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Abstract. We introduce a new type of correction for a more accurate description of

fullerenes within the spherically symmetric jellium model. This correction represents

a pseudopotential which originates from the comparison between an accurate ab initio

calculation and the jellium model calculation. It is shown that such a correction to the

jellium model allows one to account, at least partly, for the sp2-hybridization of carbon

atomic orbitals. Therefore, it may be considered as a more physically meaningful

correction as compared with a structureless square-well pseudopotential which has

been widely used earlier.

PACS numbers: 31.15.A-, 31.15.xr, 36.40.-c

1. Introduction

Since the discovery of fullerenes by Kroto et al. [1] in 1985, these molecules have been

the objects of intensive experimental and theoretical investigations (see, e.g., [2]). At

present, the investigation of fullerenes is active since they are proposed to be used in

various fields of science and technology. For instance, excitation of fullerenes, placed

in a biological medium, by an external radiation or incident heavy ions may lead to

an active generation of secondary electrons or reactive oxygen species. This allows

fullerenes to be potentially used as sensitizers in photodynamic therapy [3]. A very

important fundamental problem closely related to the aforementioned application is

an adequate description of dynamic response of fullerenes to external fields or to the

interaction with projectiles. Processes of scattering of electrons, photons and heavy

charged particles on various atomic clusters and fullerenes, in particular, have been

actively studied during the past several decades (see, e.g., the review [4] and references

therein). Not the least of the factors for a proper description of the dynamic response
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of a many-electron system is an adequate description of the ground- and excited-state

(including excitation into continuum) properties of the system under study.

Contemporary software for quantum-chemical calculations (e.g., Gaussian 09

[5]) provides an accurate quantitative description of the ground state of many-

particle systems (fullerenes, in particular), and allows one to obtain information on

geometrical and chemical properties of the system. However, the description of dynamic

properties, which play an important role in the process of photoionization, by means

of such programs faces significant difficulties. Dynamic properties (e.g., dynamic

polarizability) are closely related to the response of a many-electron system to an

external electromagnetic field. In many cases, the properties are governed by a collective

excitation of electrons and the formation of plasmon resonances in the excitation spectra

[6]. In various systems plasmon resonances lie either below the ionization threshold (in

metal clusters) or above it (e.g., in fullerenes). Out of these two classes of atomic

clusters, only the optical response of metal clusters has been calculated so far with the

help of quantum-chemical programs (see, e.g. [7, 8]). Collective electron excitations in

fullerenes, which lie in the continuous spectrum, have not been described so far by means

of quantum-chemical programs. However, this can be achieved within simplified model

approximations. A minimum requirement is that these approximations must provide

an accurate quantitative description of the ground-state features of the systems under

study, in order to be applied to the investigation of the dynamic response and to the

calculation of the photoabsorption (or, in particular, photoionization) spectrum.

One of the well-known and widely used approaches is based on the jellium model

[9]. It was applied frequently to the description of ground-state properties of metal

clusters [9–11] and fullerenes [12, 13], as well as to the investigation of photoexcitation

processes arising in these systems [13–21].

In [12, 22], it was stated that the ground-state properties of fullerenes cannot

be described properly by the standard jellium model which produces, in particular,

unreliable values for the total energy [12]. To avoid this, adding of structureless

pseudopotential corrections was suggested [12]. As a rule, a phenomenological square-

well (SW) pseudopotential has been commonly used in the calculations [12, 16, 18, 21].

It was claimed that accounting for such a pseudopotential increases the accuracy of the

jellium-based description [16] and, for instance, allows one to reproduce the experimental

value of the first ionization potential of C60 [21]. Nonetheless, the applicability of the

jellium model for fullerenes and the choice of parameters of the used SW pseudopotential

have not been clearly justified so far from a physical viewpoint.

In this paper, we use another methodology and introduce a structured

pseudopotential which originates from the comparison of an accurate ab initio

calculation with the jellium-based one. Using this pseudopotential as a correction to

the standard jellium model, one can introduce effects of the sp2-hybridization of carbon

atomic orbitals into the jellium model and relate parameters of the model with the

features of the system obtained from the more precise calculation. By means of the

presented pseudopotential, a relatively simple jellium model acquires more physical sense
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and parameters of the model obtain a clear physical justification. Hereby, we confirm

the relevance of using the jellium model for the description of fullerenes. Investigating

two molecules, C60 and C20, we show that the results obtained have a common origin

and that they could be also extended to other highly symmetric fullerenes.

The atomic system of units, me = |e| = h̄ = 1, is used throughout the paper.

2. Methods of investigation

2.1. Jellium model

In this paper, the fullerenes C60 and C20 are treated within the jellium model which

is based on an assumption that a many-electron system is considered as a sum of

two interacting subsystems: a valence electrons subsystem and a positively charged

ionic core. One of the stable isomers of C20 corresponds geometrically to the regular

dodecahedron [23] and, like the truncated icosahedron C60, has the symmetry of the

Ih point group which is very close to spherical symmetry. Therefore, a detailed ionic

structure of the systems under study is substituted by the uniform spherically symmetric

distribution of the positive charge, in the field of which the motion of the valence

electrons is considered [9].

The valence 2s22p2 electrons in each carbon atom form a cloud of delocalized

electrons, while the inner-shell 1s2 electrons are treated as frozen and not taken into

consideration. Thereby, we consider 240 delocalized electrons in C60 and 80 electrons in

C20. The valence electrons are moving in a spherically symmetric central field, so one can

construct the electronic configuration described by the unique set of quantum numbers

{n, l} where n and l are the principal and orbital quantum numbers, respectively.

Since it is commonly acknowledged [24–26] that C60, as well as other fullerenes,

is formed from fragments of planar graphite sheets, it is natural to match the σ- and

π-orbitals of graphite to the nodeless and the single-node wavefunctions of a fullerene,

respectively [27]. Carbon atoms within a graphite sheet are connected by σ-bonds,

whereas different sheets are connected by π-bonds. In the fullerene, the nodeless σ-

orbitals are localized at the radius of the ionic core while the single-node π-orbitals are

oriented perpendicularly to the fullerene surface. The ratio of σ- to π-orbitals in C60

should be equal to 3 : 1 due to the sp2-hybridization of carbon orbitals [28]. Thereby,

the electronic configuration of the delocalized electrons in C60 is written in the form [13]:

1s22p63d104f145g186h227i268k309l3410m18

2s23p64d105f146g187h10.

Radial wavefunctions of the 1s . . . 10m shells are nodeless, while the wavefunctions of

the 2s . . . 7h shells have one radial node each.

Using the same methodology, one defines the electronic configuration of the 80

delocalized electrons in C20 as follows:

1s22p63d104f145g186h102s23p64d105f2.
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Within the jellium model the fullerene core of the charged carbon ions, C4+, is

described as a positively charged spherical layer of a finite thickness ∆R = R2 − R1.

The thickness ∆R is chosen to be equal to 1.5 Å which corresponds to a typical diameter

of a carbon atom [29] and refers to experimental data from [18]. The potential of the

core may be written as:

Ucore(r) = −N ×
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where N is the number of delocalized electrons in a fullerene (N = 240 in C60 and

N = 80 in C20), R1 = R −∆R/2 and R2 = R +∆R/2 with R standing for a fullerene

radius (RC60
= 3.54 Å and RC20

= 2.04 Å [30]).

The electronic subsystem is treated within the local density approximation (LDA).

Single-electron wave functions φnlm(r) and the corresponding energies εnl are determined

from a system of self-consistent Kohn-Sham equations:
[

−∆

2
+ Ueff(r)

]

φnlm(r) = εnlφnlm(r) , (2)

Ueff(r) = Ucore(r) +
∫

ρ(r′)

|r− r′|dr
′ + ULDA

XC (r) , (3)

ρ(r) =
∑

nl

l
∑

m=−l

Nnl

2(2l + 1)
|φnlm(r)|2 , (4)

where Nnl is a number of electrons in the nl-shell. The exchange-correlation potential

ULDA
XC (r) is represented as a sum of the Slater exchange potential and a correlation

potential:

ULDA
XC (r) = UX(r) + UC(r) = −

(

3

π

)1/3

ρ1/3(r) + UC(r) . (5)

In the calculations, we used Perdew and Zunger parameterization of the correlation

potential [31] which is presented in the form

UC(rs) = εC(rs)
1 + 1.229

√
rs + 0.444rs

1 + 1.053
√
rs + 0.333rs

, (6)

εC(rs) = − 0.142

1 + 1.053
√
rs + 0.333rs

, (7)

where rs(r) = (4πρ(r)/3)−1/3 is the local Wigner-Seitz radius for the electronic

subsystem and εC(rs) is the correlation energy per electron.
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2.2. Ab initio calculations

The ab initio calculations were performed using the Gaussian 09 package [5]. For the

description of the C60 and C20 fullerenes we used the split-valence triple-zeta basis set

6-311+G(d) with an additional set of polarization and diffuse functions. The systems

were calculated by means of the density functional theory. To account for the exchange

and correlation corrections, the Slater exchange functional [32] and the local Perdew

functional (the so-called Perdew Local, PL) [31] were used. By applying these rather

simple functionals we wanted to achieve a full similarity in the description of the

electronic subsystem within the jellium model and the ab initio approaches.

The total electrostatic potential of the system is represented as a sum of the nuclear

and electronic parts:

Utot(r) = Un(r) + Uel(r) = −
∑

A

ZA

|r−RA|
+
∫ ρ(r′)

|r− r′|dr
′ . (8)

The electron density ρ(r) and the potential Un(r) created by all carbon ions,

C4+(1s2), were extracted from the Gaussian output file with the help of the Multiwfn

software [33]. The potential Uel(r) created by the delocalized electrons was calculated

separately using the extracted electron density.

The jellium model treats the fullerenes C60 and C20 as spherically symmetric objects

while a more precise ab initio calculation accounts for the real icosahedral symmetry of

the molecules. Therefore, to draw an analogy between the two methods we averaged the

exact electrostatic potential and the electron density over the directions of the position

vector r:

U tot(r) = Un(r) + U el(r) ,

U i(r) =
1

4π

∫

Ui(r)dΩ (i = tot, n, el) ,

ρ(r) =
1

4π

∫

ρ(r)dΩ . (9)

The averaged electron density includes only delocalized electrons, while the inner

electron orbitals are excluded from the consideration.

3. Numerical results

In this section, we compare the results of the ab initio and the jellium model calculations

for C60 and C20. The fullerene C60 is discussed in detail below. The results for the C20

molecule and the comparison with C60 are discussed further in this section.

Using the methodology implemented in a number of papers [12, 16, 18, 21], we add

a negative SW pseudopotential USW to the core potential (1):

Ucore(r) →
{

Ucore(r) + USW , R1 ≤ r ≤ R2

Ucore(r) , otherwise
. (10)
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The depth of the SW potential was chosen to obtain the same value of the outer-shell

ionization potential as the defined one from the quantum-chemical calculation. The

pseudopotential USW is shown by the dashed red curve in the lower panel of figure 3.
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Figure 1. Single-electron energy levels of C60 obtained from the ab initio calculation

(empty and filled squares) and within the jellium model with an additional square-well

(SW) pseudopotential (empty and filled triangles). Nodeless σ-orbitals and single-node

π-orbitals are labeled by empty and filled symbols, respectively.

Single-electron energy spectra obtained from the ab initio calculation and within

the jellium model are presented in figure 1. For the ease of perception, the height of

levels of split stated (black lines) corresponds to the occupation of shells within the

jellium model (red lines). Ionization potentials of several outer shells (6g, 10m and 7h)

are in a good agreement with the ab initio results while the remainder of the jellium

spectrum is significantly broadened and differs from the more precise calculation. It

should be mentioned that none of the various jellium-based calculations of C60 performed

earlier [12,13,16,17,20,21] can produce the quantitative agreement of the single-electron

spectrum with that one obtained from the more precise ab initio calculation.

The radial density of the delocalized electrons obtained within the two approaches is

presented in figure 2. It is shown that the standard jellium model without any corrections

(dashed red curve) fails to represent the results of the ab initio calculation (black

curve). The additional SW pseudopotential does not modify the density distribution

significantly (solid red curve).

As shown in figures 1 and 2, the jellium model with a simple additional
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Figure 2. Radial electron density of C60 obtained from the ab initio calculation

(solid black curve) and calculated by means of the jellium model: the standard one

(dashed red curve), with the additional SW pseudopotential (solid red curve) and with

the additional pseudopotential ∆U (dash-dotted blue curve).

pseudopotential represents neither the single-electron energy spectrum nor the electron

density distribution. As opposed to more precise quantum chemistry methods, the

jellium model does not take into account chemical features of the fullerene, such as

hybridization of atomic orbitals in the formation of chemical bonding. However, the

jellium model can be improved by means of a more sophisticated pseudopotential which

will allow one to describe chemical properties of the real system. In this paper, we

introduce the correction as a difference between the total electrostatic potential of the

system obtained from the ab initio calculation and the one obtained within the jellium

model:

∆U(r) = UQC
tot (r)− U jel

tot(r) , (11)

where UQC
tot (r) is defined by Eq. (8), and the potential U jel

tot(r) obtained within the jellium

model is defined as:

U jel
tot(r) = Ucore(r) +

∫

ρ(r′)

|r− r′|dr
′ . (12)

The total potentials UQC
tot (r) and U jel

tot(r) of C60 as well as their difference ∆U(r) are

shown in figure 3.
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We note that previously several spiritually close averaged pseudopotentials have

been introduced to correct the jellium model. For instance, it was done in the case

of inhomogeneous electron gas on metal surfaces [34, 35] and for spherically symmetric

metallic clusters [36, 37].

-2,0

-1,5

-1,0

-0,5

0,0
0 2 4 6 8 10 12

0 2 4 6 8 10 12
-1,2

-0,8

-0,4

0,0

0,4

 

 
U

to
t (

a.
u.

)

 ab initio
 Jellium

 

 

P
se

ud
op

ot
en

tia
l (

a.
u.

)

Radial distance (a.u.)

 U
 USW

Figure 3. Upper panel: total electrostatic potential of C60 obtained from the ab initio

quantum chemistry calculation (solid curve) and within the jellium model (dashed

curve). Lower panel: the difference ∆U between the total electrostatic potential of C60

calculated by the ab initio methods and the one calculated within the jellium model

(solid blue curve). The SW pseudopotential USW is also shown for the comparison

(dashed red curve).

As opposed to the SW pseudopotential which affects equally all electrons of the

system, ∆U is an alternating-sign pseudopotential (see the lower panel of figure 3),

therefore it is attractive in the vicinity of the fullerene ionic core and repulsive at larger

distances from the fullerene surface. This means that such a potential affects differently

the σ- and π-electrons of C60 which are located on the surface of the molecule and

perpendicularly to it, respectively. Therefore, one can conclude that by means of a such
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potential it is possible to account, to some extent, for the hybridization properties of

the fullerene.
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Figure 4. Single-electron energy levels of C60 obtained from the ab initio calculation

(empty and filled squares) and within the modified jellium model with an additional

pseudopotential ∆U (empty and filled triangles). Nodeless σ-orbitals and single-node

π-orbitals are labeled by empty and filled symbols, respectively.

The single-electron energy spectrum obtained within the ”modified” jellium model

with ∆U taken as an additional pseudopotential is presented in figure 4. The

modification allows one to obtain a better agreement of the jellium calculation with

the ab initio one for the inner single-node 2s . . . 5f orbitals. On the contrary, it shifts

the 6g and 7h ionization potentials by 2.8 and 2.5 eV, respectively, and still does not

lead to a better quantitative agreement for the whole spectrum (see figure 4).

Introduction of the alternating-sign pseudopotential ∆U allows one to improve

significantly the electron density distribution (see the dash-dotted blue curve in figure

2). The difference between the ab initio calculated electron density and the one from

the jellium model calculation in the spatial region 8 − 12 a.u. may contribute to the

shift of 6g and 7h ionization potentials (see figure 4).

Below we present and discuss the results for the C20 molecule. Following the

formalism described above for C60, the additional pseudopotential ∆U is introduced

as a difference between the total electrostatic potential of C20 obtained from the ab

initio quantum-chemical calculation and the one obtained within the jellium model.

Figure 5 represents the correction ∆U calculated for C60 and C20. It is shown that ∆U
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Figure 5. The additional pseudopotential ∆U in cases of C60 (solid curve) and C20

(dashed curve).

has a similar alternating-sign shape for both molecules but it is more asymmetric in the

case of C20.

The single-electron energy spectra of C20 are presented in figure 6. The

pseudopotential ∆U does not influence significantly on all nodeless orbitals while the

single-node orbitals are shifted. This shift leads to a better agreement of the ab initio

and jellium calculations for 2s and 3p shells but gives a wrong value for the outer 4d

and 5f ionization potentials.

The additional pseudopotential ∆U exerts a similar influence on the electron density

distribution of C20, as in case of C60 (see figure 7). In comparison with a standard

jellium model (dashed red curve), the modified one improves the density distribution

in the vicinity of the fullerene core (dash-dotted blue curve) but the electron density is

spread partly to the spatial region 5− 9 a.u.

Having considered two different fullerenes within the spherical jellium model, one

can conclude that the precise description of single-electron energy spectra of these

systems by means of the jellium model is very difficult and elusive task, though

such an approach produces mostly the right sequence of energy levels. Additional

pseudopotentials allow one to obtain the right value of the ionization potential only for

several outer shells but do not alter the overall situation significantly. At the same time,

we suppose that by improving the ground-state density distribution with the introduced
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Figure 6. Single-electron energy levels of C20 obtained from the ab initio calculation

(empty and filled squares) and within the jellium model (empty and filled triangles):

the standard one (upper panel) and the modified one (lower panel). Nodeless σ-orbitals

and single-node π-orbitals are labeled by empty and filled symbols, respectively.

pseudopotential one can achieve higher accuracy while constructing the photoionization

amplitudes.

The obtained pseudopotentials for C60 and C20 can be well fitted by three Lorentz

functions. The result of the fitting procedure is presented in figure 8. Supposing

∆U(r) ≡ y(x), the resulting fitting function could be defined in the following form:

y(x) = y0 +
3
∑

i=1

2Ai

π

wi

4(x− xci)
2 + w2

i

, (13)

where y0 is the offset constant, xc is the position of the peak maximum, w is the full-

width at half-maximum and A is the normalization factor. The obtained values of these

parameters are presented in table 1.

As was shown above, the pseudopotential ∆U has a more asymmetric form in the
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Figure 7. Radial electron density of C20 obtained from the ab initio calculation

(solid curve) and calculated within the jellium model, the standard one (dashed curve)

and with the additional pseudopotential ∆U (dash-dotted curve).

Table 1. Parameters of the Lorentz functions used for the fitting the pseudopotential

∆U for C60 and C20.

y0 xc1 w1 A1 xc2 w2 A2 xc3 w3 A3

C60 0.064 5.453 1.425 0.727 6.647 0.785 -1.610 7.763 1.264 0.727

C20 0.092 2.650 1.719 0.815 3.797 0.939 -2.053 4.779 1.934 1.606

case of C20 than in the case of C60; therefore, it should affect differently the π-electrons

of these systems. Figure 9 represents the radial density of π-electrons in the C60 and

C20 molecules obtained within the standard jellium model as well as the one augmented

by ∆U . The minimum of the π-electron density distribution is located at 6.78 a.u. for

C60 and 4.03 a.u. for C20. These values are slightly shifted from the mean radius of

the molecules, which equals 6.67 a.u. and 3.86 a.u., respectively. It is shown that due

to the hybridization-related correction ∆U , π-electrons in both systems are distributed

non-uniformly in the inner and outer regions of the molecules.

To estimate a relative degree of spill-out of the π-electrons to the outer region of

the fullerene molecules, we normalized the density distributions by dividing them by the

number of the π-electrons in each system. We also shifted the π-electron density of C60

to the one of C20 to match the minima of the curves. The result is presented in figure
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Figure 8. Pseudopotential ∆U for the C60 (upper panel) and C20 (lower panel)

molecules. The initial curve is presented by the thick solid (black) line, dashed (red) line

represents the fitting curve constructed as a sum of three primitive Lorentz functions

(thin blue lines).

10. It is shown that the profile of the π-electron density in C60 differs from the one in

C20. Due to the smaller radius of the molecule and a bigger curvature of the fullerene

surface, π-electrons in C20 are spilled out further than in the case of C60. On the basis of

this comparison, we suppose that for larger fullerenes, such as C240, π-electrons should

be distributed more uniformly due to a smaller curvature of the surface of the molecule.

4. Conclusion

To conclude, we have introduced a new type of correction for description of the

fullerenes C60 and C20 within the spherically symmetric jellium model. The correction

is represented as an additional pseudopotential which originates from the difference

between the precise ab initio calculation and the one within the jellium model. Due to
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Figure 9. Radial density of π-electrons in C60 (upper panel) and C20 (lower panel)

calculated within the standard jellium model (dashed red curve) and the modified

jellium model with the presence of ∆U (dash-dotted blue curve).

the alternating-sign shape of the potential, it affects the σ− and π-electrons of the system

differently. Therefore, this potential allows one to mimic partially the sp2-hybridization,

which occurs in formation of fullerenes, and, thus, to import the hybridization effects

into the standard jellium model. We have shown that the correction used improves

significantly the electron density distribution as compared to the standard jellium model

and the one with an additional square-well pseudopotential. Like the other previously

used corrections, it does not allow one to obtain a quantitative agreement with an ab

initio calculation for the single-electron energy spectrum but reproduces the sequence of

energy levels corresponding to the one following from the more precise quantum-chemical

calculation.

As the next step of this work, the correction to the jellium model, introduced in this

paper, will be utilized further for the calculation of the dynamic response of fullerenes in
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Figure 10. Radial π-electron densities, ρπ, of the C60 and C20 fullerenes normalized

by the number of the π-electrons, Nπ, in each system. The density distribution of C60

is shifted to match the minima of the two curves (see the text for more explanation).

the processes of photon and electron impact excitation. We suppose that improving the

ground-state density distribution with the introduced pseudopotential it is possible to

get an accurate description of the excitation processes of fullerenes. Particular attention

will be paid on the study of collective electron excitations. This work is currently in

progress and the results will be presented elsewhere. An implementation of the presented

formalism for larger fullerene molecules, nanotubes etc. could be another topic of further

investigations.
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