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Abstract
Single-particle diffraction imaging experiments at free-electron lasers (FELs) have a great
potential for the structure determination of reproducible biological specimens that cannot be
crystallized. One of the challenges in processing the data from such an experiment is to
determine the correct orientation of each diffraction pattern from samples randomly injected in
the FEL beam. We propose an algorithm (Yefanov et al 2010 Photon Science—HASYLAB
Annual Report) that can solve this problem and can be applied to samples from tens of
nanometres to microns in size, measured with sub-nanometre resolution in the presence of
noise. This is achieved by the simultaneous analysis of a large number of diffraction patterns
corresponding to different orientations of the particles. The algorithm’s efficiency is
demonstrated for two biological samples, an artificial protein structure without any symmetry
and a virus with icosahedral symmetry. Both structures are a few tens of nanometres in size
and consist of more than 100 000 non-hydrogen atoms. More than 10 000 diffraction patterns
with Poisson noise were simulated and analysed for each structure. Our simulations indicate
the possibility of achieving resolution of about 3.3 Å at 3 Å wavelength and incoming flux of
1012 photons per pulse focused to 100×100 nm2.

(Some figures may appear in colour only in the online journal)

1. Introduction

The problem of solving the structure of individual
biological specimens to high resolution is critical for many
branches of modern life- and bio-science. Two widely
used techniques for high-resolution structure determination
are x-ray crystallography and electron microscopy. X-ray
crystallography can only be used for molecules that form
crystals [2], whereas transmission electron microscopy is
limited to structures with a thickness well below 1 μm [3].

4 Present address: Center for Free-Electron Laser Science, Notkestraße 85,
D-22607 Hamburg, Germany.
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Therefore, the majority of samples must be sliced [4] and the
minimum thickness of the slices limits the resolution of this
method.

Single-particle coherent diffraction imaging [5–7] is one
of the promising new techniques for the investigation of
biological samples to sub-nanometre resolution. It has become
possible only recently due to the development of x-ray
free-electron lasers (FELs) [8–11], which produce ultra-short
(10–100 fs), coherent x-ray pulses with high intensity (more
than 1012 photons in a single pulse). Short and intense pulses
are required to overcome the radiation damage of biological
particles during the pulse propagation [12–15] and to produce
a high number of elastically scattered photons [5, 16]. The
coherence of the incident beam is important for a successful
reconstruction of the electron density of the sample [17–19].
However, after the pulse propagation the particles explode,
and only one projection of the sample can be measured.
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Figure 1. Schematic view of the experimental geometry. (a) In real space, the diffraction pattern from a sample in random orientation is
measured by a single FEL pulse. (b) In reciprocal space, the measured diffraction pattern corresponds to a cut of the 3D intensity
distribution by an Ewald sphere sector. The vectors Ki and K f denote the incident and diffracted wave vectors, respectively.

This problem can be overcome by injecting reproducible
particles one after another with random orientations and
collecting a set of diffraction patterns [6]. Each measured
diffraction pattern corresponds then to an unknown particle
orientation. A method to determine the orientation of the
particle, corresponding to each diffraction pattern, is the main
subject of this paper. When the relative angular orientation of
all diffraction patterns is determined the full three-dimensional
(3D) intensity distribution in reciprocal space can be obtained.
The structural information, or electron density of the sample,
is determined then by the phase retrieval [20, 21].

During the last few years there was a significant progress
in the practical implementation of these ideas at hard
x-ray FELs (see, for example, [22–24]). There were few
attempts to determine the 3D structure in single-particle
imaging experiments [25]; however, the methods are still under
development. Several approaches have been proposed so far
to find an unknown particle orientation in these experiments.
One is based on the common arc algorithm [26] originally
developed for electron microscopy [27–29]. This algorithm
exploits the fact that all two-dimensional (2D) diffraction
patterns of reproducible particles in random orientations
represent sections by the Ewald sphere of the 3D intensity
distribution in reciprocal space. As such, all diffraction patterns
have one common point, the origin of reciprocal space, and
intersect along common arcs. The intensities along these
arcs must be equal, and using this information the relative
orientation of all diffraction patterns can be determined. The
main problem of this method is its demand for a high signal-
to-noise ratio, which is difficult to satisfy even with the present
high-power FEL sources. It was suggested to overcome this
limitation by an additional classification step [26, 30], in
which diffraction patterns with similar particle orientations are
averaged prior to orientation determination. This step improves
the statistics of each averaged diffraction pattern, but at the
same time reduces its contrast. As a result, the classification
step decreases the achievable resolution and can produce
artefacts in the final stage of electron density reconstruction.
Another method is based on generative topographic mapping

and neural networks [31, 32]. This approach works well
for a low signal-to-noise ratio but scales poorly with the
number of resolution elements in terms of computational time
and memory. The same is valid for a method based on an
expectation maximization technique [33].

Here, we propose an orientation determination method
based on an improved common arc algorithm [1]. Instead of
a classification step we perform a simultaneous analysis of
common arcs between many diffraction patterns. To improve
the quality of the orientation determination, a 3D angular
refinement procedure is applied at the final step. This algorithm
works well even with a low photon signal down to 0.5 photons
per Shannon angle. It scales linearly with the number of
resolution elements and number of measured diffraction
patterns. Memory requirements are relaxed because most of the
data can be processed in parts. Finally, the algorithm is highly
parallelizable since most of the analysis is done between pairs
of diffraction patterns.

The paper is organized in the following way. In section 2,
we describe our implementation of the common arc algorithm.
Section 3 describes our approach to treat poor signal-to-noise
ratio data as well as the orientation refinement procedure. Tests
of the proposed algorithm on simulated data from two different
biological structures are presented in section 4. The paper
is completed by the conclusion section. The details of the
algorithm implementation are presented in appendices A–C.

2. Common arc algorithm

In a typical single-particle diffraction imaging experiment, a
sample with unknown orientation is injected into the focused
coherent x-ray beam of an FEL (figure 1(a)). The scattered
radiation is measured in the far field by a 2D detector. This
diffraction pattern can be mapped on an Ewald sphere [34] and
represents a 2D cut of the 3D intensity distribution in reciprocal
space (figure 1(b)). Alternatively, the diffraction pattern can
be considered as a perspective projection of an Ewald sphere
sector onto the 2D detector plane as viewed from the sample
position (figure 2).
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Figure 2. Measurements of two reproducible samples at random
orientation can be considered as two measurements of the same
sample with two different incident beam directions indicated by the
vectors Ki1 and Ki2. The angles φ, θ and ψ are Euler’s rotation
angles. Points A and B are the centres of the corresponding Ewald’s
spheres. Coordinates on the first and second detector are indicated
as x, y and x′, y′, respectively.

Our previous studies suggest [7] that, in order to increase
the scattered signal, it is favourable to use longer x-ray
wavelengths, since the x-ray scattering cross-sections are
larger at these wavelengths. At the same time the energy of the
incident x-rays should be sufficient to penetrate the sample.
To achieve high resolution the detector should also cover high
scattering angles. Under these conditions a large sector of an
Ewald sphere is covered, which is beneficial for orientation
determination.

When two independent measurements of identical
particles with different orientations are considered, the
orientation of the first particle can be fixed as known. The
orientation of the second particle can be uniquely described
relative to the first one. Alternatively, two measured diffraction
patterns could be considered to originate from the same particle
in different experimental geometries. In this case the particle
orientation is fixed, but the direction of the incident beam and
the detector orientation are different for each measurement as
shown in figure 2. For the first measurement, the incident beam
direction, given by its wave vector Ki1, can be taken along the
qz axis in the reciprocal space coordinate system shown in
figure 1(b). The direction of the incident beam for the second
measurement is given by its wave vector Ki2 (figure 2). The
relative orientation of the second geometry with respect to
the first one can be described by three Euler angles φ, θ, ψ

[35]. The choice of Euler angles is convenient, since rotations
around the angles φ and ψ in reciprocal space are equivalent
to rotations by the same angles of detectors one and two in real
space, respectively.

For monochromatic x-rays, the Ewald sphere has the
radius K = 2π/λ, where λ is the wavelength of the
incident radiation. The Ewald spheres corresponding to the two
measurements pass through the origin of the reciprocal space
coordinate system (figure 2). The origin of the first Ewald

sphere (see point A in figure 2), for the incident vector Ki1, is
at (0, 0,−K) and the origin of the second sphere (point B in
figure 2), for the incident vector Ki2, is at (qx0, qy0, qz0). The
coordinates qx0, qy0 and qz0 are determined by a rotation of the
point (0, 0,−K) around the reciprocal space origin (0, 0, 0) by
the Euler angles φ and θ . The intersection of the two spheres is
a common arc that also passes through the origin of reciprocal
space (see figure 2). This common arc is projected on the two
detectors (curves a and b in figure 2). It is clear from this
construction that the intensity along these arcs must be the
same at both detectors. By analysing the intensity correlations
along all possible common arcs, the unique relative orientation
of the two measurements can be determined.

It should be noted that a common arc can fix the relative
orientation of two patterns only for experimental geometries
with large scattering angles. Otherwise, the measured sector
of the Ewald sphere can be considered as flat, and the common
arc reduces to a straight line. This common line fixes only the
angles φ and ψ , but not the angle θ ; therefore, a simultaneous
analysis of at least three diffraction patterns is needed in this
case [29].

The projection of the common arc on the first detector
(curve a in figure 2) can be expressed in the detector 2D
coordinate system (x, y) by the following equation (see
appendix A for details):(
q2

x0 − (qz0 + K)2
)
x2 + (

q2
y0 − (qz0 + K)2

)
y2 + 2qy0qx0xy

+ 2dqx0(qz0 + K)x + 2dqy0(qz0 + K)y = 0, (1)

where d is the sample–detector distance and x, y are the
coordinates of the common arc projection on the first detector.
Similar projection of the common arc on the second detector
(curve b in figure 2) is also described by equation (1) by
substituting x, y coordinates to x′, y′ = −y.

As follows from equation (1), the curvature of the common
arcs a and b at the detectors one and two is determined only
by the angle θ and sample–detector distance d. Practically, the
coordinates of the projections of common arcs at the detector
planes are obtained by solving equation (1) for each value of
θ and d with the fixed angles φ = ψ = 0. A set of curves
corresponding to the fixed value of the angle θ and all other
values of angles φ and ψ is determined by the rotation of
the curve obtained in the previous step. This is implemented
by the rotation of the coordinate system (x, y) corresponding
to the first detector by angle φ and the coordinate system
(x′, y′) of the second detector by an angle ψ (see figure 2 and
appendix B for details).

For each set of Euler angles and fixed sample–detector
distance d, the coordinates of both arcs (a and b in figure 2)
are determined, and the intensities along these lines are
compared by calculating the cross-correlation coefficient
(CCC) cab(φ, θ, ψ):

cab(φ, θ, ψ) =
∑

i Ja
i (θ, φ)Jb

i (θ, ψ)
√∑

i [Ja
i (θ, φ)]2

√∑
i [Jb

i (θ, ψ)]2
, (2)

where Ja,b
i (θ, φ) = ln[Ia,b

i (θ, φ) + 1] are logarithms of the
intensities Ia

i (θ, φ) and Ib
i (θ, φ) along the first (a) and second

(b) arc. The correct orientation of the second measurement
with respect to the first one is given by the set of angles
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Figure 3. Few Ewald sphere sectors intersecting the 3D intensity
distribution of the sample in reciprocal space. The yellow lines
indicate common arcs between different patterns.

φB, θB and ψB that maximize the CCC in equation (2). To
determine this orientation, all three Euler angles (φ, θ, ψ) are
varied sequentially with some angular step and CCCs for every
orientation are calculated and compared. This procedure is
applied to all diffraction patterns until their orientation relative
to the first one is determined (figure 3).

It should be noted here that not only orientation but also
the position of a particle in space should be taken into account
explicitly in the analysis. The transverse position of the sample
relative to the optical axes of the incoming focused x-ray
beam adds a constant phase slope to the scattered amplitude
and scales its intensity. If each diffraction pattern is properly
centred, then this does not cause any problems in the analysis
since the phase is not recorded by the detector. The intensity
of each diffraction pattern can be rescaled at the stage of
composing the 3D intensity distribution in reciprocal space, as
described later. At the same time, the particle–detector distance
d must be taken into account explicitly, due to its strong
influence on the diffraction pattern. If two measurements are
performed at different sample–detector distances d1 and d2,
equation (1) must be solved separately for both detectors taking
into account the corresponding distances. This is especially
important in real experimental conditions, when particles are
injected in the beam, due to variations of the distance d from
shot to shot. We also assume in our analysis that the particle
size is much smaller than any variations of beam intensity.
More details on our practical implementation of the common
arc algorithm are presented in appendix B.

The common arc algorithm described in this section
performs well for data sets with a high signal-to-noise ratio
[26]. However, it often fails in practical applications for a
low number of scattered photons. One way to overcome this
problem is presented in the following section.

3. Advanced algorithm for orientation
determination in the presence of noise

In the previous section, the common arcs between one
diffraction pattern (that we define as a base pattern) and all
other diffraction patterns were analysed. At the same time, we
should note that each diffraction pattern has a common arc with
other diffraction patterns (see figure 3). Therefore, common
arcs between all patterns could, in principle, be analysed
simultaneously. Such analysis can significantly improve the
fidelity of the orientation; however, in practice it requires an
increase in computational resources. A compromise can be
found by implementing the following strategy. As a first step a
set of base diffraction patterns Nbase is analysed with respect to
each other to determine the correct orientations of these chosen
patterns. In the next step all other patterns are oriented with
respect to each of these base patterns. This implementation
requires Nbase times more calculations compared to a single
base pattern. In the final step all intensities are mapped to
a 3D array of voxels in reciprocal space by 3D gridding
and averaging procedure. The benefit of this approach is the
possibility of solving the orientation problem for noisy data,
as will be demonstrated in the following section (see also
appendix C for a detailed discussion).

In a real experimental situation, all diffraction patterns
have different intensities due to shot to shot intensity jitter
of the FEL and the fact that each injected particle is hit by
a different part of a focused beam. As a consequence all
measured diffraction patterns have to be rescaled. This is
implemented in the algorithm by utilizing the fact that each of
the two patterns has a common arc and that the intensities
along this arc must be equal. The scaling factor for the
intensities can be determined by taking the ratio of intensities
of two diffraction patterns along the common arc. Having all
information about the experimental geometry, orientation and
scaling factor for each pattern, the 3D intensity distribution in
reciprocal space can be constructed.

The orientation determination can be significantly
improved by an additional refinement that is based on the
correlations between an individual pattern and the whole 3D
intensity distribution. It can be implemented in the following
way. First, the 3D intensity distribution is obtained from all
but one selected diffraction pattern. Then the orientation of
the selected pattern is varied in a small angular range and the
correlation between this 2D pattern and the whole 3D intensity
distribution is analysed. The orientation corresponding to
the highest correlation value is considered to be the correct
one. Then, the rescaled intensity of the selected pattern with
the refined orientation is included in the new 3D intensity
distribution in which the next diffraction pattern is excluded
and the refining procedure is repeated. By applying this
approach to all diffraction patterns the final 3D intensity
distribution is obtained. This procedure can also be applied
to identify diffraction patterns from ‘wrong’ particles (those
that do not belong to a set of samples under investigation).
Correlation coefficients of diffraction patterns originating from
these particles and the whole 3D intensity distribution will be
quite low, which can be used as a criterion for the rejection of
these diffraction patterns from the future analysis.
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(a) (b)

(c) (d)

Figure 4. Artificial protein structure without any symmetry combined from the 2BTV and 8RUC macromolecular structures. (a) Iso-surface
of the electron density, (b) a typical diffraction pattern (edge resolution 3.92 Å), (c), (d) 2D central cuts (edge resolution 3.3 Å) through the
constructed 3D intensity distribution in reciprocal space for the patterns with a known orientation (c), and the patterns with the orientations
determined using the proposed algorithm (d). All diffraction patterns are presented on a logarithmic scale.

If the structure has a known symmetry, then this can be
used as an additional constraint for orientation determination
[29]. Using symmetry conditions, each diffraction pattern can
be oriented individually with respect to the selected symmetry
axis. This is contrary to the structures without symmetry when
at least two patterns are required for orientation determination.
Applying symmetry conditions, it is possible to get a sufficient
number of diffraction patterns for the 3D representation of the
scattered intensity in reciprocal space even with a limited data
set or a large area of missing data due to a big beamstop.
This approach was successfully used for simulated data for
a sample with icosahedral symmetry discussed in the next
section as well as for experimentally measured diffraction
patterns of a Mimi virus obtained in a coherent diffraction
imaging experiment at FLASH [36].

It is interesting to note that the presented implementation
of the common arc algorithm also allows us to determine
the unknown symmetry of the object. This can be obtained
by the analysis of angular orientations appearing with the
highest probability. Such orientations can be found in a 3D
angular map (φ, θ , ψ) of all possible orientations and reveal
themselves as regions with high density (see appendix C
for details). For example, for structures with icosahedral
symmetry it will correspond to the 120 most likely orientations
in reciprocal space that are related to the icosahedral symmetry
transformation matrix.

A sampling rate of at least 2 in each direction in the
diffraction pattern is required for a successful implementation
of the algorithm described here. The same requirement is valid
for the phase retrieval algorithms applied for the reconstruction
of electron density of the samples. A higher sampling rate is
beneficial for orientation determination because each speckle
consists of more pixels. At the same time, binned experimental
data with a lower sampling rate have a higher signal in
each pixel, which could become important for the orientation
determination of data with a low signal-to-noise ratio [37]. By
testing different sampling conditions we found that an optimal
sampling rate is in the region from 2 to 3. In practice, to increase
the signal the experimental data could be binned for orientation
determination, while the reconstruction is performed on the
original unbinned data set. Applying on a final step phase
retrieval algorithms [20, 21] to the 3D data set of the intensity
distribution, the electron density of the sample can be obtained.

4. Numerical test of the algorithm

The algorithm was tested with two different biological
structures. The first one was an artificial protein structure
without any symmetry combined from the 2BTV and 8RUC
macromolecular structures [38] (see figure 4(a)). It has a size
of 13 × 19 × 28 nm3 and consists of about 124 000 non-
hydrogen atoms. The second one was a human adenovirus
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(a) (b)

(c) (d)

Figure 5. Human adenovirus penton base 2 12 chimera 2c6s structure with the icosahedral symmetry. (a)–(c) The same as in figure 4,
(d) number of diffraction patterns contributing to each voxel of (c) (see appendix C for details). All diffraction patterns are presented on a
logarithmic scale.

penton base 2 12 chimera 2c6s [38]. It has icosahedral
symmetry with the diameter of 27 nm and consists of about
200 000 non-hydrogen atoms (figure 5(a)). In our simulations,
we assumed completely reproducible particles; correlation
analysis of particles contaminated with water molecules was
discussed in [39].

Diffraction patterns for both structures where simulated
at 3 Å wavelength in kinematic approximation5. The signal
at each detector pixel was calculated as a coherent sum
of the atomic form-factors from all atoms consisting the
molecule. Due to a small size of the molecules considered
in the simulations absorption effects were neglected. A
detector size of 100 mm and a sample–detector distance of
50 mm, providing the maximum scattering angle of 45◦,
were assumed in our simulations. The achievable resolution
in this geometry was 3.92 Å at the detector edge and 3.3 Å
at its corner. The number of detector pixels was 512 × 512
for the first sample (providing a minimum sampling rate
of 2.5) and 360 × 360 for the second (with a sampling
rate of 2). The incoming flux was 1012 photons focused
uniformly on 100 × 100 nm2. At each detector pixel, noise
was added according to Poisson statistics. The average flux at
the edge of the detector was 0.05 and 0.15 photons per pixel
corresponding to 0.45 and 0.6 photons per Shannon angle
for the first and second structure, respectively. For the first

5 All diffraction patterns were simulated using the computer code moltrans.

structure, 36 × 36 × 18 = 23 328 patterns were simulated
with a 10◦ increment for each Euler angle. For the second
structure, 12 000 randomly oriented patterns were simulated. A
beamstop with a diameter of about 2 mm covering 1.5 speckles
was introduced in all simulated diffraction patterns, and
this region was excluded from the calculation of correlation
coefficients. Typical diffraction patterns for a single FEL pulse
simulated in the experimental conditions described above are
shown in figures 4(b) and 5(b) for the first and second structure,
respectively.

The correct orientation of each diffraction pattern was
determined using the algorithm described in the previous
sections. The parameters used for the orientation determination
were the following: the number of base patterns was Nbase =
64, the angular increment for each Euler angle was 3◦ in the
range of angles 0 < φ < 360◦, 0 < θ < 180◦, 0 < ψ < 360◦.
This allowed us to obtain the full 3D intensity distribution
in reciprocal space for each sample. A central slice through
this distribution constructed from the oriented diffraction
patterns corresponding to the first structure is presented in
figure 4(d). For comparison, the same slice through the 3D
intensity distribution obtained from the known orientation of
each diffraction pattern is shown in figure 4(c). It is well seen
that the slice obtained as a result of orientation determination
well reproduces all features of an ‘ideal’ intensity distribution;
small deviations can be attributed to angular misalignment.
This misalignment between the angles obtained from the
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Figure 6. Distribution of the angular error of the determined
orientations for the structure without symmetry. The blue line
corresponds to 5◦ angular step, green line 3◦ and red line 3◦ after the
3D refinement (see the text for details).

common arc algorithm and the correct angles for the first
structure is presented as a plot in figure 6. The accuracy
of the orientation determination correlates strongly with the
angular step size for the Euler angles (φ, θ , ψ). Clearly, a
finer angular step size requires more computational time that
scales as a third power of the step size. It is clearly seen in
figure 6 that a 3◦ angular step being five times slower still gives
higher accuracy in orientation determination comparing to a 5◦

step. An additional improvement in the angular determination
is obtained by the final orientational refinement of each
diffraction pattern with respect to 3D intensity distribution,
as described in the previous section (see figure 6).

It is interesting to observe how the signal is increased
by the number of diffraction patterns used in the analysis. In
figure 5(d), a central slice through the 3D array representing
the number of patterns contributing to each voxel of the
constructed 3D intensity distribution is presented. It can be
seen from this figure that at least 100 patterns from the analysed
12 000 contribute to each voxel inside a resolution ring of 4 Å.
One more intriguing feature can be observed in this figure.
Although the initial diffraction patterns were simulated up to
3.92 Å resolution at the edge of the detector, the 3D intensity
distribution obtained from the algorithm has distinguishable
features up to 3.3 Å resolution (see the dark outer ring in
figure 5(d)). This additional signal comes from the corners of
the diffraction patterns.

As was pointed above in our algorithm test, we added
a round beamstop in the centre of the diffraction pattern. To
make our simulations close to experiments performed at XFEL
sources with the present detectors [40, 41] composed of tiles,
we performed an analysis for a detector composed of two
separated parts with a gap in between [36]. Our analysis has
shown that due to the simultaneous analysis of a big number
of diffraction patterns the algorithm works very well even for
such an incomplete data set.

5. Summary

In summary, we proposed a method for the angular orientation
determination in single-particle coherent imaging experiments

based on the common arc algorithm. We obtained a significant
improvement of this approach by introducing a simultaneous
analysis of the common arcs for several diffraction patterns.
This gives the possibility of applying the method to data with
a low level of signal-to-noise ratio as well as to skip the
classification step which can reduce achievable resolution.
Additionally, we proposed an orientational refinement of
diffraction patterns that can improve the quality of the final
3D intensity distribution in reciprocal space.

The algorithm proposed here has several advantages
compared to other approaches [31, 33]. It scales linearly
with the number of measured patterns and total number of
pixels in the diffraction patterns. The algorithm is easy to
parallelize, because most of the cross-correlation analysis is
performed between pairs of independent diffraction patterns.
It has minimum memory requirements, because the data can
be processed in parts.

We foresee that this approach has the potential to be the
key for the success in the analysis of single-particle diffraction
imaging experiments and will allow us to reach sub-nanometre
resolution in 3D imaging of biological specimens.
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Appendix A. Derivation of the main equations

Equation (1) was derived using the following considerations.
Both intersecting Ewald spheres (figure A1) have radii equal

Figure A1. Schematic view of the intersection of two Ewald
spheres.
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to the wave vector K = 2π/λ (|Ki|2 = |Kf |2 = K2), where
λ is the wavelength of the incident radiation. Therefore, the
coordinates (qx, qy, qz) of the intersection curve must satisfy
the equations

q2
x + q2

y + (qz + K)2 = K2, (A.1)

(qx − qx0)
2 + (qy − qy0)

2 + (qz − qz0)
2 = K2. (A.2)

The centre of the second Ewald sphere (qx0, qy0, qz0) lies at the
distance K from the centre of reciprocal space (|Ki2|2 = K2);
therefore,

q2
x0 + q2

y0 + q2
z0 = K2. (A.3)

From equations (A.1)–(A.3), the formula describing the
intersection of two Ewald spheres can be derived:(
q2

y0 + q2
x0

)
q2

y + 2qy0qz0(qz − K)qy + (
q2

z0 + q2
x0

)
q2

z

+ K2
(
q2

z0 − q2
x0

) − 2Kq2
z0qz = 0. (A.4)

As soon as the diffracted vector K f 1 (figure A1) has
the same direction in both real and reciprocal spaces (angles
coincide), the relation between coordinates of a pixel on the
detector (x, y, z) in real space and corresponding coordinates
of the end of K f (qx, qy, qz) in reciprocal space can be written
as

x

qx
= y

qy
= z

qz
. (A.5)

As soon as the distance from the sample to the detector
(d) is fixed, z ≡ d. Equation (1) can be easily derived from
equations (A.4) and (A.5).

Appendix B. Common arc algorithm

Due to the properties of Euler angles, the angle φ (0 � φ <

2π ) can be attributed to the rotation of the reciprocal space
coordinate system around the incident beam (Ki1), the angle
θ (0 � θ < π ) corresponds to the rotation around the new
position of vector qy and the angle ψ (0 � ψ < 2π ) is the
final rotation of the coordinate system around the new position
of the vector qz–vector Ki2 in figure 2.

In practice, the curvature of the common arcs a and b
in figure 2 is determined only by the angle θ and distance d.
The coordinates of the projections of common arcs on detector
planes can be obtained for each value of θ and d, with the fixed
angles φ = ψ = 0, by solving equation (1). Other curves (for
all values of angles φ and ψ) at the fixed value of angle θ

are determined by the rotation of the curve obtained in the
previous step. The coordinate system (x, y), corresponding to
the first detector, is rotated by an angle φ and the coordinate
system (x′, y′), corresponding to the second detector, by an
angle ψ (figure 2).

The common arc algorithm described in this paper
was implemented using the following scheme (figure B1).
Calculation starts with fixed angles φ = 0 and ψ = 0. Then
coordinates qx0, qy0 and qz0 are calculated by Euler rotation
on the θ angle of the vector Ki1 (point (0, 0,−K)). After this,
equation (1) is solved and coordinates (x, y) for the common
arc are found. This curve is rotated on the angle φ for the first
pattern (each pair of (x, y) is multiplied by the corresponding

Figure B1. Flowchart for efficient data analysis with the common
arc algorithm.

rotation matrix) and on the angle ψ for the second pattern (with
exchange y → −y). After the full determination of the curves
for both patterns, the corresponding values of intensities (along
the curve) are extracted using the interpolation described
below. The intensities along the curves are then correlated. This
process continues for all angles ψ in the region 0 � ψ < 2π

and for all angles φ in the region 0 � φ < 2π . Then the whole
process is repeated for different θ values.

The common arcs approach has difficulties when angle
θ is large. In this case the intersection between two spheres
reduces to a closed circle. When angle θ approaches π , this
circle shrinks to a point at the origin of reciprocal space
coordinates (0, 0, 0). Therefore, at large θ (close to π ) the
projection of the common arc to the detector plane, described
by equation (1), degenerates to an ellipse. Therefore, the
length along an arc and a circle can be different. Moreover,

8
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the correlation coefficients found for the arcs with different
curvature can hardly be compared, because the ends of such
curves correspond to different q-ranges and so some curves
will have a good signal at the ends and some—mostly noise.
From these considerations, it is clear that it is difficult to
compare curves obtained for small and big θ angles. To solve
this problem we limited the range of acceptable θ angles
to the range 0 � θ � π/2. To cover the range of angles
π/2 < θ < π we used the fact that reciprocal space is centro-
symmetric for scattering on non-absorbing objects (Friedel’s
law). To take this into account for angles π/2 < θ < π we
invert the direction of the vector Ki2 (figure 2) to its opposite
−Ki2, which corresponds to the following transformation:
rotation of φ by π (φ → φ + π ), rotation of θ by θ → π − θ

and final rotation of ψ by π (ψ → ψ + π ). To finish
inversion transformation we change y → −y (equation (1))
in the detector plane. If for any reason data are not centro-
symmetric (Friedel’s law is violated), the range of angles θ

can still be extended to 0 � θ � 2π/3. For this angular
range, the approach developed for the noisy data analysis (see
appendix C) may be used.

To find the intensities corresponding to each point of the
curve described by equation (1), some sort of gridding must
be performed. In our calculations, we used interpolation in the
form of an average of four nearest neighbour pixels. We also
checked other schemes of interpolation: nearest neighbour and
bilinear interpolation [42]. The first one is faster but lacks
accuracy, and the second is computationally much slower
without noticeable increase in quality.

All common arcs for different θ values (different
curvature) should cover the same q-distance in reciprocal
space. Therefore the step between points on the curve
should remain constant. For this reason, equation (1) was
differentiated analytically and starting from the centre of
detector (x = y = 0) each next point on the curve is calculated
keeping the distance (dx2 + dy2) = const.

The accuracy of calculations of cross-correlation
coefficient (CCC) (equation (2)) for all patterns can be
increased by replacing intensities I(q) with their logarithms,
more precisely by ln(1 + I(q)). Also for noisy and high
background data the following form of CCC is more beneficial:

cab(φ, θ, ψ)

=
∑

(Ja(qi) − 〈Ja(|qi|)〉)(Jb(qi) − 〈Jb(|qi|)〉)√∑
(Ja(qi) − 〈Ja(|qi|)〉)2

√∑
(Jb(qi) − 〈Jb(|qi|)〉)2

,

(B.1)

where J(q) = ln(1 + I(q)) and 〈J(|qi|)〉 is a radial averaged
value of intensity corresponding to a ring with radius |qi| and
a width of one pixel on a diffraction pattern.

Appendix C. Advanced algorithm for processing
noisy data

The algorithm of orientation determination of noisy data is
presented below. In the beginning a set of base patterns is
selected. These patterns can be selected as patterns with high
signal level; as an additional requirement the base patterns
should have different orientation, specifically at angle θ . To

Figure C1. Correlation coefficient between two patterns for
different φ angles. The upper curve for ideal data and the lower one
for the noisy data. The blue boxes mark the ten best candidates for
the correct orientation. The width of each box corresponds to
2 × Atol; the height is arbitrary.

select such a set, 2D cross-correlation analysis is performed
between all patterns for all possible angles φ. The patterns
with a low CCC correspond to a different angle θ . The number
of the base diffraction patterns is selected according to the
following considerations. If the measured signal is strong
(several photons at the edge of the detector), few base patterns
can be sufficient. For a weaker signal, more base diffraction
patterns are required.

Figure C1 shows typical correlations, calculated with
equation (2), between two noisy diffraction patterns for
different angles φ with fixed angles θ and ψ (bottom curve).
For comparison, correlation coefficients corresponding to a
perfect data set are plotted in the same figure C1 (top
curve). The best correlation coefficient between two noisy
patterns can correspond to completely wrong orientation (like
point B in figure C1). Therefore several orientations (Nangl)
corresponding to the best set of correlations must be stored.
To avoid the storage of almost identical angles, some tolerance
Atol in the best orientation angle determination is necessary.
Only one angle in the range ±Atol with the highest correlation
coefficient is stored. This leads to the storage of only one angle
per tolerance region (rectangles in figure C1). Therefore, only
one point per marked rectangle in figure C1 is stored in the
list of ‘best’ angles (for example in figure C1, Nangl = 10 and
Atol = 5◦).

At the first step, all base patterns are correlated to
each other using the algorithm described in section 2. As a
result, Nangl ‘best’ angles between each pattern and all other
Nbase − 1 base patterns are stored. Therefore, each pattern has
(Nbase − 1)Nangl ‘best’ angles with respect to all other base
patterns. Then all these angles are recalculated with respect to
one selected pattern (which attributed all angles equal to 0)—
we shall call it the zeroth pattern. This is done in the following
way: each pattern’s base angles with respect to other bases are
recalculated to angles with respect to the zeroth pattern taking
into account that each base has Nangl angles with respect to
the zeroth. In this way (Nbase − 2)N2

angl + Nangl angles for each
pattern with respect to the zeroth are determined.

9



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 164013 O M Yefanov and I A Vartanyants

Figure C2. 2D (φ, θ ) distribution of angles corresponding to good
correlation between a pattern and all base patterns. A blue box
corresponds to the region with highest density of good orientations.

Let us explain this step by an example. Consider one of the
base patterns Pi. This pattern has Nangl angles with respect to
the zeroth pattern P0. The pattern Pi has also Nangl angles with
respect to the first pattern P1. But the first pattern P1 itself has
Nangl angles with respect to the P0. So, pattern Pi has already
Nangl + N2

angl angles to the P0. Then it also has N2
angl angles to

the P0 through the second pattern P2. This process is continued
for all base patterns. Finally all (Nbase − 2)N2

angl + Nangl angles
determined for one base pattern (Pi) are plotted in 3D space
of angles (φ, θ, ψ) and the angular region with the maximum
density of points is selected as the best angle. In practice
it is done in the following way: a number of points (in the
tolerance region ±Atol for each Euler’s angle) near each point
is calculated. The point with the biggest number of neighbours
is considered to be the best estimate. Then the correct angle
is determined by averaging of all positions of the neighbours.
In figure C2, an example of such operation in the 2D case
(for angles θ and φ with fixed ψ) is presented. The best angle
corresponds to the middle of the rectangle in figure C2.

As soon as all correct angles for the base patterns are
determined, all other patterns can be oriented with respect to
known bases. At this step only NbaseNangl angles need to be
considered for each pattern under analysis in the algorithm
described above.

For better orientation determination the base patterns
should be selected carefully among all those measured. All
base patterns should have different orientations, more precisely
different θ angles. Because initially all angles are unknown this
requirement can be satisfied by the analysis of 2D correlations
between different patterns. This is performed by calculating
2D correlation between pairs of patterns for different angles
φ and the best correlation coefficient is stored. Then patterns
with the worst 2D cross-correlations between each other are
selected as bases. Also for experimental data analysis, base
patterns should be selected according to the recorded signal
quality.

The transformation to a Cartesian coordinate system in
reciprocal space is performed in the following way. The
whole reciprocal space is divided into an elementary set of
3D voxels with the size corresponding to the pixel size of
the detector. Each voxel could contain a few values of the

measured intensities that effectively increase the signal in the
3D intensity distribution (see figure 5(d)). All intensities in
each voxels are averaged and the full 3D data set is obtained.

The orientation determination problem for the symmetri-
cal structure (2c6s) without introducing the symmetry is more
difficult. This is due to the fact that instead of one dense spot
in figure C2 there will be 60 (for a structure with icosahedral
symmetry) less dense spots in 3D angular space. So it is harder
for the algorithm to select the right orientation. The accuracy
(or time) of orientation determination can be greatly improved
if the symmetry of the sample is known. But we want to un-
derline the important feature of the algorithm, that it can be
used even for symmetrical data with unknown symmetry and
also for the structures with pseudo-symmetry.

There is one more important issue for speed and accuracy
optimization while processing low flux data with noise. For
the initial orientation determination there is no need to process
the high-Q region of the diffraction pattern where the radially
averaged photon count is less than approximately 1–2 photons
per Shannon pixel (a pixel with the sampling rate equal
to 1). The region with smaller photon counts just lowers
the accuracy of orientation determination based on common
arcs. Of course this argument cannot be applied to objects
with highly anisotropic scattering in different directions, like,
for example, pyramids [43]. At the same time the final 3D
reciprocal space and 3D angular refinement can be performed
for the full data sets; thus, the whole procedure does not lower
the resolution.

Simulation parameters for the two structures analysed in
this section were as follows: the number of base patterns
was Nbase = 64, the angular step for each Euler angle
was 3◦, Atol = 5◦ and Nangl = 30. The initial orientation
determination of the simulated diffraction patterns for both
structures was performed for the circular low-Q region,
150 pixels in diameter. The following 3D refinement was
made for diffraction patterns with the size 512 pixels (8RUC
structure) and 360 pixels (2BTV structure) with the angular
step of 0.5◦ in the range of 5◦ near the position obtained on
the previous stage. The orientation determination of 23 328
patterns of the 8RUC structure with the parameters listed above
took about one week on a single 8-core computer consuming
less than 1 Gb of RAM. The refinement of the found orientation
for the 512 × 512 pixel 2D diffraction patterns in the full 3D
volume consisting of 512 × 512 × 512 pixels took about one
day and consumed about 8 Gb of RAM due to the requirement
to store the full 3D volume in memory.
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