstract mathematical entities which
should not be confused with the (non-orthogonal) physical state vectors |n〉 of the original
(physical) Hilbert space A or with any other vectors in that Hilbert space.] For the systems
of interest in this work V ′ is infinite-dimensional and we define the Hilbert space A′ to be
the completion of V ′ with respect to the norm topology.29 Eq. (5) will be the matrix form
of Eq. (6) in Hilbert space A′ as desired provided that the new Hamiltonian operator HE

is chosen so that its matrix elements satisfy 〈m|′HE|n〉′ = HE
m,n and |Ψ〉′ = ∑

nΨ
′

n|n〉′. It
follows from Eq.(4) that the operator HE is Hermitian in A′ because E is real and Hm,n ,
Sm,n and δm,n are Hermitian matrices.

Thus we have transformed a problem that was formulated in terms of a non-orthogonal
basis into an equivalent one in an orthogonal basis of a different Hilbert space. Essentially
what we have done is to create a new problem (which may be easier to solve) from our old
one. This is quite different from other orthogonalisation schemes (such as that of Gramm-
Schmidt or Löwdin25). In those schemes the original non-orthogonal basis of the Hilbert
space is orthogonalised by transforming it into a new orthogonal basis of the same space.
Our method has no such orthogonalisation procedure: instead we assume our new operators
and eigenvectors to be expressed in terms of an orthogonal basis of a new space and define
them so that the matrix eigenvalue problem, Eq. (5) follows. This re-definition creates an
energy dependent Hamiltonian whose energy dependence will be important in our discussion
of antiresonances below.

It should be noted that only the eigenvectors of HE that have the eigenvalue E have
the same coefficients Ψn as eigenvectors of the true Hamiltonian H . The other eigenvectors
of HE do not correspond to any eigenstate of the physical Hamiltonian H , but they never
the less play an important role when calculating the Green’s function corresponding to HE

which appears in the Lippmann-Schwinger equation below.
Since no assumptions (other than the absolute convergence of the summations in Eq.(2))

have been made about the nature of the system being considered, this method of orthogo-
nalisation by switching to a new Hilbert space is extremely general. If the basis states {|n〉}
are tight binding atomic orbitals then the present transformation (unlike the transforma-
tion to Wannier functions) can be used irrespective of the types of atoms involved or their
locations in space. Furthermore, our transformation has the additional flexibility that the
non-orthogonal basis states need not all be of the same generic type. For example, some of
them may be atomic orbitals and others molecular orbitals on some cluster(s) of atoms that
form a part of the physical system. This flexibility will be exploited below. We now proceed
to outline the application to antiresonances in molecular wires.

Our analytic theory for electron transport in molecular wires is based on an idealised
model consisting of a molecule connected to two identical single-channel ideal leads which
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are represented by 1D chains of atoms (shown in Fig. 1). We solve for the scattering
wavefunction |Ψ〉 which describes an electron incident from the left lead with energy E and
having a probability T (E) to scatter through the molecule to the right lead. The system
satisfies H|Ψ〉 = E|Ψ〉, where H = H0 + W . H0 is the Hamiltonian for the three isolated
systems consisting of the two leads and the molecule and W couples the lead sites adjacent
to the molecule with the sites on the molecule.

We now introduce a non-orthogonal basis consisting of atomic orbitals {|n〉} with n =
−∞, . . . ,−1 on the left lead and n = 1, . . . ,∞ on the right lead and a set of molecular
orbitals (MO’s) {|φj〉} for the molecule. In this basis the wavefunction has the form,

|Ψ〉 =
−1
∑

n=−∞

Ψn|n〉+
∞
∑

n=1

Ψn|n〉+
∑

j

cj |φj〉 (7)

The transmission probability T is found from |Ψ〉 by utilising the boundary conditions
that the wavefunction satisfies. On the left lead the wavefunction consists of a rightward
propagating Bloch wave along with a reflected leftward propagating Bloch wave. This can be
written as |ΨL〉 =

∑

−1
n=−∞

(exp(iny) + r exp(−iny))|n〉, where r is the reflection coefficient.
The right lead is identical to the left lead and on it the wavefunction has the form of a
transmitted Bloch wave |ΨR〉 =

∑

∞

n=1 t exp(iyn)|n〉 where t is the transmission coefficient.
Thus the transmission probability that enters the Landauer electrical conductance of the
wire is given by T = |t|2 = |Ψ1|2. The electron’s velocity is the same on both leads and so
the ratio of velocities that normally appears in the formula for T is equal to unity.

In the non-orthogonal basis solving for Ψ1 analytically is difficult thus we change to the
new Hilbert space where the solution is more straightforward. The transmission probability
T is unaffected since the coefficient Ψ′

1 remains the same for fixed E. The new Hamiltonian
operator HE and its eigenvectors {|Ψ〉′} are now assumed to be expressed in an orthonormal
basis {|n〉′, |φj〉} with the new Hamiltonian matrix elements defined in terms of the matrix
elements of the initial Hamiltonian H and the overlap matrix S via Eq. (4). Thus if there
is any non-orthogonality in the original basis sets of the three isolated systems then H0

becomes HE
0 . The non-orthogonality between the orbitals on the molecule and the leads

changes W to WE .
We evaluate Ψ′

1 by solving a Lippmann-Schwinger (LS) equation. This equation is defined
only after the transformation and is given by,

|Ψ〉′ = |Φo〉′ +Go(E)WE|Ψ〉′. (8)

Here Go(E) = (E − HE
0 )

−1 is the Green’s function for the decoupled system of left, right
leads and the molecule. The electron is initially in the eigenstate |Φo〉′ of the left lead
propagating with an energy E. It is confined to the left lead and is written as

|Φo〉′ =
−1
∑

n=−∞

(Φ′

o)n|n〉′. (9)

It should be emphasised that the LS equation Eq. (8) is only valid after the change
to the new Hilbert space where the basis is orthogonal. This is because it is now possible
to distinctly separate the states on the leads from those on the molecule. The original
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non-orthogonal basis did not allow for this clear distinction and contradictions arise if the
analogs of the entities in Eq. (8) are constructed using this basis.

The free propagator, Go, can be expressed in terms of the energy eigenstates of HE
0 of

the isolated leads and of the molecule. It will be written as a sum of three separate free
propagators for the left and right leads and the molecule, GL

o , G
R
o , and GM

o respectively.
The left and right leads have been assumed to be identical so their free propagators will be
the same. For the leads with energy eigenstates {|Φo(y)〉′} having energy ǫ(y)

GR
o =

∑

y

|Φo(y)〉′〈Φo(y)|′
E − ǫ(y)

(10)

Here y is the wave number in units of the inverse lattice parameter. Expressing the eigen-
states in terms of the basis, {|n〉′}, the free propagator on the leads has the form,

GR
o =

∞
∑

n=1

∞
∑

m=1

(GR
o )n,m|n〉′〈m|′ (11)

The matrix elements, (GR
o )n,m are evaluated analytically in the Appendix.

For the molecule the free propagator expressed in terms of its MO’s is

GM
o =

∑

j

|φj〉〈φj|
E − ǫj

=
∑

j

(GM
o )j |φj〉〈φj| (12)

Using these expressions for the wavefunctions and the free propagator the LS equation
becomes (the ′ have been dropped)

−1
∑

n=−∞

Ψn|n〉+
∞
∑

n=1

Ψn|n〉+
∑

j

cj |φj〉 =
−1
∑

n=−∞

(Φo)n|n〉+

(
−1
∑

n,m=−∞

(GL
o )n,m|n〉〈m|+

∞
∑

n,m=1

(GR
o )n,m|n〉〈m|+

∑

j

(GM
o )j|φj〉〈φj|)WE ×

(
−1
∑

n=−∞

Ψn|n〉+
∞
∑

n=1

Ψn|n〉+
∑

j

cj|φj〉)

We now apply the bras 〈−1|, 〈φj|, and 〈1| to the above equation, making use of their formal
mutual orthogonality. This gives the following set of simultaneous linear equations

Ψ−1 = (Φo)−1 + (GL
o )−1,−1

∑

j

〈−1|WE|φj〉cj (13)

cj = (GM
o )j(〈φj|WE| − 1〉Ψ−1 + 〈φj|WE|1〉Ψ1) (14)

Ψ1 = (GR
o )1,1

∑

j

〈1|WE|φj〉cj (15)

where

〈1|WE|φj〉 = WE
1,j = W1,j −ES1,j (16)
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which is the interaction matrix element between the the lead orbital adjacent to the molecule
and the jth MO. Notice it includes the overlap between the jth MO and the first lead orbital.

These equations can be solved for the unknowns, Ψ−1, Ψ1, and the cj, yielding

Ψ1 =
A(Φo)−1)

[(1− B)(1− C)− AD]
(17)

Ψ−1 =
(1− B)(Φo)−1

[(1− B)(1− C)− AD]
(18)

cj = (GM
o )j

(

WE
j,1A+WE

j,−1(1− B)

[(1−B)(1− C)−AD]

)

(Φo)−1 (19)

where, making use of the symmetry between GL
o and GR

o ,

A = (GR
o )1,1

∑

j

WE
1,j(G

M
o )jW

E
j,−1

B = (GR
o )1,1

∑

j

(WE
1,j)

2(GM
o )j

C = (GR
o )1,1

∑

j

(WE
−1,j)

2(GM
o )j

D = (GR
o )1,1

∑

j

WE
−1,j(G

M
o )jW

E
j,1

The transmission probability T (E) is given by |Ψ1|2.

III. ANTIRESONANCE CONDITION AND MECHANISMS

An antiresonance is defined to be a zero of the electron transmission probability. Since
T (E) is given by the squared modulus of Ψ1, the zeroes occur where Ψ1 is zero. From Eq.
(17) this happens when A = 0. Thus the antiresonance condition is

(GR
o )1,1

∑

j

WE
1,j(G

M
o )jW

E
j,−1 = 0 (20)

or

∑

j

(W1,j −ES1,j)(Wj,−1 − ESj,−1)

E − ǫj
= 0 (21)

where the sum over j includes just the MO’s.
The antiresonance conditions (20) and (21) that we have derived allows us to identify

two distinct mechanisms that can give rise to antiresonances in molecular wire transport.
In the first of these mechanisms, antiresonances arise due to an interference between the

different MO’s of the molecule. This is seen directly from Eq. (21): An electron incident
from the left lead, hops from the lead site adjacent to the molecule onto each of the molecular
orbitals with a weight WE

j,−1. It then propagates through each of the different orbitals j.
These processes interfere with each other as the electron propagates through the molecule
and proceeds to hop onto the first lead site on the right lead with a weight WE

1,j .
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What is particularly interesting about this molecular mechanism and differentiates it
qualitatively from a standard multi-beam interference problem encountered in optics via a
diffraction grating, is that the antiresonances arise from interference between molecular states

that differ in energy. It is also not possible to make an analogy between this effect and Fano
resonances30, which are a good analog of the antiresonances in electron waveguides of the
stub-tuner type21. For those waveguides, the antiresonances arise from interference between
the direct transmission of a continuum of electron modes (which exists in the semiconductor
quantum wire) and transmission via discrete modes that reside within the resonator. In
our model, transmitted electrons must pass through the molecule so that there is no direct

transmission of continuum modes from the left to the right lead and the Fano mechanism
does not apply. The molecular wire antiresonances are also not analogous to those found
in the Fabry-Perot model of double barrier resonant tunneling23. In that model, electrons
couple to different modes within the well which interfere upon exiting the well. But these
modes are all at the same energy. As was mentioned above, the interfering molecular states
are at different energies.

This antiresonance mechanism is qualitatively similar to that which was found in pre-
vious work on electron transfer between donors and acceptors in molecules,12 however the
antiresonance conditions (20) and (21) that we have derived differ from those that were ob-
tained earlier partly because the non-orthogonality of the atomic orbitals has been included
in our theory. In particular, for a molecule with N distinct energy levels, the resonance
condition (21) gives rise to a polynomial equation of degree m = (N − 1) + 2, so there can
be at most m antiresonances for this model. Neglecting the overlaps S1,j and Sj,−1 between
atomic orbitals on different atoms leads to a polynomial equation of a lower order and can
yield qualitatively different predictions, as will be made clear below.

The second antiresonance mechanism that we identify on the basis of the conditions (20)
and (21) has no analog in previous work and is at first sight quite surprising since it is
due entirely to the non-orthogonality of atomic orbitals on different atoms. It occurs when
only a single molecular orbital a couples appreciably to the leads, which should happen in
some real systems for reasons of symmetry, as is discussed in the next section. In such cases
Eq. (21) becomes (Wa,−1 − ESa,−1)(W1,a − ES1,a) = 0. As many as two antiresonances
are possible in this case. They arise because the energy dependent coupling is equal to
zero between the leads and the molecule at the energies E for which the energy dependent
hopping parameter (Wa,−1 − ESa,−1) or (W1,a − ES1,a) vanishes. This cancellation arises
because of the non-orthogonality between the atomic orbitals of the molecule and those of
the leads.

We explore some specific molecular systems that should exhibit each of the above an-
tiresonance mechanisms in the following section.

The present theory is readily extended to include second and more distant neighbour
interactions and overlaps. These will act as a perturbations to the antiresonance values.
If the interactions are sufficiently long ranged so as to couple the two leads to each other
directly in addition to coupling them indirectly via the molecule, other antiresonance mech-
anisms, including Fano-like effects become possible. However detailed consideration of these
is beyond the scope of this paper.
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IV. MULTICHANNEL LEADS AND METALLIC CONTACTS

The above model has yielded an equation which predicts energies at which antiresonances
should occur in molecular wire systems. It was based on a highly idealised model which
assumed that there was only a single propagating electronic mode in the leads. This single
mode was only allowed to interact with the molecular orbitals on the molecule. Real leads,
whether organic or inorganic, will certainly not be as simple. However the two calculations
presented below show that the key predictions made by this simple model should apply
quantitatively to some more complex systems as well.

A good approximation to a 1D lead with only one orbital per site is conjugated trans-
polyacetylene. The π backbone of this polymer is orthogonal to the σ orbitals in the plane.
Second nearest neighbour π interactions between carbon atoms are also small compared to
nearest neighbour interactions. The conjugation of the polymer creates a band gap in the π
energy band of this system. If one inserts a molecule whose spectrum also consists of π and σ
molecular orbitals into the backbone of this structure in a suitably symmetric way, only the
π band of the polymer will interact with the π states of the molecule. It is important however
that the inserted molecule be long enough so that the π orbitals on the left polyacetylene
lead can not overlap with the π orbitals on the right lead. Otherwise electrons could hop
directly from the left lead to the right lead without passing through the inserted molecule.
Thus our simple model is applicable to a system consisting of π conjugated leads attached
to a molecular wire with π states if the wire is long enough that there is no direct interaction
between the leads and the geometry is such that σ - π hybridization between the leads and
molecular wire is forbidden. The antiresonance condition Eq. (21) should be able to predict
the antiresonances of these more complicated systems if the energies ǫj of the π molecular
orbitals are specified along with their interaction energies Wj,1 and W−1,j with the π mode
of the leads and the corresponding orbital overlaps Sj,1 and S−1,j.

We now proceed to calculate the electron transmission probability for two such model sys-
tems. Our calculations are based on a numerical method which determines the transmission
probability of a molecular wire coupled to multichannel tight-binding leads.10,31 The multi-
channel leads are constructed out of multi-atom unit cells which are then attached to the
molecular wire. The non-orthogonality within the leads and the molecule and also between
the leads and the molecule is treated with the use of our transformation. The calculation
proceeds by evaluating the band structure of the left and right leads from which it is then
possible to determine the propagating electron modes (Bloch states) {|Φ+

j 〉,Φ−

j } at a given
energy E. In these multichannel calculations the wavefunction for an electron incident in the
ith mode has the following boundary conditions. In the left lead, |Ψi

L〉 = |Φ+
i 〉+

∑

j rj,i|Φ−

j 〉.
On the molecule the wavefunction is a linear combination of the atomic orbitals on the
molecule. On the right lead the wavefunction is |Ψi

R〉 =
∑

j tj , i|Φ+
j 〉. With the above form

for the wavefunction we then solve Schrödinger’s equation H|Ψi〉 = E|Ψi〉 for the molecular
wire system to find the transmission amplitudes tj,i which connect the modes i in the left
lead to those in the right lead, j. The transmission probability is then found using

T (E) =
∑

i

∑

j

∣

∣

∣

∣

∣

vi
vj

∣

∣

∣

∣

∣

|ti,j|2 (22)

where the sum over j is over the rightward propagating modes in the left lead and the sum
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over i is over rightward propagating modes in the right lead. The velocity ratio now appears
since the velocities of modes in the left and right leads may be different. We now show
that provided the model system meets the assumptions of the analytical model presented
above, this more sophisticated numerical method yields results consistent with the analytical
predictions.

The first calculation utilises the trans-polyactylene polymer to model the left and right
ideal leads. We have calculated the band structure for these leads and this is shown in Fig.
2. The unit cell for the polyacetylene lead was taken to consist of two CH groups and the
group spacing was taken from Su et al32. The π band extends from around -14.5 eV to -5 eV
and has a band gap of around -1.4 eV starting at -11.2 eV. The upper π band is unoccupied.
The other energy bands are σ modes. In reality, it is well known from electron transport
studies of trans-polyacetylene that soliton and polaron formation is favoured when charge
is injected into the chain.32,33 We do not include such effects in the present calculation; here
the infinite polyacetylene chains are taken to be static periodic structures, they represent
ideal quasi-one dimensional leads. For this system we consider a molecular wire with three
σ states but with just a single π level to which the leads couple. The model parameters for
the molecular wire’s coupling of its π state to the π band of the leads are chosen so that our
analytic antiresonance condition (21) predicts an antiresonance in the occupied π energy
band and at an energy where only a π mode propagates in the left lead. If there were a
transmitted σ mode present at the energy of the antiresonance as well its transmission would
be superimposed on the π transmission which would possibly obscure the antiresonance. A
single π mode propagates through this system between the energies of -12 eV and -11.2 eV.
For our molecule with a single π state the antiresonance arising out of the interaction with
the left lead is predicted by (21) to occur at an energy of E = Wπ,−1/Sπ,−1. If we choose the
overlap to be 0.3 and an interaction energy of -3.525 eV between the π state of the molecule
and the π orbital on the nearest carbon atom on the lead, the antiresonance is predicted
to occur at -11.75 eV. Since the interaction energy is related to the overlap the two are
not completely arbitrary, however the interaction energy also depends on the energy of the
molecular orbital which in principle could be chosen to yield the above coupling energy. The
numerically calculated electron transmission probability for this system is shown by the solid
line in Fig. 3. The antiresonance is clearly seen at -11.75 eV. There is also a sharp drop off
in transmission at -12 eV where there are no longer any σ modes incident from the left lead.
Also shown (the dashed line in Fig. 3) is the result of the analytic calculation using the
(LS) equation above. This was done for a single mode lead with its energy band spanning
the width of the polyacetylene π band. The couplings and overlaps were chosen to be the
same as those used in the multi-mode case. The agreement between the two calculations is
quite good in the vicinity of the antiresonance.

The above calculation was for infinite polyactylene leads which are known to be insu-
lators. Thus performing a conductance experiment on such a system would be impossible.
Recent experiments on molecular wires have used metallic nanocontacts connected to the
molecule2. The system that we base our next calculation on is such a mechanically controlled
break junction (MCBJ) which is bridged by a single molecule. The metallic contacts will be
taken to be gold. We consider the molecular wire to consist of left and right π conjugated
chain molecules attached to what we will call the “active” molecule. The purpose of these
conjugated chains is to act as a filter to the many modes that will be incident from the
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metallic leads. For appropriate energies they will restrict the propagating electron mode to
be only π like. The electronic structure of the active molecule will be assumed to consist of
π and σ like molecular orbitals. The π backbone of the chain molecules will only interact
with the π orbitals of the active molecule and so our antiresonance condition should still be
applicable in this model.

The multi-channel gold leads for our calculation are created using a unit cell composed
of two layers of gold atoms in the (111) direction. Both layers have 20 gold atoms. Since the
Fermi energy for gold resides in the 6s band we only use 6s orbitals on our gold atoms. The
chain molecules consist of eight CH groups each. An atomic diagram of our system is shown
in Fig. 4. The chain molecules are bonded to clusters consisting of 10 gold atoms that form
the tips of the leads. The carbon atom nearest to the gold tip binds over the triangle of
gold atoms with a perpendicular distance of 1.6 Angstroms. This larger molecular segment
consisting of the gold tips, chain and active molecules is then attached to the left and right
unit cells of the multichannel gold leads. The chains are now finite polyacetylene and so
they now have discrete energy states rather than bands, the molecular states on these chains
are π like for energies in the polyacetylene π band. This gives rise to the filtering process
mentioned above. The active molecule is chosen to have two σ states and two π states.
Unlike the infinite leads in the preceding calculation the finite chain molecules will conduct.
Their π like orbitals will only couple to the two π states of the active molecule.

The Fermi energy for our gold leads is around -10 eV which lies within the π band.
Thus we would like an antiresonance to occur somewhere near this energy. Again, for this
model system, we make some ad-hoc choices for our parameters. The two active molecular
π states are chosen to have energies ǫa = −14.0 eV and ǫb = −11.0 eV. The interactions
between these states and the π orbitals on the carbon atoms directly adjacent to the active
molecule are Wa,−1 = W1,a = −3.0 eV, and Wb,−1 = −W1,b = 1.25 eV. The overlaps are
Sa,−1 = S1,a = 0.14 and Sb,−1 = −S1,b = −0.2. Solving the cubic equation to which
Eq. (21) reduces in this case, yields three real energies, one of them in the desired energy
range predicting an antiresonance at -10.08 eV. We now proceed to calculate the electronic
transmission through this system.

Recent work has studied electron transport through finite conjugated chains attached to
metallic leads with the inclusion of inelastic degrees of freedom.34 In that study it was shown
that electron injection onto the chains induces a small polaron defect. However, for chains
of small enough length (10 CH groups or less) it was found that this polaron defect did not
have an appreciable effect on the electron transport compared to the static case. To see
how atomic positional disorder on the chains affects the antiresonance, we have numerically
calculated the transmission probability for several different static atomic configurations of
the finite poly-acetylene chains and these are shown in Fig. 5a. The solid curve corresponds
to dimerized trans-polyacetylene. The short-dashed curve corresponds to an undimerized
chain. The long-dashed curve corresponds to chains with a static soliton. In all three curves
the antiresonance is present, although the magnitude varies in the regions outside of the
antiresonance. Although dynamic effects of polaron or soliton formation have not been
included in the present study, we have shown that the existence of the antiresonance is
not affected by the disorder on the conjugated chains or by whether or not they dimerize.
Based on the results presented in Ref.34 for short conjugated chains, we expect that the
antiresonance would still survive even with the inclusion of dynamical effects where the
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couplings and overlaps may vary.
In experiments on molecular wires the electric current I through the molecule is measured

as a function of voltage V . The differential conductance is then determined by taking the
derivative G = dI/dV . We calculate this differential conductance by using a generalisation
of the Landauer formula which relates the electric current to the transmission probability
T (E) that is given by Eq. (22). The finite voltage, finite temperature Landauer formula
that we use is

I(V ) =
2e

h

∫

∞

−∞

dE T (E)

(

1

exp[(E − µs)/kT ] + 1
− 1

exp[(E − µd)/kT ] + 1

)

(23)

where µs = ǫf + eV/2 and µd = ǫf − eV/2 and where ǫf is the common Fermi energy of the
leads and V is the applied bias voltage.

The differential conductance at room temperature, T = 293 K calculated from the above
current for two different choices of Fermi energy is shown in Fig. 5b. (It was calculated
using the transmission probability for the dimerized chain). The solid curve corresponds to
a choice of Fermi energy of -10.2 eV. Because it lies to the left of the antiresonance in a
region of strong transmission the conductance is strong at 0 V. It then drops at around 0.2
V when the antiresonance is crossed. The dashed curve was calculated using a Fermi energy
of -10.0 eV. It starts in a region of lower transmission and thus the antiresonance suppresses
the increase in current. After 0.2 V the large transmission to the left of the antiresonance
is sampled and the current rises sharply. So in both cases the antiresonance has served the
roll of lowering the conductance. It is conceivable to think of utilising more antiresonances
in a narrow energy range to create a more observable conductance drop. It should also be
pointed out that the differential conductance was calculated using the electron transmission
evaluated at 0 V. If one assumes a linear voltage drop between the leads this approximation
is reasonably valid since the “active” molecule is located roughly in the middle of the bridge
between the two leads and the site energies will not be shifted much by the applied field.
The coupling elements are assumed not to shift in the applied field. With these assumptions,
the roots of the antiresonance condition do not change significantly and so the location of
the antiresonance at -10.08 eV does not shift appreciably.

V. CONCLUSIONS

In this article we have presented a theoretical study that suggests that antiresonance
phenomena should be observable in the electrical conductance of molecular wires connected
to metallic nano-contacts. We solved analytically a simple model that exhibits antires-
onances and incorporates for the first time the effects of the non-orthogonality of tight
binding atomic orbitals on different atoms, an important feature of all molecular systems.
The non-orthogonality was treated exactly by defining a new energy dependent Hamiltonian
operator and corresponding eigenvector, and then expressing them in an orthonormal basis
of a new Hilbert space. This method was both simple and very general and should be useful
for treating a wide variety of problems which are best defined in a non-orthogonal basis. The
Lippmann-Schwinger equation for the transmission through the molecular wire was solved
in this new representation and an analytic description of the antiresonances was obtained.
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In our model the molecular antiresonances occur due to two different mechanisms. One of
these is interference between the contributions of different molecular orbitals as the elec-
tron propagates through the molecule. The other is the vanishing of the effective hopping
matrix element between a pair of atomic orbitals that is due to the non-orthogonality of
those orbitals. In both cases taking the non-orthogonality into account exactly is necessary
to obtain reliable results. The antiresonance condition that we derive and that determines
the energies where the transmission is zero, only depends on the molecular Green’s function
and on the energy dependent interaction energies of the molecular states with the leads.

We have shown that this simple analytically solvable model has predictive power for
more complex systems by performing detailed numerical calculations. The first of these
calculations was for a system on which conductance measurements are not feasible because
of the insulating nature of the leads. However it demonstrated how a molecular wire with
a single π state can generate a transmission antiresonance due to the cancellation of the
effective coupling between the lead and the molecule as a consequence of the mutual non-
orthogonality of atomic orbitals. The second calculation was for a system in which molecular
antiresonances should in principle be accessible to experiment: a molecular wire bridging
a break junction between two gold nanocontacts. In it we have suggested the use of π
conjugated chains to act as mode filters. The use of these filters could be useful in most
molecular wire systems where limiting the number of propagating modes to just one would
be advantageous. For filters connected to an “active” molecule it is possible to create an
antiresonance near the Fermi energy of the metal contacts. The antiresonance was predicted
to manifest itself by producing a drop in the differential conductance. In both cases the
location of the antiresonance found in the numerical simulations was in agreement with the
prediction of our simple analytic model.

We thank R. Akis for helpful correspondence regarding antiresonances in semiconductor
stub tuners. This work has been supported by NSERC.

VI. APPENDIX: GREEN’S FUNCTION FOR IDEAL LEADS

The ideal 1D leads are treated using TBA, where the site energy is α, and the nearest
neighbour hopping energy is β. The overlap between nearest neighbour lead sites is ω and
is used to define an energy dependent hopping parameter βE = β−Eω for an electron with
energy E. This allows us to use an effective orthonormal basis. The reduced wavevector, y,
of a propagating electron can be found from the equation ǫ(y) = α+ 2βE cos(y). The leads
are semi-infinite. Because of this the boundary conditions placed on the wavefunction are
such that it is zero on site 0. Thus a valid choice for an incident electron state is a linear
combination of a forward and backward propagating Bloch state, given by,

|Φo(y)〉 =
∞
∑

n=1

(Φo(y))n|n〉 =
∞
∑

n=1

1√
2N

(eiyn − e−iyn)|n〉 (24)

The matrix element for the free propagator of the lead between sites n and n′ is given
by,

(GR
o )n,n′ =

∑

y

(Φo(y))n(Φo(y))
∗

n′

E − ǫ(y) + iδ
(25)
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Using the above expression for (Φo(y))n, the matrix element becomes,

(Go(E))n,n′ =
1

2N

∑

y

eiy(n−n′) + eiy(n
′
−n) − eiy(n+n′) − eiy(−n−n′)

E − ǫ(y) + iδ
(26)

As N becomes large the above summation goes over to an integral which is given by,

(GR
o )n,n′ =

1

2Na

L

2π

∫ π

−π

eiy(n−n′) + eiy(n
′
−n) − eiy(n+n′) − eiy(−n−n′)

E − ǫ(y) + iδ
dy (27)

where L = Na and a is the lattice parameter of the chain. Only the matrix element on the
first site in the lead is needed, since this is the only site which is coupled to the molecule,
so n and n′ are set equal to 1. Substituting the expression for ǫ(y), the following integral is
arrived at,

(GR
o )1,1 =

1

8πβE

∫ π

−π

2(1− e2iy)
E−α
2βE + iδ

2βE − cos y
dy (28)

This integral can be evaluated by performing contour integration, and the result is,

(GR
o )1,1 =

1

2βE

(1− ei2yo)

sin yo
(29)

where yo satisfies the condition (E−α)
2βE − cos yo = 0.
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FIG. 1. A schematic diagram for the idealized model of a molecular wire, consisting of left and

right single channel leads and the molecule. These three systems are described by the Hamiltonian

H0, with 〈n|H0|n〉 = α and 〈n|H0|m〉 = β for n,m on the left or right leads with m = n ± 1. On

the molecule 〈φj |H0|φk〉 = ǫjδj,k. The molecular orbitals are coupled to the adjacent lead sites by

W , with 〈−1|W |φj〉 = W−1,j etc..
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FIG. 2. Band structure for conjugated polyacetylene calculated using extended Hückel. The π

band extends from -14.5 eV to -5 eV and has a band gap starting at -11.2 eV.

19



ht]

−12.4 −12.2 −12.0 −11.8 −11.6 −11.4
E (eV)

10
−16

10
−12

10
−8

10
−4

10
0

T
(E

)

Emberly & Kirczenow Fig. 3

FIG. 3. (Solid line) transmission plot for a molecule with a single π state connected to poly-

acetylene leads. (Dashed line) transmission plot calculated using analytic theory for similar system.
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Emberly & Kirczenow Fig. 4

FIG. 4. Atomistic diagram for the MCBJ and molecular wire system. The first unit cells of

the left and right (111) leads are shown as the last two layers of gold atoms on either side. Also

shown are the (CH)8 chain molecules and “active” molecule. These are attached to two clusters of

10 gold atoms that form the tip. The perpendicular distance between the the last C atoms on the

chains and the triangle of gold atoms is 1.6 Angstroms.
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