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We study a two-dimensional honeycomb lattice gas model
with both nearest- and next-nearest-neighbor interactions in
a staggered field, which describes the surface of stoichiomet-
rically binary crystal. We calculate anisotropic step tension,
step stiffness, and equilibrium island shape, by an extended
random walk method. We apply the results to Si(111) 7×7
reconstructed surface and high-temperature Si(111) 1×1 sur-
face. We also calculate inter-step interaction coefficient.

PACS numbers: 68.35.Md, 68.35.-p, 50.50.+q, 64.60.-i

I. INTRODUCTION

Recent developments of the experimental techniques
such as STM (scanning-tunneling microscopy) [1], LEEM
(low-energy electron microscopy) [2] and REM (reflection
electron microscopy) [3] make it possible to observe a step
on a crystal surface in the wide range of the length scales.
However, the connection among quantities measured in
different scales has not been clarified yet.
In Ref. [4], for two-dimensional (2D) square-lattice

Ising model with both nearest- and next-nearest-neighbor
(nn and nnn) interactions, we calculated anisotropic
interface tension and interface stiffness by the imagi-
nary path-weight (IPW) method which is an extended
Feynman-Vdovichenko’s random walk method [5–8]. In
the method, the overhang structure in a step is taken
into account, which leads to high accuracy of the results
in a wide range of temperature.
We applied the results to Si(001) surface based on the

microscopic kink energy obtained by the Swartzentruber
et al. [9]. The Ising result gave a satisfactory explanation
for experimentally measured step tension γ, step stiffness
γ̃ and equilibrium island shape obtained by Bartel t et

al. [10] on Si(001) surface.
In the present paper, we consider the honeycomb lat-

tice Ising system in a staggered field, with both nn and
nnn interactions, to calculate interface tension, interface
stiffness, island shape and the coefficient of step inter-
action by the IPW method. We aim at applying the
results to Si(111) 7×7 reconstructed surfaces and high-
temperature Si(111) 1×1 surface.

II. MODEL HAMILTONIAN

We consider a honeycomb lattice with 2N sites. We
decompose the lattice into two triangular sublattices des-
ignated by A and B. On the A-sublattice, we define the
occupation variable CAi which takes 1 (present) or 0 (ab-
sent) at the site i. Similarly, we define CBj for the B-
sublattice.
The lattice gas Hamiltonian HLG is then written as

HLG = −4J1
∑

<i,j>

[CAiCBj −
1

2
(CAi + CBj)]

−4JA2

∑

<i,j>

[CAiCAj −
1

2
(CAi + CAj)]

−4JB2

∑

<i,j>

[CBiCBj −
1

2
(CBi + CBj)]

−ǫA

N
∑

i=1

CAi − ǫB

N
∑

i=1

CBi, (2.1)

where 4J1 is the bond energy between A-atom and B-
atom of the nn sites, 4JA2, and 4JB2 are the bond ener-
gies between nnn atoms. ǫA(ǫB) is the “surface chemical
potential” of A-atom (B-atom). We consider the simplest
case where ǫA and ǫB are given by

ǫA = µA,gas(PA, PB, T )− µA,surf(T ),
ǫB = µB,gas(PA, PB, T )− µB,surf(T ).

}

(2.2)

In the above, µA,gas(PA, PB, T ) is the chemical poten-
tial of A-atom in the gas, PA is the partial pressure
of A-atom in the gas phase (similarly for µB,solid(T ),
µB,gas(PA, PB, T ) and PB); µA,surf(T ) and µB,surf(T ) are
expressed as

µA,surf = ∆E(T ) + µsolid(T ),

µB,surf = −∆E(T ) + µsolid(T ), (2.3)

where ∆E(T ) has been introduced as the difference
from the chemical potential of atoms in the bulk solid
µsolid(T ).
Let us consider the bulk phase-coexistence state of the

stoichiometrically binary system. Total chemical poten-
tial of the system has to be unchanged under removal of
one pair of AB atoms from crystal into vapor and vice-
versa. Hence, as the coexistence condition, we have
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µA,gas(PA, PB, T ) + µB,gas(PA, PB, T )

= 2µsolid(T ). (2.4)

Combining (2.2)– (2.4), we obtain

ǫB = −ǫA. (2.5)

This condition also means that, in the lattice gas Hamil-
tonian (2.1), the total energy of the all-occupied state is
the same at that of the all-empty state.
Let us introduce the Ising spin variables {σAi} and

{σBi} as

σAi = 2

(

CAi −
1

2

)

, σBi = 2

(

1

2
− CBi

)

. (2.6)

Substituting (2.6) into the Hamiltonian (2.1) together
with (2.5), we have the Ising AF Hamiltonian H:

H = HLG +Nz6J1 +Nz3(JA2 + JB2)/2,

= J1
∑

<i,j>

σAiσBj − JA2

∑

<i,j>

σAiσAj

−JB2

∑

<i,j>

σBiσBj −H
N
∑

i=1

σAi −H
N
∑

i=1

σBi

+Nz6J1 +Nz3(JA2 + JB2)/2,

H = ǫA/2 (2.7)

where z6 = 3 and z3 = 6 are the coordination numbers
of honeycomb lattice and triangular lattice, respectively.

III. IMAGINARY PATH-WEIGHT METHOD

We calculate interface quantities by a random walk
method with imaginary path-weight(IPW) [6–8]. We re-
gard an interface with zigzag configuration as a trace of
2D free random walk.
Consider an interface which connects site O and P .

We denote the distance between site O and P by R (Fig.
1). The interface of the two-dimensional Ising model is
made by fixing the boundary spins as depicted in Fig. 1.
Let us denote the partition function the Ising model with
and without interface by Z+−

R (θ) and Z++
R , respectively,

where θ is the slant angle of an interface relative to a lat-
tice axis. [11,12] The interface tension γ(θ, T ) is defined
as

γ(θ, T ) = −kBT lim
R→∞

1

R
ln

[

Z+−

R (θ)

Z++
R

]

, (3.1)

where Z+−

R (θ)/Z++
R is regarded as the interface partition

function G.
We apply Vdovichenko’s method [5] to deal with

the low-temperature diagrammatic expansion of Z+−

R (θ)

and Z++
R . The method, which originally treated the

high-temperature expansion of the partition function,

also works for low-temperature expansion to evaluate
weighted sum over all possible domain-wall configura-
tions. The essential point in the Vdovichenko’s method
is introduction of the imaginary factor eiφ/2 at each turn
(with angle φ) of the random walks of the domain wall.
With this simple recipe, the problem reduces to a free
random walk problem on a lattice.
We see that Z++

R equals weighted sum over possible

configurations of closed domain walls; and Z+−

R (θ) equals
weighted sum over possible configurations of closed do-
main walls plus a single “open” domain wall travers-
ing the lattice. In evaluating Z+−

R (θ) by Vdovichenko’s
method, the free random walk nature allows us to “de-
couple” the open domain wall from closed domain walls.
[6,7] Therefore, in the limit of R → ∞, the interface par-
tition function is equivalent to the “edge-to-edge” lattice
Green’s function of the free random walk with running
on the dual lattice. [7] Thus, in the limit of R → ∞, the
interface partition function G is written as [7]

G = exp(−γ(θ)R/kBT )

=
1

(2π)2

∫ π

−π

∫ π

−π

dkxdky
eikR

D(k)
, (3.2)

where the D-function is defined as

D(k) = det[1− Â(k)]. (3.3)

Here, Â(k) is the Fourier component of the connectivity
matrix A(r) which characterizes the random walk.
The above-described imaginary path-weight random

walk method to calculate γ(θ, T ) is exact only for solv-
able cases. However, we have verified that the method
works fairly well also for non-solvable cases [4,8,13,14].
After evaluating the integral by the pure imaginary

saddle point ω = (ωx, ωy), we obtain a set of equations
as

D(iω) = 0,

∂D(iω)

∂ωy
/
∂D(iω)

∂ωx
= tan θ, (3.4)

and

γ(θ, T ) = kBT (ωx cos θ + ωy sin θ). (3.5)

From the thermodynamical theory on equilibrium crystal
shape(island shape) [16], we have,

ωx = λy/kBT , ωy = λx/kBT , (3.6)

where λ is the Lagrange multiplier associated with the
volume-fixing constraint in the Wulff construction, and
x and y are the Cartesian coordinates describing the 2D
island shape. Thus, we obtain the island shape directly
from (3.4) with (3.5). Eq. (3.6) gives relation between
the interface orientation angle θ and the point (x, y) on
the island shape.
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The interface stiffness, which we denote by γ̃(θ), is
given by [13]

γ̃(θ) = γ(θ) +
∂2γ(θ)

∂θ2

= kBT
√

D2
x +D2

y · [−Dxx sin
2 θ

+Dxy sin 2θ −Dyy cos
2 θ]−1, (3.7)

where

Dx =
∂D

∂ωx
, Dy =

∂D

∂ωx
,

Dxx =
∂2D

∂ω2
x

, Dyy =
∂2D

∂ω2
y

,

Dxy = n
∂2D

∂ωxωy
. (3.8)

The one-dimensional interface of the lattice gas corre-
sponds to a step on the vicinal surface. For the vicinal
surfaces, the surface free energy per projected area, which
we denote by f(ρ), is written as [17–19]

f(ρ) = f(0) + γ(θ)ρ+ B(θ)ρ3,

ρ =
1

ah
tanφ, (3.9)

where ρ is the step density, φ is the tilted angle of the
vicinal surface, and ah is the step height, and B(θ) is the
inter-step interaction coefficient. We have [20,21]

B(θ) =
π2

6

(kBT )
2

γ̃(θ)
λ2(g0),

λ(g0) =
1

2

(

1 +

√

1 +
4γ̃(θ)

(kBT )2
g0

)

. (3.10)

where g0 is the coupling constant of the long range inter-
action between the steps of the form g0/r

2
s (rs is the step

separation distance). Note that, in the limit of g0 → 0,
the factor λ(g) approaches unity, leading to [18,19]

B(θ) =
π2

6

(kBT )
2

γ̃(θ)
. (3.11)

Hence, the stiffness (3.7) can be utilized in determining
the inter-step interaction coefficient B(θ).

IV. THE CONNECTIVITY MATRIX AND THE
D−FUNCTION

A. The honeycomb lattice gas model with next
nearest neighbor interaction

We apply the IPW method to calculate interface quan-
tities of the nnn Ising model on the honeycomb lattice

described by Hamiltonian (2.1,2.7) (Fig. 2). The Fourier
components of the connectivity matrix (Am,n) are

A1,1 = exp(ikx)W/WH ,

A2,1 = exp(ikx)W/WHrp,

A3,1 = exp(ikx)W/WHrprpWa,

A5,1 = exp(ikx)W/WHrmrmWb,

A6,1 = exp(ikx)W/WHrm,

A1,2 = exp(ikx/2 + ikycy)W ·WHrm,

A2,2 = exp(ikx/2 + ikycy)W ·WH ,

A3,2 = exp(ikx/2 + ikycy)W ·WHrp,

A4,2 = exp(ikx/2 + ikycy)W ·WHrprpWb,

A6,2 = exp(ikx/2 + ikycy)W ·WHrmrmWa,

A1,3 = exp(−ikx/2 + ikycy)W/WHrmrmWb,

A2,3 = exp(−ikx/2 + ikycy)W/WHrm,

A3,3 = exp(−ikx/2 + ikycy)W/WH ,

A4,3 = exp(−ikx/2 + ikycy)W/WHrp,

A5,3 = exp(−ikx/2 + ikycy)W/WHrprpWa,

A2,4 = exp(−ikx)W ·WHrmrmWa,

A3,4 = exp(−ikx)W ·WHrm,

A4,4 = exp(−ikx)W ·WH ,

A5,4 = exp(−ikx)W ·WHrp,

A6,4 = exp(−ikx)W ·WHrprpWb,

A1,5 = exp(−ikx/2− ikycy)W/WHrprpWa,

A3,5 = exp(−ikx/2− ikycy)W/WHrmrmWb,

A4,5 = exp(−ikx/2− ikycy)W/WHrm,

A5,5 = exp(−ikx/2− ikycy)W/WH ,

A6,5 = exp(−ikx/2− ikycy)W/WHrp,

A1,6 = exp(ikx/2− ikycy)W ·WHrp,

A2,6 = exp(ikx/2− ikycy)W ·WHrprpWb,

A4,6 = exp(ikx/2− ikycy)W ·WHrmrmWa,

A5,6 = exp(ikx/2− ikycy)W ·WHrm,

A6,6 = exp(ikx/2− ikycy)W ·WH ,

others = 0, (4.1)

where i2 = −1, cy =
√
3/2, W = exp[−2(J1 +

2JA2 + 2JB2)/(kBT )], WH = exp[−2H/(3kBT )], Wa =
exp[4JA2/(kBT )], Wb = exp[4JB2/(kBT )], rp =
exp(iπ/6) and rm = exp(−iπ/6).
Then, the D-function defined by (3.3) is

D(kx, ky) = M + c1 cosh(kx) +

c1 cosh(kx/2− cyky) + c1 cosh(kx/2 + cyky) +

c2 cosh(2kx) + c2 cosh(kx − 2cyky) +

c2 cosh(kx + 2cyky) + c3 cosh(2cyky) +

c3 cosh(3kx/2− cyky) + c3 cosh(3kx/2 + cyky) +

s1 sinh(kx) + s2 sinh(2kx)−
s2 sinh(kx − 2cyky) + s4 sinh(kx/2− cyky) +

s4 sinh(kx/2 + cyky)− s2 sinh(kx + 2cyky), (4.2)
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where

M = 1 + 3W 2 + 4W 6 −W 3/W 3
H −W 3W 3

H −
12W 6Wa + 9W 6W 2

a + 4W 6W 3
a +

(W 3W 3
a )/W

3
H +W 3W 3

HW 3
a − 6W 6W 4

a +

W 6W 6
a − 12W 6Wb + 30W 6WaWb +

(3W 3WaWb)/W
3
H + 3W 3W 3

HWaWb −
18W 6W 2

aWb − 6W 6W 3
aWb +

6W 6W 4
aWb + 9W 6W 2

b −
18W 6WaW

2
b + 3W 4W 2

aW
2
b +

9W 6W 2
aW

2
b + 4W 6W 3

b +

(W 3W 3
b )/W

3
H +W 3W 3

HW 3
b −

6W 6WaW
3
b + 2W 6W 3

aW
3
b −

6W 6W 4
b + 6W 6WaW

4
b +W 6W 6

b , (4.3)

c1 = W 2/W 2
H −W 4/W 2

H −
W/WH −WWH +W 2W 2

H −
W 4W 2

H + (W 4Wa)/W
2
H +W 4W 2

HWa +

(W 4W 2
a )/W

2
H +W 4W 2

HW 2
a −

(W 4W 3
a )/W

2
H −W 4W 2

HW 3
a +

(W 4Wb)/W
2
H +W 4W 2

HWb −
(W 2WaWb)/W

2
H − (W 4WaWb)/W

2
H +

(2W 3WaWb)/WH − (2W 5WaWb)/WH +

2W 3WHWaWb − 2W 5WHWaWb −
W 2W 2

HWaWb −
W 4W 2

HWaWb + (3W 5W 2
aWb)/WH +

3W 5WHW 2
aWb − (W 5W 4

aWb)/WH −
W 5WHW 4

aWb + (W 4W 2
b )/W

2
H +

W 4W 2
HW 2

b +

(3W 5WaW
2
b )/WH + 3W 5WHWaW

2
b −

(3W 5W 2
aW

2
b )/WH − 3W 5WHW 2

aW
2
b −

(W 4W 3
b )/W

2
H −W 4W 2

HW 3
b −

(W 5WaW
4
b )/WH −W 5WHWaW

4
b , (4.4)

c2 = [W 3(1 +W 2
H)(−1 +Wa)(−1 +Wb)]/WH , (4.5)

c3 = 2W 4(−1 +Wa)(−1 +Wb)(−1 +

Wa +Wb +WaWb), (4.6)

s1 = −[W (−1 +WH)(1 +WH)(W −
W 3 +WH +WW 2

H −W 3W 2
H +

W 3Wa +W 3W 2
HWa +W 3W 2

a +

W 3W 2
HW 2

a −W 3W 3
a −W 3W 2

HW 3
a +

W 3Wb +W 3W 2
HWb −

WWaWb −W 3WaWb −
2W 2WHWaWb + 2W 4WHWaWb −

WW 2
HWaWb −W 3W 2

HWaWb −
3W 4WHW 2

aWb +W 4WHW 4
aWb +

W 3W 2
b +W 3W 2

HW 2
b −

3W 4WHWaW
2
b + 3W 4WHW 2

aW
2
b −

W 3W 3
b −W 3W 2

HW 3
b +

W 4WHWaW
4
b )]/W

2
H , (4.7)

s2 = −[W 3(−1 +WH)(1 +WH)(−1

+Wa)(−1 +Wb)]/WH , (4.8)

s4 = [W (−1 +WH)(1 +WH)(W −
W 3 +WH +WW 2

H −W 3W 2
H +

W 3Wa +W 3W 2
HWa +

W 3W 2
a +W 3W 2

HW 2
a −

W 3W 3
a −W 3W 2

HW 3
a +

W 3Wb +W 3W 2
HWb −

WWaWb −W 3WaWb −
2W 2WHWaWb + 2W 4WHWaWb −
WW 2

HWaWb −W 3W 2
HWaWb −

3W 4WHW 2
aWb +W 4WHW 4

aWb +

W 3W 2
b +W 3W 2

HW 2
b −

3W 4WHWaW
2
b + 3W 4WHW 2

aW
2
b −

W 3W 3
b −W 3W 2

HW 3
b +

W 4WHWaW
4
b )]/W

2
H . (4.9)

We substitute the D-function into (3.4) and solve them
with respect to (ωx, ωy) as a function of θ. Substituting
the solution (ωx(θ), ωy(θ)) into (3.5)–(3.8), we obtain the
interface tension, 2D island shape and the interface stiff-
ness.
Note that the D-function has the mirror symmetry

with respect to kx-axis, i. e. D(kx, ky) = D(kx,−ky).
Therefore, the island shape has the mirror symmetry
with respect to kx-axis. That is, ωy(0) = 0 and ωy(π) = 0
are the solutions of (3.4). At the orientation correspond-
ing to θ = 0 or θ = π, the form (4.2) reduces to

D(kx, 0) = M + c3 + c1 cosh(kx) +

2c1 cosh(kx/2) + +c2 cosh(2kx) +

2c2 cosh(kx) + 2c3 cosh(3kx/2) +

s1 sinh(kx) + s2 sinh(2kx)−
2s2 sinh(kx) + 2s4 sinh(kx/2). (4.10)

From the solution of D(kx, 0) = 0 (ωy(0) = ωy(π) = 0),
we obtain cosh(ωx(0)/2) and cosh(ωx(π)/2). Then, from
(3.5), step tension becomes

γ(0) = 2kBT cosh
−1(ωx(0)/2),

γ(π) = 2kBT cosh
−1(ωx(π)/2). (4.11)

In the T → 0 limit, step tensions (step free energy per
lattice constant) becomes,
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γ(0) = Min[2J1 + 4J2 +
2

3
H,

2(2J1 + 4J2 −
2

3
H)],

γ(π) = Min[2J1 + 4J2 −
2

3
H,

2(2J1 + 4J2 +
2

3
H)], (4.12)

where Min[a, b] denotes the smaller one in {a, b}.
From (3.7), the step stiffness becomes,

γ̃(0) = kBT [|c1 sinh(ωx(0)/2) +

(c1 + 2c2) sinh(ωx(0)) +

3c3 sinh(3ωx(0)/2) + 2c2 sinh(2ωx(0)) +

s4 cosh(ωx(0)/2) + (s1 + 2s2) cosh(ωx(0)) +

2s2 cosh(2ωx(0))|]/[2c2y(2c3 +
c1 cosh(ωx(0)/2) + 4c2 cosh(ωx(0)) +

c3 cosh(3ωx(0)/2) + s4 sinh(ωx(0)/2)−
4s2 sinh(ωx(0)))], (4.13)

γ̃(π) = kBT [|c1 sinh(ωx(π)/2) +

(c1 + 2c2) sinh(ωx(π)) +

3c3 sinh(3ωx(π)/2) + 2c2 sinh(2ωx(π)) +

s4 cosh(ωx(π)/2) + (s1 + 2s2) cosh(ωx(π)) +

2s2 cosh(2ωx(π))|]/[2c2y(2c3 +
c1 cosh(ωx(π)/2) + 4c2 cosh(ωx(π)) +

c3 cosh(3ωx(π)/2) + s4 sinh(ωx(π)/2)−
4s2 sinh(ωx(π)))]. (4.14)

In Fig. 3, we show an example of equilibrium island
shape and a polar graph of step stiffness at J1 = 165meV,
J2/J1 = −0.1, lattice constant= 3.84Å and H/J1 = 0.31.
We also show the temperature dependence of step ten-
sion, step stiffness, the coefficient of step interaction
(3.11) where g = B/a3h, ah = 3.14Å and g0 = 0.
In the absence of nnn interactions, Wa and Wb reduce

to unity. The D-function (4.2), then, becomes

D(kx, ky) = M + c1 cosh(kx) +

2c1 cosh(kx/2− cyky) + c1 cosh(kx/2 + cyky) +

s1 sinh(kx) + s4 sinh(kx/2− cyky) +

s4 sinh(kx/2 + cyky), (4.15)

M = 1 + 3W 2 + 3W 4 +W 6 + 4W 3(W 3
H +

1/W 3
H),

c1 = −(1−W )2W (1 +W )2(1 +W 2
H)/WH ,

s1 = −s4

= (1−W )2W (1 +W )2(1 +WH)(1 −
WH)/WH ,

c2 = c3 = s2 = 0, (4.16)

which agrees with the D-function given in Ref. [13].

B. The case of H = 0

At H = 0, s1, s2 and s4 in (4.2) become zero, since
WH reduces to unity. The D-function, then, has the
symmetry D(kx, ky) = D(±kx,±ky). The island shape
has the mirror symmetry with respect to the ky-axis too;
ωx(π/2) = ωx(3π/2) = 0 becomes the solution of (3.4).
The equation

D(0, ky) = M + c1 + c2 + 2(c1 + c3) cosh(cyky) +

(2c2 + c3) cosh(2cyky)

= 0, (4.17)

is solved, in terms of cosh(cyωy) (ky = iωy), as

cosh(cyωy) = − c1 + c3
2(2c2 + c3)

+

√

(c1 + c3)2

4(2c2 + c3)2
+

−c1 + c2 + c3 −M

2(2c2 + c3)

≡ z. (4.18)

By use of this solution, we obtain step tension as

γ(π/2) = γ(3π/2)

=
kBT

cy
cosh−1(z), (4.19)

and the step stiffness as

γ̃(π/2) = γ̃(3π/2)

=
−4kBTcy

√
z2 − 1|c1 + c3 + 2(2c2 + c3)z|

2c1 + 4c2 + (c1 + 9c3)z + 8c2z2
. (4.20)

In the case of JA2 = JB2 = 0, the D-function reduces
to that of the exact solution for the nn honeycomb lattice
system [22].
That is,

D(kx, ky) = M + c1 cosh(kx) + c1 cosh(kx/2− cyky) +

c1 cosh(kx/2 + cyky),

M = (1 +W )2(1 − 2W + 6W 2 −
2W 3 +W 4),

c1 = −2(1−W )2W (1 +W )2,

c2 = c3 = s1 = s2 = s4 = 0. (4.21)

At θ = 0, we obtain an explicit form of the solutions as

ωy(0) = 0,

cosh(ωx(0)/2) =
1

2

√

3− 2M/c1 −
1

2
. (4.22)

Also, at θ = π/2, we have

ωx(π/2) = 0,

cosh(cyωy(π/2)) =
1

2
(−M/c1 − 1). (4.23)
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Hence, the interface tensions become

γ(0) = 2kBT ln(my),

my = −1

2
+

1

2
z2 +

1

2

√

(z2 − 3)(z2 + 1),

z2 =
(1 +W )

√
1−W +W 2

√
W |1−W |

(4.24)

γ(π/2) = 1/cy · kBT ln[(−2 + 1/W +W )/2]. (4.25)

Due to the Wulff’s theorem, γ(0) and γ(π/2) give the
linear size of the island shape along x- and y-direction.
The explicit form of interface stiffness becomes

γ̃(0) =
kBT

c2y

z2
√−3− 2z2 + z2

2(z2 − 1)
(4.26)

γ̃(π/2) = 4kBTcy

× (1 +W 2)|1− 4W +W 2|
1 + 4W − 6W 2 + 4W 3 +W 4

. (4.27)

C. Triangular lattice

In the limit of J1 → 0, the system becomes two inde-
pendent triangular lattice gases. In this case, the random
walk treatment on the honeycomb lattice may not be
good enough. In fact, (4.2) in this limit gives D-function
slightly different from the known exact one on the trian-
gular lattice. Hence, we need a separate study to treat
this case.
The D-function of the triangular lattice becomes

D3(kx, ky) = M − c1 cosh(ky)− c2 cosh(
√
3kx/2− ky/2)−

c3 cosh(
√
3kx/2 + ky/2), (4.28)

where

M = 1 +W 2
1W

2
2 +W 2

1W
2
3 +W 2

2W
2
3 ,

c1 = 2(1−W1)(1 +W1)W2W3,

c2 = 2W1W2(1−W3)(1 +W3),

c3 = 2W1(1 −W2)(1 +W2)W3, (4.29)

W1 = exp[−2J1/(kBT )], W2 = exp[−2J2/(kBT )], and
W3 = exp[−2J3/(kBT )]. The equations agree with the
known exact one [22]. Note that the form of D3(kx, ky)
(4.27) is essentially the same as D(kx, ky) of nn honey-
comb lattice (4.20). Therefore, the island shape of trian-
gular lattice obtained from (3.4) is the same as the one
of honeycomb lattice. The difference is the temperature
dependence of coefficients. When J1 = J2 = J3 = J ,
i.e., W1 = W2 = W3 = W , D-function has a symmetry
of D3(kx, ky) = D3(±kx,±ky). Hence, we have explicit
forms of γ and γ̃ for special orientations. Therefore, we
have

γ3(0) =
2√
3
kBT ln[

1−W 2

2W 2
], (4.30)

γ3(π/2) = 2kBT ×

cosh−1

(

−1

2
+

1

2

√

3 +
1 + 3W 4

W 2(1−W )(1 +W )

)

. (4.31)

The step stiffness is written as

γ̃3(0) =
2
√
3kBT (1 +W 2)|1 − 3W 2|

1 + 6W 2 − 3W 4
(4.32)

γ̃3(π/2) =
2kBT

3
×

√

(1 + 3W 2)(1 + 3W 4 − 2Wz1 + 2W 3z1)

W (z1 −W )|1 −W 2| ,

z1 =

√

1 + 3W 2

1−W 2
. (4.33)

V. APPLICATION TO SI(111) SURFACE

A. The 7×7 reconstructed surface

At temperatures lower than the 7×7↔ 1×1 transition
temperature (∼1130 K), Si(111) surface forms 7×7 recon-
structed structure called DAS (dimer adatom stacking-
fault) structure [23]. The unit cell of the DAS structure
is divided into the faulted half (FH) and the unfaulted
half (UH) [24], each of which forms a triangular lattice.
It has been observed that the step structure is well de-
scribed by the combination of the FH unit and UH unit
[25]. We consider, therefore, a pair of triangular sub-
lattices, where the one represents the FH lattice system,
and the other represents the UH one. Consequently, the
system becomes equivalent to a stoichiometrically binary
lattice gas on a honeycomb lattice with nn interactions,
where the inequivalent sites of the lattice gas model are
coarse-grained representations of these two halves of the
7 × 7 unit cell. Therefore, we can use (4.15) and (4.16)
to calculated step quantities. In Fig. 2, we regard closed
circles as FH units, and open circles as UH units. We set
lattice constant = 3.84 × 7 Å, and step height = 3.14Å.
We introduce the step running direction angle θ so that
a straight step with θ = 0 corresponds to (112̄) step (Fig.
4).
In spite of the extensive experimental studies on

Si(111)7×7 structure, the values of kink energy and step
tension have not been settled yet. As one trial, we adopt
the result of Eaglesham et al. [26] where step tension γ at
700 ◦C was obtained from the equilibrium crystal shape
(ECS) of Si: γ111 = 5.7 × 10−11 J/m for (111) surface
and γ100 = 1.0 × 10−11 J/m for (100) surface. Due to
the 2 × 1 reconstruction, this value of γ100 corresponds
to the mean value of the SA-step tension and the SB-step
tension, and is consistent with the one calculated in our
previous papers [4,15].
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We choose kink energy so that the calculated mean
value of step tension for (21̄1̄) and (2̄11) at 700 ◦C re-
produces the above mentioned value 5.7 × 10−11 J/m
(= 36 meV/Å). In addition, the experimental observa-
tion of the island shape (and also the shape of spiral
step) gives further information on the kink energy, due
to the Wulff’s theorem for 2D ECS. Let hn be the dis-
tance between the center (= Wulff point) of the ECS
(island shape, in our case) and the tangential line of the
ECS at a position on the ECS curve, where n is the
interface normal vector at the position. The Wulff’s the-
orem states that the ratio hn/γn (γn: interface ten-
sion, or step tension in our case) is n-independent, lead-
ing to a relation γn/γn′ = hn/hn′ for arbitrary n

and n
′. From the photographs of the experimental ob-

servation [27,28], we have h2̄11/h21̄1̄ = 1.2. This ra-
tio gives the ratio between the step free energies cor-
responding to these directions. At such low temperature
where the observation was made, these step free ener-
gies are well approximated by the step formation ener-
gies (2J + 2H/3) and (2J − 2H/3) (see (4.12)), giving
us h2̄11/h21̄1̄ = 1.2 = (2J + 2H/3)/(2J − 2H/3) which
amounts to H/J = 0.31.
We then set J = 0.475eV and H = 0.15eV. The kink

energy becomes 1.05eV= 2J + 2H/3 for (21̄1̄) step and
0.85eV= 2J − 2H/3 for (2̄11) step, which are smaller
than but is in the same order of magnitude of the ones
reported in Refs. [29,21].
The difference in the on-site energy between the UH

and FH, is then EFH −EUH = 4H = 0.59eV. In the first
principles study of Meade and Vanderbilt [30], surface
energies of the Si(111) surface for various structures are
calculated: For example, 1.24 eV/1 × 1 for the 2 × 2-
adatom structure, and 1.27 eV/1×1 for the 2×2-adatom
(faulted) structure. From these values, we can estimate
EFH −EUH to be (1.27− 1.24)× 24 ∼ 0.7eV which is in
reasonable agreement with our value 0.59eV.
In Fig. 5, we show equilibrium island shape at 400

◦C and 850 ◦C, and the temperature dependence of
step tension, step stiffness and step interaction coeffi-
cient g = B/a3h (see (3.11)). The step tension is almost
constant below 1130K, because the temperature is very
low as compared with the lattice-gas melting tempera-
ture of the model (∼ 8300K). On the other hand, the step
stiffness strongly depends on temperature in the same re-
gion. The step stiffness for (21̄1̄) step increases rapidly as
temperature decreases. While, the step stiffness of (01̄1)
step becomes smaller and smaller and converges to zero
at zero temperature.
Note that a similar analysis can be made for n×n DAS

structure. From the photographs of small island of 5× 5
structure [28], we find that the island shape has a six-
fold rotational symmetry in contrast to the case of the
7× 7 structure which has a three-fold rotational symme-
try. Recall that the six-fold rotational symmetry appear
only when H = 0 (see §4.2). Therefore, the energy differ-
ence between FH and UH units in the case of 5× 5 DAS
structure is very small if exists. We stress here that, also

for other structures, observation of the anisotropy of the
equilibrium island shape will be useful in determining the
energy difference between FH and UH units.

B. The 1×1 high temperature surface

The high-temperature Si(111) surface at about 900 ◦C
has the structure of the 1×1 surface together with disor-
dered adatoms with concentration of 0.25 [31–33]. Fur-
ther, Khomoto and Ichimiya [31] reported that the num-
ber ratio of adatoms sitting on T4 site and H3 site is
4:1. Although the adatoms are considered to be in a
disordered phase, the broad

√
3 ×

√
3 peaks appear in

diffraction observations [34,31] which suggests existence
of the short-range order corresponding to formation of
the hard-hexagon units [35].
For the high temperature surface of Si(111), experi-

mental measurement of the step tension and the step
stiffness has been a subject of active study [21,36–39].
The experimental values are, however, not settled yet.
We make, therefore, several trial calculations for possible
cases. In all the cases, we choose the microscopic cou-
pling constants so that the calculated step stiffness at
900◦C reproduces the value presented by Bartelt et al.
[36].

1. Case 1: Adatom in disordered phase without short-range

order

We use the honeycomb lattice gas system of (4.2), with
J1 and J2 being regarded as effective coupling constants.
In Fig. 2 we regard the filled circles as atoms of the top

layer and the open circles as those of the second layer (the
lattice constant = 3.84Å, the step height ah = 3.14Å).
We introduce the step running direction angle θ so that

a straight step with θ = 0 corresponds to (1̄1̄2) step. The
effect of dangling bonds normal to (111) plane are taken
into account by setting H/J1 = 1.
We calculate equilibrium island shape, step stiffness

and step interaction coefficient, which we show in Fig. 6.
Here, assuming that J2 is small, we have set J2/J1 = 0.2
and J1 = 60meV. The kink energy becomes 176meV for
(21̄1̄) step and 256meV for (2̄11) step. As is seen in
the island shape and the polar graph of step stiffness at
900◦C, there remains anisotropy in the step stiffness in
spite of the circular island shape. The most significant
characteristic of this results is the asymmetry between
the orientations (21̄1̄) and (2̄11). In contrast to the 7× 7
structure, the stiffness as a function of the step orienta-
tion takes its maximum at (2̄11).
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2. Case 2: The
√
3×

√
3 short-range ordered phase

In the case of
√
3 ×

√
3-ordered phase of adatoms, we

calculate step quantities by using the triangular lattice
gas model (Fig. 7a). As has been pointed out in Sec. 4,
the system has six-fold rotational symmetry. We set the
lattice constant to be 3.84 ×

√
3Å, and the step height

to be 3.14Å. We introduce the step running direction
angle θ so that a straight step with θ = 0 corresponds
to (1̄1̄2) step. The step tension and the step stiffness
are calculated exactly from (4.30)–(4.33). The effective
coupling constant is obtained to be J = 62meV (kink
energy = 248meV). We show the calculated results in
Fig. 8. The step stiffness takes its maximum at the
orientation {101̄}.

3. Case 3: The 2× 2 short-range ordered phase

Calculation of step quantities can be done in the same
fashion as in the case 2. We set the lattice constant as
3.84 × 2Å, and the step height as 3.14Å (Fig. 7b). We
introduce the step running direction angle θ so that a
straight step with θ = 0 corresponds to (01̄1) step. The
step stiffness takes its maximum at {2̄11}. The effective
coupling constant is obtained to be J = 67meV (kink
energy = 268meV). We show the calculated results in
Fig. 9.

VI. SUMMARY

We have considered the honeycomb lattice Ising sys-
tem in a staggered field with both nearest-neighbor (nn)
and next-nearest-neighbor (nnn) interactions, to calcu-
late interface tension, interface stiffness, island shape by
the imaginary path-weight (IPW) method.
We have applied the calculated results to Si(111) 7×7-

reconstructed surfaces and the high-temperature Si(111)
1×1 surface. We have made estimation on the mi-
croscopic coupling constants from existing experimental
data, and have drawn equilibrium island shape, step ten-
sion, step stiffness and the coefficient of step interaction,
with their temperature dependence. Our analysis made
in the present paper will be helpful in determining precise
value of the kink energy from experimental observation.
Our lattice-gas treatment made in the present paper

corresponds to the two-level approximation for the sur-
face fluctuation. Fortunately, the temperature-range of
our concern in the present study is very low, the two-level
approximation is expected to be fairly reliable. On the
other hand, at higher temperatures, near the roughen-
ing transition temperature, we should consider multilevel
fluctuation of the surface. Even in such cases, we have an
efficient method, namely, the temperature-rescaled Ising-

model approach, [15] where the IPW method is combined

with the numerical renormalization-group method; [40]
details will be discussed elsewhere.
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FIG. 1. Examples of an interface of square lattice Ising
model made by fixing the boundary spins.

FIG. 2. Examples of an interface configuration. A-atom
and B-atom are indicated by filled circle and open circle, re-
spectively. Thick line represents an interface.

FIG. 3. An example of calculation by the use of the
D-function of (4.2). (a) The island shape at 900◦C, (b) a
polar graph of step stiffness at 900◦C, (c) temperature de-
pendence of step tension, (d) temperature dependence of step
stiffness, and (e) temperature dependence of g = B/a3

h. We
have set J1 = 165meV, J2 = −16.5mev, and H = 165meV:
Kink energies are 88meV for (21̄1̄) step and 176meV for (2̄11)
step. In (c)-(e), thick lines correspond to(2̄11) step, thin lines
to (21̄1̄) step and broken lines to {101̄} step.

FIG. 4. Examples of a step edge on 7 × 7 reconstructed
Si(111) surface. “U” denotes unfaulted half unit, and “F”
denotes faulted half unit.

FIG. 5. Calculation for 7 × 7 reconstructed surface by
the use of the D-function of (4.15). (a) The island shape at
850◦C, (b) the island shape at 400◦C, (c) temperature de-
pendence of step tension, (d) temperature dependence of step
stiffness and (e) temperature dependence of g = B/a3

h. We
have set J = 0.475eV, 4H = 0.59eV: Kink energy = 1.05eV
for (21̄1̄) step and 0.85eV for (2̄11) step. In (c)-(e), thick lines
corresponds to (21̄1̄) step, thin lines to (2̄11)step and broken
lines to {101̄} step.

FIG. 6. Calculation for 1 × 1 surface (Case 1) by the
use of D-function of (4.2). (a) The island shape at 900◦C,
(b) a polar graph of step stiffness at 900◦C, (c) temperature
dependence of step tension, (d) temperature dependence of
step stiffness and (e) temperature dependence of g = B/a3

h .
We have set J1 = 60meV,J2 = 12mev, and H = 60meV: Kink
energy = 176meV for (21̄1̄) step and 256meV for (2̄11) step.
In (c)-(e), thick lines corresponds to (21̄1̄) step, thin lines to
(2̄11)step and broken lines to {101̄} step. Open squares: Ref.
[37]. Open circle: Ref. [35].
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FIG. 7. Examples of an interface configuration for two
cases of adatom orderings: (a)

√
3×

√
3 and (b) 2× 2. Thick

line represents the interface. A-atom and B-atom are indi-
cated by filled circle and open circle, respectively. Adatoms
are indicated by shaded large circles. Broken lines denote
boundaries between the hexagons.

FIG. 8. Case 2. Calculation for
√
3 ×

√
3 adatom order-

ing (Case 2) by the use of D-function of (4.30)–(4.33). (a)
The island shape at 900◦C, (b) a polar graph of step stiffness
at 900◦C, (c) temperature dependence of step tension, (d)
temperature dependence of step stiffness, (e) temperature de-
pendence of g = B/a3

h. We have set J = 62meV: Kink energy
= 248meV for {101̄} step. In (c)-(e), thick lines corresponds
to {21̄1̄} step and thin lines to {101̄} step. Open squares:
Ref. [37]. The open circle: Ref. [35].

FIG. 9. Case 3. Calculation for 2 × 2 adatom ordering
(Case 3) by the use of D-function of (4.30)–(4.33). (a) The
island shape at 900◦C, (b) a polar graph of step stiffness at
900◦C, (c) temperature dependence of step tension, (d) tem-
perature dependence of step stiffness and (e) temperature de-
pendence of g = B/a3

h. We have set J = 67meV: Kink energy
= 268meV for 21̄1̄ step. In (c)-(e), thick lines correspond to
{21̄1̄} step and thin lines to {101̄} step. Open squares: Ref.
[37]. The open circle: Ref. [35].
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