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Abstract

After a brief introduction to the dynamics of supercooled liquids, we discuss

some of the advantages and drawbacks of computer simulations of such sys-

tems. Subsequently we present the results of computer simulations in which

the dynamics of a fragile glass former, a binary Lennard-Jones system, is

compared to the one of a strong glass former, SiO2. This comparison gives

evidence that the reason for the different temperature dependence of these

two types of glass formers lies in the transport mechanism for the particles in

the vicinity of Tc, the critical temperature of mode-coupling theory. Whereas

the one of the fragile glass former is described very well by the ideal version

of mode-coupling theory, the one for the strong glass former is dominated by

activated processes. In the last part of the article we review some simulations

of glass formers in which the dynamics below the glass transition tempera-

ture was investigated. We show that such simulations might help to establish

a connection between systems with self generated disorder (e.g. structural

glasses) and quenched disorder (e.g. spin glasses).
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I. INTRODUCTION

The history of man-made glasses is several thousand years old [1] and thus it might seem
that we had enough time to gain an excellent understanding of this type of material. A
brief glance at the recent literature and the topic of many specialized conferences shows,
however, that this is not the case at all. Although a vast amount of detailed knowledge
on various properties of all sorts of glasses has been accumulated, and our understanding
of these materials has certainly increased tremendously since ancient times, the answer to
some of the most basic issues are still a matter of debate. Apart from some questions that
have been posed already many years ago, such as regarding the mechanism that gives rise
to the glass transition, new questions have emerged very recently, such as, e.g., the nature
of the glass transition in small pores, whether or not glasses are dynamically homogeneous
or heterogeneous, or how systems with frozen in disorder (e.g. spin glasses) are related to
the ones with self generated disorder (e.g. structural glasses). Because of the vastness of
the field the present article does of course not even attempt to give an exhaustive review on
all these different topics and developments and we refer the interested reader to the various
textbooks and review articles on that subject [2–4]. In the following we will therefore focus
on only certain topics of supercooled liquids and glasses. Hence the fact that many other
issues will be treated only briefly or not at all should not be viewed as a statement of their
irrelevance but rather as a (somewhat arbitrary) choice of the author.

Computer simulations have of course a much shorter history than glasses since the first
work dates back only to the 1950’s [5]. However, by now it has been shown that such
simulations can be an excellent tool to investigate the properties of complex systems [6] and
it can be expected that with the availability of faster and cheaper computers, as well as
improved algorithms, such simulations will play an even more important role in the future
than they do now. In this article we will discuss how such simulations can be used to gain
insight into the structure and the dynamics of supercooled liquids and glasses. Again, the
work on this subject is by now far too extensive to be completely covered in this article and
therefore we present only a small, but hopefully relevant, subset of it and refer the interested
reader to the mentioned textbooks [2,3] and other review articles on this subject [4,7,8].

In order to facilitate the reading of the articles for those not familiar with the subject
we will give in Sec. II a brief introduction to the field of supercooled liquids and glasses
and discuss some of the questions that are currently debated. The following section is then
devoted to issues related to computer simulations. In Sec. IV we will discuss results regarding
the equilibrium dynamics of fragile and strong glass formers and at the end show that also
in the non-equilibrium dynamics of glass forming liquids many very interesting phenomena
occur, which so far are not understood at all, and which can be studied very well by means
of computer simulations.

II. SUPERCOOLED LIQUIDS AND GLASSES

In this section we will briefly review some facts regarding the structure and dynamics
of supercooled liquids and glasses. Despite its briefness it should allow the reader to get
familiar with some of the issues concerning supercooled liquids and glasses so that the
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following sections become more comprehensible. More detailed discussions to these topics
can be found in Refs. [2–4].

First of all it is appropriate to specify what we mean in the following by the terms
“supercooled liquids” and “glass”. The standard point of view is the following: If a liquid
can be cooled below its melting temperature Tm without the occurrence of crystallization,
it is called a good glass former, and when the temperature is less than Tm the system is
called supercooled. The static and dynamical properties of such systems can be studied in a
large temperature range below Tm and it is found that their relaxation times increase very
fast by many (12-14) decades if the temperature is lowered. At a certain temperature the
relaxation time exceeds the time scale of the experiment and therefore the system will fall
out of equilibrium. It is this falling out of equilibrium what is called the glass transition. At
temperatures well below this glass transition temperature no relaxation seems to take place
anymore (on any reasonable time scale) and it is customary to call this material a glass.
(Note that this transition temperature will in general depend on the type of experiment
since its definition involves the time scale of the experiment. This definition should also
not be confused with the one often used by experimentalists in which a glass transition
temperature is defined as the temperature at which the viscosity of the system has the
(somewhat arbitrary) value 1013 Poise.)

In the following we will adapt a point of view on “supercooled” which is slightly differ-
ent and is motivated by the experimental observation that if a system approaches its glass
transition temperature its relaxation dynamics becomes non-Debye, i.e. that the time cor-
relation functions decay in a non-exponential way (e.g. they show a two-step relaxation),
whereas it shows a Debye-behavior at high temperatures. The reason for this phenomenon
will be discussed below. It has been found, however, that, e.g., Glycerol and B2O3 show this
sort of non-Debye behavior also at temperatures significantly above the melting tempera-
ture [9,10]. Therefore one has to conclude that the non-Debye relaxation has nothing to do
with the system being supercooled, a point of view which is supported from the theory of
the dynamics of dense liquids [11]. In addition it is not hard to imagine a system that does
not crystallize at all, i.e. one for which the concept of a melting temperature, and hence the
term “supercooled”, does not even exist (e.g. in atactic polymers). Nevertheless it can be
expected that the dynamics of such a system will become very slow when the temperature
is decreased and that thus the system will undergo a glass transition. For these reasons we
will mean in the following by “supercooled” that the relaxation dynamics of the system is
non-exponential and not that its temperature is below Tm. Furthermore, in order to simplify
the language, we will use in the following always temperature as the variable that drives
the slowing down of the dynamics. The reader should, however, bear in mind that there are
systems in which the glass transition is driven by a change of particle concentration, such
as colloids or kinetic lattice gases [12,13].

If the structural and dynamical properties of a good glass former are measured in the tem-
perature range between the high temperature regime and the glass transition temperature,
one finds that all structural quantities (density, structure factor, etc.) and thermodynamic
quantities (specific heat, etc.) show a very gentle temperature dependence, in that they
change between a few percent or a factor of 2-3 [2,3]. (Note that the experimental observa-
tion that the specific heat Cp shows a pronounced drop at the glass transition temperature,
see, e.g., Ref. [14] does not contradict this statement, since this effect is due to fact that
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the system falls out of equilibrium, i.e., that certain translational degrees of freedom do not
contribute anymore to the specific heat. Thus the drop in Cp is a purely kinetic effect.)
As already mentioned above, dynamic quantities, such as the diffusion coefficient D or the
viscosity η, will in general show a much more pronounced temperature dependence than
thermodynamic quantities. It is this huge variation of the transport coefficients that makes
the experimental investigation of the dynamics, and its theoretical description, such an in-
teresting challenge. Phenomenologically the temperature dependence of the dynamics can
be described quite well by the so-called Vogel-Fulcher law η ∝ exp(ET0/(T − T0)), where
T0 < Tg is the so-called Vogel temperature and E is a parameter that determines the shape
of the curve. If E is large the temperature dependence is Arrhenius like and if it is small, η
shows a pronounced upward bend at a temperature a bit above T0. Angell coined the terms
“strong” and “fragile” glass formers for the former and latter case, respectively [15]. Below
we will discuss how the dynamics of strong and fragile glass formers differ on the microscopic
level.

Having discussed some of the phenomena observed in the temperature dependence of
glass forming liquids it might be useful at this point to make some comments on the various
theoretical approaches that have been used to rationalize the dramatic slowing down of the
dynamics when the temperature is lowered. One of the most simple potential mechanisms is,
that upon cooling the system approaches the critical point of a second order phase transition
and hence the increase of the relaxation times is just the critical slowing down of the system
when the temperature approaches this point. It is generally believed that it is this mechanism
that is responsible for the glass transition in spin glasses [4,16–18]. For structural glasses
the situation is much less clear since the presence of a second order thermodynamic phase
transition implies that one should be able to identify an order parameter or a growing length
scale. Since in computer simulations it is relatively easy to measure such an order parameter
or length scale, if one knows what to look for, they have been used quite extensively to find
evidence for the existence of a thermodynamic transition in structural glasses. However, as
discussed in detail in Ref. [19], these efforts have led to no positive results so far.

One of the first successful theories for the glass transition is the one proposed by Gibbs
and DiMarzio [20] for dense polymer melts. The basic idea of this theory is that with
decreasing temperature the configurational entropy to the polymers decreases and vanishes
at a finite temperature, thus leading to the glass transition. Below we will come back to this
theory and discuss it more closely in the context of some computer simulations that have
been performed to check its validity.

Another very successful theory is the so-called mode-coupling theory (MCT) which has
been worked out by Götze, Sjögren and coworkers [11]. Starting from the theory of dense
simple liquids [21] MCT derives equations of motion for time and wave-vector dependent
correlation functions and makes very detailed predictions on the time and temperature
dependence of these quantities when the system is in the supercooled state. As will be
discussed below, many of the predictions of this theory have been confirmed in experiments
and computer simulations and thus MCT can presently be regarded as the best available
theory of the dynamics of supercooled liquids.

In the following sections we will extensively discuss computer simulations that have been
done in order to test the validity of the two theories just mentioned. The goal of this
discussion is not to give an exhaustive review of all the possible tests that have been done
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so far, but rather to present some exemplary results of simulations in order to convince the
reader that such simulations can be a very powerful tool to check to what extend a theory
is valid or not.

III. COMPUTER SIMULATIONS OF GLASS FORMERS: ADVANTAGES AND

DRAWBACKS

The goal of this section is to discuss certain aspects of computer simulations that are
particular to simulations of supercooled liquids and glasses. More general introductions to
simulations can be found in various textbooks, such as Refs. [6].

The most outstanding advantage of computer simulations is that they provide an ex-
tremely large freedom regarding the systems that can be studied. In principle, it is no
problem to investigate any Hamiltonian that one is interested in, be it on a classical or
quantum mechanical level. By a judicious choice of the Hamiltonian considered, it is there-
fore possible to investigate, e.g., systems in which the dynamics is determined by purely
kinetic constraints instead by energetic ones [13,22,23], to study molecules or polymers with
an exactly specified shape and size [24–27], to investigate the system in thermodynamics
states which are difficult to realize experimentally, such as negative pressures and high tem-
peratures [28–32], or the dependence of the structure and the dynamics of a system in a
small pore of a well-defined size and shape [33,34]. For example simulations of supercooled
water have given evidence that this system has a liquid to liquid transition [35] and from
simulations of SiO2 novel (crystalline) phases have been predicted [36].

In addition to this, simulations offer the unique possibility to access any observable of
interest, since the complete information on the positions and velocities of all the particles
is available at any given time. This property of simulations allows to determine quantities
which are very difficult to access in real experiments or very hard to obtain with reason-
able precision in an analytical calculation. Hence it is possible to use such simulations to
test theoretical concepts and theories in a more stringent way than it is feasible with real
experiments. Examples for such type of simulations will be discussed below.

Despite all these advantages reality is not quite as rosy as it might seem since one is
faced with the sad fact that computer resources are finite. Therefore it is, e.g., presently out
of question to do a full quantum mechanical simulation for several thousand particles over a
time scale of, e.g., 1 ns, and even with classical force fields and O(103) particles it is hard to
simulate times significantly longer than 100 ns, since each time step is usually only 10−15 sec
long (for atomic systems). The present state of the art is to make an ab initio calculation
of about 100 particles for a time span of 10 ps [37,38] whereas for classical simulations one
can deal with box sizes of 50-100Åand simulate such a system for 10-100 ns [39,40]. (Such
a simulation will then usually take the equivalent of several CPU years on a very good,
dedicated workstation.) Of course one might wonder whether it really is necessary to study
systems that are larger than a few hundred particles, since it is possible to study many
aspects of the glass transition even with such small systems. However, there exist situations
in which large systems are necessary. E.g. the dynamics of strong glass formers shows quite
pronounced finite size effects [40], and the same is true also for the density of states in the
frequency range which is important for the so-called boson-peak, a dynamic feature at low
energies whose nature is currently a matter of intense debate [41,42].
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Note that, despite the mentioned limitations in time and system size, large scale computer
simulations cover a wave-vector and frequency range which is comparable or even larger than,
e.g., the one accessible in neutron-scattering experiments and hence they can be a valuable
addition to investigate the structure and dynamics of systems on this length and time scale.
However, it has to be emphasized that real experiments still have a crucial advantage over
simulations, namely in the way the sample is prepared. What experimentalist do is to
adjust the temperature of the sample to the temperature of interest and wait on the order
of minutes or even weeks before they start to do the measurement. Therefore it becomes
possible to probe the equilibrium dynamics of the system on the ns scale (e.g. in the case
of neutron scattering) even if the relaxation time of the system is on the order of days. In
computer simulations such a procedure is (not yet) possible. The only way to equilibrate
the system is to do a simulation at the temperature of interest for a time span that is on
the order of the longest relevant relaxation time of the system and to subsequently start the
run for the production. Since typical time spans of the simulation do not exceed 100 ns, it
is therefore only possible to equilibrate the system at a relatively high temperature. Thus
all equilibrium measurements are restricted to these temperatures as well.

In order to circumvent this problem one might be tempted to quench the system relative
rapidly to a temperature at which its relaxation time is larger than the one accessible to
computer simulations, let the system relax for some time, and subsequently start to measure
its properties. Such an approach is, however, quite dangerous in that the results from such
a simulations will in general show aging effects. This means that quantities that should be
constant (such as the average potential energy) show a small drift, and that time correlation
functions will no longer be time-translation invariant. Some of these effects will be discussed
in more detail in Sec. IVB.

We stress, however, that the above mentioned problem with the equilibration of the
sample is not a principle one. There is no reason why a cleverly designed Monte Carlo
algorithm should not be able to equilibrate the sample also at a temperature at which, e.g.,
the relaxation time for the usual Newtonian dynamics is macroscopically large. Examples
for such algorithms have already been successfully implemented for polymers and it was
found that they allow to equilibrate the sample about 100 times faster than with the normal
dynamics [43]. In recent years other methods have been proposed and tested and, although
presently there still is no optimal method in sight, the progress is quite encouraging [44] and
therefore it can be hoped that sooner or later this bottleneck will be removed.

Before we end this section it is appropriate to make some comments on the Hamiltonians
used in simulations of supercooled liquids and glasses. Roughly speaking simulations in this
field can be divided into two types:

i) In the first one the main goal is to use the simulation to gain an understanding on
some very general question, such as to what extend MCT gives a correct description of the
dynamics, the nature of the dynamical heterogeneities observed in experiments [45,46], or
the search for a diverging length scale when the temperature approaches Tg [33,47]. Since
one is interested in some universal properties of glassy systems, such simulations are usually
done with very simple systems, such as Lennard-Jones particles, kinetic Ising models [13]
or even simpler ones (see, e.g., the backgammon model of Ritort [22]). Because of their
simplicity such models allow to obtain results of a much higher accuracy than it would
be possible with more realistic and thus more complicated systems and thus more definite
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answers can be given to the question of interest.
ii) In the second type of simulation one attempts to answer some quite specific questions

for a given material (or class of materials), such as, e.g., the nature of the so-called boson-
peak in strong glass formers [41,42,48–50], to identify the mechanism leading to the so-called
“mixed alkali effect” [51], or to determine the distribution function of the rings in network
forming systems such as SiO2 [38,52–54]. For such simulations is is important to have a
reliable potential at hand which is able to give a sufficiently realistic description of the
quantity that one is interested in. Unfortunately it is still the exception rather than the
rule that for the material of interest a good potential is available. The reason for this is
that the development of a reliable force field often involves a substantial amount of ab initio

calculations, in order to determine the potential energy of some typical configurations, and
also the subsequent fit of these data points to a classical potential energy function is often
rather difficult (see, e.g., the papers of Takada et al. [55]). Both of these steps require a
substantial amount of expertise and work and thus have been done only for a few selected
substances, such as, e.g., silicates [56–59] or ZnCl2 [60].

It should also be noted that whether or not a potential is realistic depends on the
question one is interested in. For the case of silica, e.g., there exist many different potentials,
many of which give a quite realistic representation of the structural properties of amorphous
SiO2, such as the structure factor [8,28,36,42,52–54,61–64]. Thus from this point of view
the various potentials can be considered as essentially equivalent. If, however, dynamical

quantities are considered, such as the diffusion constant, one finds that the various potentials
make very different predictions. In Fig. 1 we reproduce data by Hemmati and Angell in
which the temperature dependence of the oxygen-diffusion constant is shown for different
potentials [61]. One sees that at high temperatures the values of the diffusion constants
predicted by the different potentials differ only by about a factor of three. This agreement
changes dramatically when the temperature is lowered in that the different models predict
diffusivities that vary over several orders of magnitude. Hence we conclude that a potential
that might be appropriate to describe the structure of SiO2 might be unsuitable for describing
the dynamics of the system.

IV. SOME EXAMPLES OF COMPUTER SIMULATIONS OF SUPERCOOLED

LIQUIDS AND GLASSES

In this section we will discuss some computer simulations of supercooled liquids and
glasses. In the first part we will make a comparison between the equilibrium dynamics of
a fragile glass former and a strong glass former in order to see what the similarities and
differences in these two types of systems are. In the second part we will discuss the non-

equilibrium (aging) dynamics of a simple glass former, i.e. the decay of the time correlation
functions of the system after it has been subjected to a quench to a low temperature.

A. The relaxation dynamics of strong and fragile glass formers

We already mentioned at the beginning of this article that the temperature dependence
of transport quantities of glass forming liquids is not universal in that certain glass formers
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(called “strong”) show an Arrhenius dependence and others (called “fragile”) show strong
deviations from it [15]. In this subsection we will present the results of computer simulations
in which the dynamics of a simple fragile glass former and SiO2, a prototype of a strong glass
former was investigated. By a comparison between the two dynamics we will attempt to
understand what the difference between the two types of glass formers are on the microscopic

level.
Very often fragile glass formers are van der Waals liquids in which the interactions be-

tween the (small) molecules is relatively weak. Thus such systems can be modelled by
particles with isotropic short range interactions such as soft spheres, V (r) ∝ r−12, or the
Lennard-Jones potential. Because of the simplicity of these potentials the relaxation dynam-
ics of such models has been studied extensively by means of computer simulations [19,65–73].
Early simulations often focussed on one-component systems [74] but with the increased speed
of the computers it was found that such systems started to crystallize within the time span
of the simulation. A simple way to avoid this problem is to use a binary mixture of particles
and if the interaction parameters and the concentration of the species is chosen well, such
systems stay in the (meta)stable liquid-like state for all time spans which a present state of
the art simulation can cover, i.e. over 100 million time steps, which corresponds to about
100 ns. A binary mixture of soft spheres has, e.g., been investigated in great detail by the
group of Hansen [66], work that has been continued by Hiwatari, Odagaki and coworkers [67],
and very recently this system has been used by Parisi and coworkers to investigate aging
phenomena [69,70].

The binary system we will discuss here consists of an 80:20 mixture of Lennard-Jones
particles, Vαβ(r) = 4ǫαβ[(σαβ/r)

12 − (σαβ/r)
6], where α, β ∈ {A,B} denotes the type of

the particle (A being the majority species). The parameters of the potential are given by
σAA = 1.0, ǫAB = 1.5, σAB = 0.8, ǫBB = 0.5, and σBB = 0.88. For this system we will
report length in units of σAA, and energy and time in units of ǫAA (setting kB = 1) and
(mσ2

AA/48ǫAA)
1/2, respectively, where m is the mass of the particles. In the simulation we

used a cubic box, of length 9.4, with periodic boundary conditions and the total number of
particles was 1000, which is large enough to avoid finite size effects almost completely. More
details on these simulations can be found in Refs. [72,73].

As already mentioned above, there exist quite a few different potentials for SiO2 (see, e.g.,
the references in [54]). The one proposed by van Beest, Kramer and van Santen (BKS) [57]
seems to be one of the best, in that it is able to reproduce well many of the structural and
dynamical features of real silica. In this potential the interactions φij between ions i and j
at a distance r apart is given by:

φij(r) =
qiqje

2

r
+ Aij exp(−Bijr)−

Cij

r6
. (1)

Here e is the charge of an electron and the constants Aij , Bij and Cij can be found in
Refs. [54,57]. One interesting aspect of this potential is that it contains only two-body
terms. This is somewhat surprising since SiO2 forms an open tetrahedral network and
thus it might be expected that three-body terms are needed as well. However, it has been
shown that the BKS potential is indeed able to generate such a (disordered) tetrahedral
network [54], since the competition between the different two-body forces mimic the three-
body forces. As a side remark we mention that the absence of the three-body terms is of

8



course advantageous for computer simulations, since their evaluation is usually demanding
from a computational point of view. Thus the only part of the potential whose calculation
is computationally intensive is the long-range Coulombic part, which is usually calculated
by means of the Ewald summation [6,75]. Since the computational effort of this method
scales with N3/2, where N is the number of particles, it is clear that doing simulations of
large systems with long range potentials is computationally much more demanding than if
the potential is short ranged (and whose computational effort thus scales like N). However,
since a few years new methods have become available in which the calculation of the long
ranged forces also (essentially) scales like N [76]. The disadvantage of these methods is that
they become efficient only at relatively large N , and thus for small systems (a few hundred
particles) the Ewald summation is presently the only real possibility to handle such forces. In
practice this means that for a system of the order of 103 particles the calculation of the forces
on all the particles in a system with Coulombic interactions is about one order of magnitude
more time consuming than in the case of short range interactions (e.g. Lennard-Jones).

Since it has been found that the dynamics of strong glass formers shows quite large finite
size effects [40] it is necessary to use for such simulations relatively large systems sizes. In
the following we will discuss results of simulations in which 8016 ions have been used, which
corresponds to a box size of about 48Å. More details on the simulation can be found in
Refs. [40,64,77].

Before we start the discussion of the dynamical behavior of the two glass formers, we will
have a brief look at the temperature dependence of the static structure of these systems. One
possibility to do this is to investigate the partial structure factors Sαβ(q) which are given by
〈ρα(q)ρ

∗
β(q)〉, where ρα(q) is the fluctuation of the density of particles of type α for wave-

vector q, i.e. ρα(q) =
∑Nα

j=1 exp(iq ·r
α
j ), and rαj is the position of the jth particle of type α. In

Fig. 2 we show the partial structure factors for the A−A and oxygen-oxygen correlations, for
the Lennard-Jones and silica system, respectively. The temperatures for the different curves
range from temperatures at which the system is in its normal liquid state to temperatures
at which the system is in a deeply supercooled state. From the figure it can be seen that the
temperature dependence of this structural quantity is rather weak and that the main effect
is that the various peaks and minima become more pronounced when the temperature is
lowered. Although the static structure factors do not depend strongly on temperature, time
dependent quantities do show a strong dependence. In order to demonstrate this we have
included in the figure also the diffusion constant at the different temperatures. From these
figures one recognizes that in the temperature range considered, the dynamics of the system
does indeed slow down quite dramatically. We will discuss this point in more detail below.

One comment on the meaning of the various peaks might be useful. In the case of a
simple liquid, Fig. 2a, the first peak in the structure factor corresponds to the typical inter-
particle distance. This is in contrast to the case of network-forming systems, Fig. 2b, where
this distance corresponds to the second peak in S(q). The first peak in the structure factor,
often called first sharp diffraction peak [2], is related to the size of the structural units
making up the network (i.e. tetrahedra in the case of SiO2). It is interesting to see that this
peak starts to be visible already at the highest temperature investigated. This means that
the network is forming already at temperatures much higher than the melting temperature,
which is around 2000 K. This is probably the reason why network-forming systems are often
very viscous even at very high temperatures.
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It has to be emphasized that the observed (unspectacular) temperature dependence of
the structure factor is not exceptional for structural quantities. Although several efforts
have been made to find a structural quantity that shows a more pronounced temperature
dependence, no clear evidence has been found so far [33,47]. Thus the point of view that
the slowing down of the dynamics of structural glasses is related to a second order phase
transition, and hence to the existence of a divergent length scale, is so far not supported by
good evidence. (See also Ref. [79] on this point.)

A much more interesting dependence on temperature than the one for structural quanti-
ties is found in time dependent correlation functions, or transport coefficients. The simplest
example is 〈r2α(t)〉, the mean squared displacement (MSD) of a tagged particle of type α:

〈r2α(t)〉 = N−1

α

Nα∑
i=1

〈δ(r2 − |rαi (t)− rαi (0)|
2)〉 , (2)

where 〈.〉 is the thermal average. The time dependence of the MSD for different temperatures
is shown in Fig. 3. Let us first consider the MSD for the Lennard-Jones system. At high
temperatures, top curves, the MSD shows at short times a quadratic dependence on time,
〈r2α(t)〉 ∝ t2. This behavior can be understood immediately by realizing that for short
times the particles will move ballistically, i.e. rαi (t) ≈ rαi (0) + ṙαi t, and thus give rise to
the observed time dependence for 〈r2α(t)〉. For longer times the particles start to collide
with their neighbors and their motion becomes diffusive. Therefore the MSD shows a linear
dependence on time, as can be seen in Fig. 3. For low temperatures (bottom curves) the
situation at short and very long times is similar to the one at high temperatures in that
the ballistic and the diffusive behavior are observed. For intermediate times, however, the
MSD shows a feature not present at high temperatures, namely a plateau. This means that
there exists a time range, which at the lowest temperatures extends over several decades,
in which the MSD does not increase substantially. The microscopic reason for this plateau
is that the tagged particle is trapped in the cage formed by the neighboring particles that
surround it, and it takes the particle a long time to escape this cage. Note that the particles
forming this cage are of course sitting in cages as well and thus the motion of all particles is
slowed down. With decreasing temperature the cages become more and more rigid and thus
the time needed to break them up increases. The earlier mentioned MCT [11] is an attempt
to describe this breaking up in a self consistent way and hence to rationalize the dramatic
increase of the relaxation time on a microscopic level.

In Fig. 3b we show the MSD for the oxygen atoms in the silica melt. We recognize that
for this strong glass former the curves look qualitatively similar to the ones of the fragile glass
former. The main difference is that at low temperatures the MSD for silica shows a little
bump at around 0.2ps [64,80]. The reason for this feature lies in the so-called boson-peak, a
dynamical feature whose intensity seems to be related to the fragility of the glass [10], and
which will be discussed in more detail below.

Using the Einstein relation D = limt→∞〈r2(t)〉/6t, the diffusion constant D can be
calculated from the MSD. Before we discuss the temperature dependence of D it is useful
to review a few of the predictions of MCT [11] since they will be helpful to understand
the following results. As already mentioned before, this theory attempts to describe the
dynamics of supercooled liquids in a self-consistent way. Most of the predictions of the theory
have been worked out for that version of MCT in which certain terms in the equations of the
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theory, the so-called hopping terms, are neglected. This special case is called “ideal MCT”
and it is predicted that there exist a special “critical” temperature Tc > 0 in the vicinity
of which the dynamics shows an anomalous temperature dependence, in that the relaxation
times τ , or the inverse of the diffusion constants, show a power-law divergence, τ ∝ D−1 ∝
(T −Tc)

−γ. In this ideal case the system does not relax anymore if the temperature is below
Tc. If the mentioned hopping terms are taken into account the divergence does not really
take place. If these terms are weak the relaxation times will show the mentioned power-
law, but slightly above Tc they will change over to an Arrhenius law [81]. Empirically it is
found that fragile (and not so fragile) glass formers can be described well by the idealized
MCT [11], whereas not too much is known about strong glass formers.

We now discuss the temperature dependence of the diffusion constants, which are shown
in Fig. 4. Note that we use two different types of plots to present the data for the Lennard-
Jones and the silica system. For the former system, a fragile glass former, we have fitted the
low-temperature data with a power-law in order to check whether the mentioned temperature
dependence predicted by MCT gives a good fit to the diffusion constant. Using Tc as a fit
parameter we find that this is indeed the case (see Fig. 4a). The critical temperature Tc is
the same for the A and B particles, in agreement with the prediction of MCT. According to
the theory, also the value of the exponent γ should be independent of the particle species,
and we find that this is reasonably well fulfilled in that for our system the two value agree
to within 15% (see figure).

We also mention that such power-laws have also been found in other simulations of simple
liquids [25,66,71], polymeric systems [26], a simple molecular liquid [27], and water [83].
The result on water is of particular interest since H2O is a network forming liquid, thus
structurally very similar to silica, the system we will discuss next.

For silica the temperature dependence of D is more complicated than the one of fragile
glass formers. Since this is a strong glass former, we expect that at low temperatures an
Arrhenius behavior is found and thus it is reasonable to plot the data versus 1/T , which
is done in Fig. 4b. From the figure we see that at low temperatures the expected Arrhe-
nius law is indeed observed and that the activation energies are close to the ones found
in experiments [82] (see figure). Thus we have evidence that our model for silica is quite
realistic not only regarding static quantities [54,77] but also dynamical ones, at least at low
temperatures.

At higher temperatures strong deviations from the Arrhenius law are observed in that
the temperature dependence is weaker than the one expected from the activated dynamics at
low T . In this temperature range the curves can be fitted well with a power-law, as predicted
by MCT, with a critical temperature which is independent of the species and has a value of
about 3330 K (see figure). (We also mention that the given values of γ are compatible with
the one from the MCT analysis of the β–relaxation regime.) Thus from the temperature
dependence of the diffusion constants we have evidence that also the strong glass former
SiO2 shows at high enough temperatures the non-Arrhenius dependence observed for fragile
glass formers. This result is in agreement with findings of Rössler and Sokolov [84]. By
analyzing experimental viscosity data, these authors arrived to the conclusion that for all
glass formers there exist a temperature range in which the temperature dependence of the
transport coefficients is non-Arrhenius. Hence we conclude that the main difference between
strong and fragile glass formers is that in the former the hopping processes that destroy the
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dynamical singularity predicted by the ideal version of MCT are so strong, that the signature
of this singularity, namely the power-laws, accounts only for a relatively small range in the
diffusion constant (or other transport quantities) before the hopping processes take over
and lead to an activated dynamics. In contrast to this are the fragile systems in which the
mentioned power-law can be observed over several decades in the diffusion constant.

This point of view is also corroborated by the analysis of the self part of the van Hove
correlation function Gs(r, t) [21]. This function, or rather 4πr

2Gs(r, t), gives the probability
that a particle has moved a distance r in time t. It is found that for fragile glass formers, such
as the present Lennard-Jones system, this function decreases monotonically as a function
of r [73] whereas for silica at intermediate and low temperatures the distribution function
for the oxygen atoms show a secondary peak at a value of r which corresponds to the
typical oxygen-oxygen distance (no secondary peak is found for the silicon atoms) [77].
From the existence of such a secondary peak it has been concluded [66,71] that the transport
mechanism is not the flow-like motion described by MCT but more a jump-like motion that
is activated. This point of view is thus in agreement with the one put forward above for the
motion of the atoms in silica.

Experimentally it is not possible to measure, for atomic systems, time and space cor-
relation functions like Gs(r, t). However, in neutron time of flight measurements it is pos-
sible to study its space Fourier transform, the incoherent intermediate scattering function
Fs(q, t) [21],

Fs(q, t) =
1

Nα

Nα∑
j=1

〈exp(iq · [rαj (t)− rαj (0)]〉, (3)

and in neutron and light scattering experiments one has access to its space and time Fourier
transform, the dynamical structure factor S(q, ω). Therefore it is interesting to calculate
these quantities from the simulations as well. (We note, however, that an accurate calculation
of S(q, ω) from a simulation is rather difficult, since calculating the time Fourier transform of
a correlation function that extends over 6-8 decades in time is not a simple task. Therefore
results are usually presented in the time domain.)

In Fig. 5 we show the time dependence of the intermediate scattering function for different
temperatures. Let us first discuss the relaxation dynamics for the fragile glass former, Fig. 5a.
The wave-vector q corresponds to the location of the first maximum in the structure factor
(see Fig. 2a) but we have found that for the other values of q a qualitatively similar time and
temperature dependence is found [72]. After the ballistic motion of the particles at short
times, giving rise to a quadratic dependence of Fs(q, t) on time, the correlator shows at high
temperatures a crossover to an exponential decay. For low temperatures we find a different
relaxation behavior in that, after the microscopic regime, the correlation functions show a
plateau, the length of which increases rapidly with decreasing temperatures. The reason for
the existence of this plateau is the same one we gave in the discussion of the MSD in Fig. 3,
namely the cage effect, i.e. the temporary trapping of the particles by their neighbors. It
is customary to call the time window in which the correlator is close to the plateau the
“β−relaxation regime” and the window in which the correlator falls below the plateau the
“α−relaxation regime”.

From the figure we also recognize that at low temperatures the shape of the curves does,
in the α−relaxation regime, not depend on temperature, an observation that we will discuss
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in more detail below. Thus the whole increase of the relaxation times is due to the dynamics
in the β-relaxation regime and hence it is this regime which has to be understood from a
theoretical point of view in order to give a correct description of the relaxation dynamics,
and hence the glass transition.

For the strong glass former the time dependence of the correlation functions is qualita-
tively similar to the one of the fragile glass former. In Fig. 5b we show Fs(q, t) for the oxygen
atoms for a wave-vector at the location of the first sharp diffraction peak. The main, readily
observable, difference between the relaxation behavior of the fragile and the strong glass
former is that at low temperatures the latter shows a dip at around 0.2 ps, i.e. shortly after
the microscopic regime and before the correlator shows the plateau. The time at which this
dip occurs corresponds to about 1.5 THz, a frequency at which silica shows a pronounced
enhancement of the density of states over the value expected from a Debye law [41]. There-
fore this feature is called the “boson-peak” (“boson” because its temperature dependence is
given by the Bose-factor). Note that this feature is observable already at T = 3580K, thus
at temperatures far above the (experimental) glass transition temperature of silica, which is
1450K. (We also mention that in Ref. [77] evidence is given that the glass transition temper-
ature of the BKS model is very close to this experimental value, thus giving further support
for the reliability of this potential.) The nature of the excitations leading to the boson-peak
is still a matter of debate [41,42,49] and we do not enter that discussion here. (The issue is
on whether the peak is due to localized modes or due to a strong scattering of sound waves).
We mention, however, that it was found from computer simulations of systems with different
sizes, that the depth of the dip in Fs(q, t) depends strongly on the size of the system and
that these finite size effects become more severe with decreasing temperature [40]. Thus
it can be concluded that the excitations that give rise to this feature involve cooperative
motion that extends at least over several nm and that, in order to finally find the answer
concerning the nature of the peak, large systems [O(104) ions] have to be analyzed so that
the mentioned finite size effects can be avoided.

A further difference between the relaxation behavior of strong and fragile glass formers is
concerned with the temperature dependence of the height of the plateau in time correlation
functions. This effect can be studied best if one plots the correlation functions versus the
rescaled time t/τ(T ), where τ(T ) is the α−relaxation time at temperature T . This time
can, e.g., be defined as the time it takes a correlation function to decay to e−1 of its initial
value. (Another possibility would be to define it as the area under the correlator.) In
Fig. 6 we show the so obtained figures for the same correlators shown in Fig. 5. For the
fragile glass former we find that, at low temperatures, this scaling leads to a master curve
which extends throughout the whole α−regime, i.e. that part of the relaxation in which
the correlators fall below the plateau. Such a master curve has been found also in other
simulations [25–27,66,71] and in experiments [12] and its existence is one of the important
predictions of MCT. The existence of this master curve is by no means trivial, as can be
recognized from the corresponding plot for silica (Fig. 6b) since for this systems the scaled
curve do, in the vicinity of the plateau, not fall at all onto a master curve. A detailed analysis
of the individual curves shows, however, that, in the β−relaxation regime, the shape of the
curves is indeed independent of temperature [77,78]. Thus the only reason why they do not
fall onto a master curve is the presence of the boson-peak at short times which leads to a
temperature dependent height of the plateau. Also in experiments it has been found that
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in strong glass formers the boson-peak dominates the time dependence of the correlation
function in the time range where the correlators approach the plateau [10]. Most of these
findings stem, however, from experiments in which the system is probed in the frequency
domain (such as light scattering). Therefore such experiments, if done at frequencies ω > 0,
will in general not notice whether or not the height of the plateau depends on temperature,
since such a dependency will affect only the intensity of the signal at frequency zero. Thus
the results from the computer simulation do indeed give new insight into the dynamics of
strong glass formers.

Above we have shown that for the case of silica the power-law predicted by MCT for
the temperature dependence of D can be observed only for a relatively small range of the
diffusion constant. From Fig. 6b one sees that, due to the strong influence of the boson-
peak in the β-relaxation regime, also the predicted master curve is not observed. Therefore
one might be tempted to argue that MCT is not a very useful description of the dynamics
of SiO2. This point of view is, however, far too pessimistic, since there are predictions of
the theory which are valid also in the presence of the mentioned hopping processes, such
as, e.g., the so-called factorization property, which states that in the beta-relaxation regime
any time correlation function Φ(t) can be written as Φ(t) = f + hG(t), where G(t) is a
system universal function and f and h will depend on the correlation function Φ. It has
been shown [77,78] that for the case of silica this factorization property holds very well, thus
showing that MCT is able to make relevant (and correct) predictions on the dynamics for
this (strong) type of glass former as well.

Having now some understanding of the temperature dependence of the relaxation dy-
namics of the Lennard-Jones and the silica system we can compare it with that of other
glass-formers. Sciortino et al. have done extensive simulations of the dynamics of super-
cooled water [83], a system which shares many structural and thermodynamical properties
with silica [3,30,62,85]. These simulations have shown that in the temperature range acces-
sible to equilibrium simulations, the diffusion constant shows a power-law dependence [83], a
result that is supported also by experiments [3,86]. Thus, although the system is structurally
much more similar to the strong glass former silica, it behaves dynamically like a fragile glass
former. From our findings for silica we therefore conclude that the strong hopping processes
found in silica are less pronounced in water than in silica (which might, however, also have
to do with the fact that the water simulations have been done with H2O molecules that
could not dissociate).

For the early β−relaxation regime it is found [83] that also water shows a small dip, as we
showed it to be present in silica (see Fig. 6b). However, contrary to the case of silica, this dip
does not destroy the master curve in the late β-relaxation regime when the correlators are
plotted versus t/τ(T ). Thus the dynamics of water seems to behave in certain aspects like a
fragile glass former and in other aspects like a strong one. This duality is most likely due to
the network structure since the simple atomic and molecular liquids, that do not have the
tendency to form a network, have been found to show essentially the same dynamics as the
Lennard-Jones system discussed here [25,27,66,71,87]. Also the dynamics of polymeric glass
formers is in many aspects quite similar to the one of simple liquids [26]. However, because
of the length of the molecules these systems do also show interesting dynamic effects which
are not present in simple liquids, such as the motion of side chains or reptative movements.
For a more thorough discussion of these issues we refer the reader to the review articles by

14



Clarke [88] and Paul and Baschnagel [89].
The results presented so far are mainly useful to understand the slowing down of the

relaxation dynamics on a qualitative level. However, it is also possible to use computer simu-
lations to study this relaxation dynamics on a quantitative level and thus to test predictions
of theories that attempt to describe this dynamics. In the following we will therefore briefly
describe a few simulations which have been done to test the validity of such theories.

As already mentioned in Section II, two very prominent theories are the ones of Gibbs
and DiMarzio [20], which is very popular in the community of polymer scientists, and the
so-called mode-coupling theory which seems to be applicable for a very large variety of glass-
formers [11]. The basic idea of theses two theories is very different. In the Gibbs-DiMarzio
approach one starts from polymers which are placed on a lattice. By counting the number of
ways the polymers of the melt can be placed on the lattice, Gibbs and DiMarzio found that
there exists a critical packing fraction above which this configurational entropy goes to zero
in a continous way. From this they concluded the existence of a second order phase transition
at this point, which is acompanied by the usual critical slowing down of the dynamics. This
slowing down then gives rise to the glass transition. It has been found that this theory is
able, e.g., to rationalize the dependence of the glass transition temperature on the length
of the polymers, on the concentration of plastisizer, and other relevant quantities [90]. It
was therefore quite surprising when a few years ago a simulation of Wolfgardt et al. showed
that the observed slowing down of the relaxation dynamics of a dense polymer melt is not
due to the fact that the configurational entropy of the system becomes zero [91]. This can
be seen in Fig. 7 in which the entropy is plotted versus the inverse temperature. The open
symbols correspond to the entropy as given by the (approximate) expression proposed by
Gibbs and DiMarzio and one sees that this prediction gives a zero value of the entropy at a
finite temperature. (It has to be emphasized that the quantities entering the Gibbs-DiMarzio
expression have been calculated from the simulation as well and thus no approximation on
that level is made.) The filled symbols are the real values of the entropy of the system
which have been measured by thermodynamic integration. From the figure it becomes clear
that this real entropy does not go to zero in the temperature range in which the Gibbs-
DiMarzio expression becomes zero, that, however, it shows a noticeable decrease in this
temperature range. Thus one has to conclude that the success of the Gibbs-DiMarzio theory
relies probably on the fact that the real entropy decreases significantly in the vicinity of the
critical temperature, that the theory gives a quite realistic description of this decrease on

the qualitative level, and that most experiments measure only quantities which are related
to the various derivatives of the entropy.

The second theory that we will discuss here to some extend, the mode-coupling theory,
has a very different explanation for the slowing down of the system upon cooling. From the
theory of the dynamics of simple liquids in the vicinity of the triple point it is known that the
equations of motion for density correlation functions have nonlinear terms which are needed
to describe back-flow effects and cage effects [92] and MCT is such a set of equations of
motion. It is found that with decreasing temperature the nonlinear terms become stronger
and will lead to a dynamical feedback effect that slows down the relaxation of the density
correlators. Within a certain approximation to these equations, leading to what is known as
the “ideal MCT”, this feedback mechanism becomes so strong that at a certain temperature
Tc the correlation functions do not decay to zero anymore, i.e. the system has undergone
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a glass transition. Using this Tc as a reference temperature, the theory makes detailed
predictions regarding the time and temperature dependence of correlation functions, such
as the intermediate scattering function discussed above.

One of the important aspects of the theory is that the equations of motion for the
density correlators depend only on static quantities, such as the structure factor. Since such
quantities can be obtained quite easily with high precision from experiments or simulations,
it is thus possible to measure the static quantities, solve the MCT equations and compare
the so obtained theoretical curves for the time dependent correlation functions with the one
measured in the experiment or in the computer simulation. Therefore very stringent tests
of the theory become possible on a qualitative as well as quantitative level.

The outcome of such a test has recently been reported by Nauroth et al. [93]. In that work
the MCT equations for the binary Lennard-Jones system discussed above have been solved
numerically and their solutions at long times compared with the results from simulations.
Among the quantities investigated were the wave-vector dependence of the height of the
plateau in the intermediate scattering function (see Fig. 5) at the critical temperature Tc, a
quantity which is also called the Edwards-Anderson, or nonergodicity parameter fc(q).

In Fig. 8 we show fc(q) as predicted by MCT (solid curves) and the one from the com-
puter simulation (open symbols). The Gaussian shaped curve is the nonergodicity parameter
for the incoherent intermediate scattering function Fs of the A particles [Eq. (3)] and the
oscillatory curves are for the coherent intermediate scattering function for the A−A correla-
tion [21]. We emphasize that for the calculation of the theoretical curves no fit parameter of
any kind was used. The only input was the temperature dependence of the partial structure
factors, which were determined from the simulation. From the figure we recognize that the
theory gives an excellent description of the wave-vector dependence of fc and we thus con-
clude that the theory is indeed able to make precise quantitative predictions on the dynamics
of supercooled simple liquids.

Also included in the figure are the results of a computer simulation of the mentioned
binary Lennard-Jones system, but instead of the Newtonian dynamics used in Ref. [72] a
Brownian-like (stochastic) dynamics was used [94]. In this type of dynamics the equations
of motion of the particles are given by

mr̈j +
∑
i 6=j

∂V (|ri − rj|)

∂rj
+ ζ ṙj + ηj(t) = 0 , (4)

where ζ is a friction constant whose value is related to the amplitude of the white noise ηj(t)
by the fluctuation dissipation theorem, i.e. 〈ηj(t)ηi(t

′)〉 = 6kBTδ(t − t′)δji. There are two
reasons for studying a system with such a stochastic dynamics. Firstly the system with these
stochastic forces will probably have a dynamics which is quite similar to the one of a colloidal
particle in a suspension, a model system for which beautiful light scattering experiments have
been performed to study the glass transition [12]. Thus it is interesting to see whether the
relaxation dynamics of the Lennard-Jones system is indeed very similar to the one found in
these experiments. The second reason is related to a prediction of MCT which states that
at long times the relaxation dynamics is independent of the microscopic dynamics. Thus
we can compare the relaxation behavior of the system with the stochastic dynamics with
the one of the Newtonian dynamics and see in what aspects the two differ. Work in this
direction has already been done by Löwen et al. [95]. These authors made a simulation
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of a supercooled polydisperse mixture of particles interacting with a Yukawa potential and
compared the relaxation dynamics of this system with a Newtonian dynamics to the one
with a Brownian dynamics. It was found that in the β−relaxation regime the dynamics
depends on the microscopic dynamics, that, however, the α−relaxation was independent of
it. Qualitatively similar results have been found by Gleim et al. in the mentioned simulation
of the Lennard-Jones system [94,96]. In that work it was shown that at low temperatures the
whole relaxation dynamics is independent of the microscopic dynamics, if one leaves aside the
relaxation at very short (microscopic) times. An example for this finding is shown in Fig. 8,
were we have also included the wave-vector dependence of the nonergodicity parameter for
the system with the stochastic dynamics (filled symbols). We see that this q-dependence is
essentially independent of the microscopic dynamics, thus confirming this prediction of the
theory. Furthermore we also recognize that essentially for all wave-vectors the curves for
the stochastic dynamics agree even better with the theoretical ones than the curves for the
Newtonian dynamics do. The reason for this might be that MCT assumes that the time
scale of the β−relaxation, at which the height of the plateau is measured, is separated well
from the one of the microscopic relaxation. Since in the stochastic dynamics the phonons
are strongly damped it can be expected that effectively this separation is larger in the case
of the stochastic dynamics than for the case of the Newtonian dynamics, where no damping
is present, and that therefore the assumption of the theory is better fulfilled.

B. Dynamics below the glass transition temperature

In the previous subsection we have discussed the equilibrium relaxation dynamics of glass-
forming liquids in their supercooled state, i.e. at temperatures above the glass transition
temperature Tg. Since we have seen that with decreasing temperature the relaxation time
τ increases quickly, we expect that there will exist a temperature Tg at which τ will exceed
the time scale of the experiment or simulation and hence it will no longer be possible to
equilibrate the system. One might guess that at temperatures below Tg the system is
essentially frozen, i.e. that its dynamics is similar to the vibrational dynamics of a solid. To
a certain extend this view is certainly correct and solid state concepts, like, e.g., the density
of states, have successfully been applied to describe the dynamics of disordered systems or
to compute their specific heat [97]. However, as we will show in this section, even at low
temperatures the dynamics of disordered systems is not purely of vibrational type but has
also a very interesting relaxational component. This slow relaxation is known as “aging”
and leads to a slow time dependence of various material properties, such as brittleness,
density, etc. The importance of such aging phenomena has been realized for quite a long
time [98] (and they have been described by means of phenomenological theories) but it
is only in recent years that sound theoretical concepts have been developed in order to
describe this type of dynamics [99–102]. Apart from extensive investigations on polymeric
systems [98], aging phenomena have so far mainly been investigated in spin glasses by means
of experiments and computer simulations [16,99,103,104]. Only very recently experiments
and computer simulations of structural glasses and other disordered systems have been made
in order to investigate these phenomena [70,105–111] so that the validity of the various
theoretical approaches can be tested. The results of these investigations do not yet allow to
decide which one of the theoretical pictures proposed (“droplet model”, “trap model”, mean-
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field) [99–102,106] is appropriate to describe the aging dynamics of structural glasses but it
can be expected that further studies will ultimatively rule out certain scenarios. Therefore
the goal of the following presentation of the results of such investigations is not to advocate
any particular theory but rather to familiarize the reader with the occurring effects and to
show how computer simulations might help to decide which theoretical picture is appropriate
to describe this aging dynamics.

In order to study aging effects it is of course necessary to first drive the system out of
equilibrium. In structural glasses this can be done, e.g, by decreasing the temperature below
the glass transition temperature or by compressing the system beyond a “critical” density.
If the out of equilibrium situation is generated by a temperature jump, one proceeds as
follows. The system is first equilibrated at an initial temperature Ti. At time t = 0 the
system is quenched to a temperature Tf which is significantly lower than the glass transition
temperature Tg, where Tg is given by the time scale of the experiment. After the quench
the system is allowed to evolve for a waiting time tw, after which the measurements start.
The relaxation of the system is now studied as a function of tw and τ ,the time elapsed since
the start of the measurement, i.e. since t = tw. In a recent computer simulation Kob and
Barrat studied the relaxation dynamics of the binary Lennard-Jones system discussed above
after such a quench [108]. In Fig. 9 we show the time dependence of epot, the potential
energy of the system, after such a quench to Tf = 0.4 for three different initial temperatures
Ti = 5.0, 0.8 and 0.466. Note that the glass transition temperature of the system for very
long simulations (O(108) time steps) is around Tc = 0.435 [72]. One recognizes that, after a
relatively fast decay, the potential energy for the two larger values of Ti is almost constant
and also the curve for the lowest Ti depends only weakly on time. A more careful analysis
of this time dependence shows that it is approximated well by a power-law with a small
exponent around 0.14, or by a logarithmic time dependence. Since this dependence is so
weak one therefore might erroneously conclude that at the end of the run the system has
equilibrated, or is at least quite close to equilibrium. We know, however, that this is clearly
not the case, since we are at a temperature at which the relaxation time of the system exceeds
by several orders of magnitude the time scale of the simulation. Hence this should be taken
as a warning in using a one-time quantity as a probe of whether or not the system has been
equilibrated or not. (By “one-time quantity” we mean an observable which in equilibrium is
a constant, such as the energy, pressure or density.) Thus we conclude that the investigation
of such quantities is not very well suited to study aging phenomena, a result in agreement
with simulations by Andrejew and Baschnagel of aging effects in a polymer melt [110].

Much more sensitive quantities to study the aging dynamics are “two-time” correlation
functions, such as the generalization of the intermediate scattering function Fs(q, t) [Eq. (3)]
to a non-equilibrium situation. We recall that by definition of equilibrium, a time correlation
function depends only on time differences, i.e.

Fs(q, τ) =
1

N

N∑
j=1

〈exp(iq · [rj(τ)− rj(0)]〉 =
1

N

N∑
j=1

〈exp(iq · [rj(tw + τ)− rj(tw)]〉 . (5)

Since the quench breaks the time translation invariance of the system, the second equality
no longer holds and we therefore define the out of equilibrium time correlation function

Cq(tw + τ, tw) =
1

N

N∑
j=1

〈exp(iq · [rj(tw + τ)− rj(tw)]〉 . (6)
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Here 〈.〉 stands for the average over the temperature before the quench. The time dependence
of Cq(tw + τ, tw) for different waiting times is shown in Fig. 10. We see that this two-time
correlation function shows a very strong dependence on the waiting time and is therefore
well suited to study the aging dynamics. For short tw the function decays very quickly,
since the typical configuration of the particles at Tf is very different from the one at Ti.
Therefore the system is subject to a large driving force which will move it towards a part of
phase space which is more typical for the temperature Tf and thus the system will quickly
decorrelate from the initial configuration. If the waiting time is increased, the driving force
is smaller and at short and intermediate times τ the system will explore only that part
of phase space which corresponds to the vibrational motion of the particles in their cages.
This is the reason why the correlation functions show a plateau at intermediate times and
look qualitatively quite similar to the ones in equilibrium (cf. Fig. 5a). Only for larger
times τ does the correlation function decay to zero and the time at which this final decay
is observed increases with tw. Although the off-equilibrium relaxation curves Cq(tw + τ, tw)
for large tw look qualitatively similar to the ones in equilibrium [i.e. to Fs(q, t)] a detailed
analysis shows that there are important differences. E.g. it is well known that at long
times the equilibrium relaxation curves of glass forming liquids can be fitted very well by a
Kohlrausch-Williams-Watts function, A exp(−(t/τKWW )β), and this is also the case for the
present Lennard-Jones system [72]. For the out of equilibrium function it is, however, found
that the relaxation at long times is given by a power law with an exponent around 0.4 [111]
a result which is in qualitative agreement with results of simulations of spin glasses [16,104].
Hence we conclude that despite the apparent similarity of the curves for equilibrium and
out of equilibrium relaxation, the two types of functions differ significantly. Therefore it
is not appropriate to use the latter ones as an approximation for the former ones, as it is
sometimes done when time correlation functions for temperatures above and below Tg (as
determined from the simulation) are mixed together in the analysis of the data.

In the discussion of Fig. 9 we concluded that a one-time quantity is not a good indicator
for whether or not the system has reached equilibrium. Often it is argued that the decay of
a time correlation function, or seeing a diffusive (i.e. linear) time dependence of the mean
squared displacement within the time span of the simulation, is a sufficient condition for
having reached equilibrium. From Fig. 10 one recognizes however, that this is not the case
at all, since the correlation functions decay also in the non-equilibrium situation, a result
which was also demonstrated nicely by Baschnagel [112], and in a recent simulation of a soft
sphere system Parisi demonstrated that a linear dependence of the MSD does not imply at
all that one has reached equilibrium [70].

One of the interesting results of the theories of aging concerns the violation of the
fluctuation-dissipation theorem (FDT) [99,101] which in equilibrium relates RA(t), the
response of an observable A to its conjugate field, to the time autocorrelation function
CA(t) = 〈A(t)A(0)〉, i.e. RA(t) = −(kBT )

−1∂CA(t)/∂t. For the out of equilibrium case this
relation is no longer valid and it is generalized to

RA(t
′, t) =

1

kBT
XA(t

′, t)
∂CA(t

′, t)

∂t
, (7)

where t′ ≥ t and the quantity XA(t
′, t) ≤ 1 is defined by this equation. From this relation it

becomes clear that the quantity T/XA(t
′, t) can be viewed as the effective temperature for
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which the FTD holds [113] (see also Ref. [101]). Note that in the field of glass science the
concept of a “fictive” temperature has been introduced long ago by Tool and Eichlin [114]
but, to our knowledge, has never been based on a solid statistical mechanics foundation. In
contrast to this the definition of such a temperature via Eq. (7) does not have this drawback
and permits to measure this temperature in experiments or simulations. From the equation
it also becomes immediately obvious that the ratio T/XA(t

′, t) will in general depend on
time and on the observable considered.

If the observable of interest is the coherent intermediate scattering function Cq(tw+τ, tw)
one can measure the response R(tw + τ, tw) (in principle) as follows 1. After the waiting
time tw, a space dependent sinusoidal field with wave-vector q, which couples to the particle
density and has an amplitude V0, is turned on and the resulting change in the density
distribution for wave-vector q is measured. After a measuring time τ one therefore obtains
the integrated response M(tw + τ, tw) given by

V0M(tw + τ, tw) = V0

∫ tw+τ

tw
R(tw + τ, t)dt . (8)

For large values of τ and tw it is expected that the FDT-violation factor X(tw + τ, tw)
in Eq. (7) becomes a function of C(tw + τ, tw) only, i.e. X(tw + τ, tw) = x(C(tw + τ, tw)),
where x is a function of one variable [99]. From this relation and Eq. (8) one thus derives

M(Cq) =
1

kBT

∫
1

Cq

x(c)dc, (9)

where we used the fact that Cq(tw + τ, tw) = 1 for τ = 0. This equation thus says that a
parametric plot of kBTM versus Cq, with time τ as a parameter, will give us information
on the function x(c) and hence on the FDT-violation factor X(tw + τ, tw).

In Fig. 11 we show such a parametric plot for the same correlation function shown in
Fig. 10 and the corresponding integrated response M . The values of tw and Tf are 1000 and
0.4, respectively. We see that for short times τ , corresponding to large values of Cq, the data
points can be approximated well by a straight line with a slope around −1 (see figure). This
means that the FDT-violation factor X is 1, i.e. that the FDT holds and the system behaves
like in equilibrium. However, for larger times (corresponding to smaller values of Cq) the
FDT is violated since the data points do not fall anymore on a straight line with slope −1.
What is observed instead is a straight line with a slope around −0.62. This means that in
this time regime X(tw + τ, tw) is constant and has a value around 0.62, which corresponds
to an effective temperature of 0.4/0.62 ≈ 0.64. Qualitatively similar results have been found
in the seminal work of Parisi in which the violation of the FDT has been investigated for a
soft sphere system [70]. In that simulation the observable of interest was the mean squared
displacement and it was shown that the FDT violation factor X shows a linear dependence
on the final temperature Tf of the quench, a result which has been confirmed also by Barrat
and Kob [109].

Note that the fact that in the non-FDT region we find a straight line with a finite slope
is not trivial at all, since certain theories of aging, such as domain growth [102], predict

1More details on this calculation can be found in Ref. [109].
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a straight line with slope zero and others a parabola-like dependence [99]. Hence we see
that these type of measurements can indeed be used to collect evidence for or against a
theoretical scenario.

V. CONCLUSION

In this review we have discussed some results of computer simulations of supercooled
liquids. By now the literature on this topic is so vast that a comprehensive review is
unfortunately no longer possible and thus we have focussed on only a few topics, namely
on the (metastable) equilibrium dynamics above Tg for a strong and fragile glass former
and the non-equilibrium dynamics below Tg. Whereas the investigation of the former type
of question is today still dominated by real experimentalist, the latter seems to have been
studied in much more detail by means of computer simulations, since for the moment they
are better adapted to investigate such problems. We hope however that in the near future
this situation changes, since such investigations allow to learn more about the structure of
the phase space of the system. (We mention that in the past some properties of phase space
have been investigated by determining the inherent structure of liquids and studying normal
modes [115].) If the structure of this phase space is understood well, e.g. whether or not it
is organized in a hierarchical way, it might become possible to understand the connection
between systems in which the disorder is quenched (such as spin glasses) and systems with
self generated disorder (e.g. structural glasses).

Other types of questions in which computer simulations are probably very valuable,
are to investigate the equilibrium dynamics of supercooled liquids in the region between
the MCT temperature Tc and the experimental glass transition Tg on a microscopic level.
Although for fragile glass formers such simulations are currently not quite feasible, they will
be possible in a few years. Since at the moment there is no complete theory for the dynamics
of liquids in this temperature range and real experiments rarely allow to probe the system
on the microscopic level in sufficient detail, such simulations will be an excellent tool to gain
insight into this question and thus possibly serve as a guide to the development of reliable
theories.

Apart from these types of simulations which are motivated mainly by the wish to have a
sound theoretical understanding of glassy materials, there are of course also those simulations
which are done to calculate properties of specific materials. For example it is possible to
predict the temperature dependence of the specific heat of silica, for temperatures above
100 K up to Tg, to within a few percent of the experimental values [97], or the dynamic
structure factor with quite high accuracy [42,77,78]. It can be expected that in a few years
the quality of the available potentials will increase even further and that soon also potentials
of a bit more exotic materials (such as multicomponent systems) will be determined. This
will then in turn open the door to many types of simulations related more closely to materials
science and thus allow to use all the know-how and insight gained in the investigation of less
complex models also in technological more relevant materials.
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K. Binder, J. Baschnagel, S. Böhmer, and W. Paul, Phil. Mag. B 77, 591 (1998).

[48] J. Habasaki, I. Okada, and Y. Hiwatari, Phys. Rev. E 52, 2681 (1995).

25

http://arxiv.org/abs/cond-mat/9806207
http://arxiv.org/abs/cond-mat/9807180
http://arxiv.org/abs/cond-mat/9807218


[49] J. Horbach, W. Kob, and K. Binder, J. Non-Cryst. Solids, 235-238, xxxx (1998).
[50] R. Dell’Anna, G. Ruocco, M. Sampoli, and G. Viliani, Phys. Rev. Lett., 80, 1236

(1998).
[51] P. Maass, A. Bunde, and M. D. Ingram, Phys. Rev. Lett., 68, 3064 (1992); S. Bala-

subramanian and K. J. Rao, J. Phys. Chem. 97, 8835 (1993); J. Habasaki, I. Okada,
and Y. Hiwatari, J. Non-Cryst. Solids, 208, 181 (1996).
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FIG. 1. Temperature dependence of the oxygen diffusion constant for different models of SiO2.

See Ref. [61] for details. Adapted from Ref. [61], with permission.
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FIG. 2. Wave-vector dependence of the partial static structure factor for (a) a Lennard-Jones

system, a fragile glass former, (A-A correlation) and (b) SiO2, a strong glass former (oxy-

gen-oxygen-correlation). The curves correspond to different temperatures and range from the

temperatures at which the system is in a normal liquid state, to temperatures at which it is in

a deeply supercooled liquid state. Also given are the values of the diffusion constants for the A

particles (a) and the oxygen atoms (b). From Refs. [72,78].
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