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Abstract. Weakly scattering random lasers exhibit lasing modes that spatially

overlap and can interact strongly via gain saturation. Consequently, lasing in high-

threshold modes may be suppressed by strong low-threshold lasing modes. We

numerically examine the effect of inherent noise on this strong nonlinear phenomenon.

Noise generates emission below the lasing threshold and restrains the dramatic

nonlinear behavior above threshold. The result is a linearization of random laser

modes and is possible when noise overcomes spatial hole burning. Results suggest that

control over the noise properties of the gain medium may facilitate or inhibit certain

modes to lase in the multimode regime.

PACS numbers: 42.55.Zz,42.60.Mi,05.40.Ca

1. Introduction

Contrary to conventional lasers, random lasers have no cavity like a Fabry-Pérot

resonator [1]. Instead, they are made of a multiply scattering medium such as a

semiconductor powder [2, 3] or a suspension of scattering particles in dye solution [4],

which is excited by an external pump to introduce gain. Multiple scattering of light

in the random medium provides optical feedback and lasing modes are built on the

quasimodes of the passive random system. A recent review devoted to the first lasing

mode at threshold [5] shows how the relation between lasing modes and quasimodes

depends on the openness of the system. With strong confinement of light, as in the

localization regime, lasing modes have a nearly one-to-one correspondence with the

localized modes of the passive system. In diffusive systems, quasimodes exhibit a large

amount of spatial and spectral overlap but maintain a strong correspondence with the

lowest threshold lasing modes. In systems which are more open, such as those in the

quasi-ballistic regime, the correspondence significantly degrades. This is largely due to

the intense pumping required to overcome high loss from the openness, which introduces

a modification of the refractive index distribution.
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Far above the lasing threshold, in the case of multimode lasing, it was found that

the correspondence between lasing modes and quasimodes begins to degrade in the

diffusive regime [6, 7]. Mode competition occurs due to gain saturation. With limited

gain available, spatial hole burning takes place where the field intensity is large. Thus,

random lasing thresholds may increase in the multimode regime and lasing in some

modes may be completely suppressed. In other words, “dead” regions are produced

in the spatial profile of gain caused by the low-threshold lasing modes which proves

detrimental for lasing in other higher-threshold modes. Illustrations of such strong

nonlinear effects were made by taking into account the openness of the system and the

nonlinearity to all orders via steady-state ab initio laser theory [8]. Nonlinear effects

above threshold have also been studied in the time domain with full-wave simulations

incorporating four-level atomic media [9]. However, the effects of intrinsic noise, which

cause dynamic changes to the atomic population and polarization [10], on nonlinear

processes has not yet been taken into account.

In this paper, a frequency-dependent linear gain model is first employed to examine

lasing modes without the effects of gain saturation. Gain saturation is then incorporated

via full-wave Maxwell-Bloch simulations. Comparison of the two methods determines

the nonlinear effects of gain saturation. Intrinsic noise in weakly scattering random

lasers has been shown [11] to alter lasing thresholds and introduce peaks in the emission

spectra which were absent from the spectra without noise. Thus, we examine how noise

modifies the dramatic nonlinear effects introduced by gain saturation. The population

inversion is found to be significantly affected by noise in the multimode lasing regime

not far from the lasing threshold. Spatial hole burning can be overcome to excite and

amplify additional modes. Finally, modal amplitudes are found to be linearized across

the lasing threshold and in some cases, mode suppression can be mitigated.

This paper is organized as follows. In section 2, information concerning the

numerical methods employed in this paper is given. In section 3, nonlinear effects above

the first threshold for lasing are studied without noise. In section 4, the inherent noise

of optical systems is taken into account. Spatial properties of the gain are examined in

section 5. Finally, inherent stochastic linearization of random laser modes is discussed

in section 6. Final conclusions are presented in section 7.

2. Numerical methods

2.1. Random Structure

The one-dimensional random systems considered are composed of 41 layers. Dielectric

material with index of refraction n1 = 2 separated by air gaps (n2 = 1) results in a

spatially modulated index of refraction n(x). Outside the random medium n0 = 1. The

average thicknesses are 〈d1〉 = 100 nm and 〈d2〉 = 200 nm giving a total average length of

〈L〉 = 6100 nm. In the wavelength range of interest (400 nm – 800 nm), the localization

length ξ ranges from 850 nm to 1500 nm. ξ was calculated from the dependence of
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ensemble-averaged transmittance T on the system lengths L as ξ−1 = −d 〈lnT 〉 /dL.

The Thouless number g, which reveals the amount of spectral overlap of resonances of

these random systems, is given by the ratio of the average resonance linewidth to the

average frequency spacing g = 〈ki〉 / 〈dk〉. The linewidth is estimated via the spectral

correlation function G(∆k) of the transmission T (k)

G(∆k) = 〈T (k)T (k +∆k)〉 /
〈

T 2(k)
〉

. (1)

The width of G(∆k) estimates 〈ki〉. The resonance frequencies of the passive system

(found via the transfer matrix method described below) are used to estimate 〈dk〉. This

results in g = 0.18, meaning the resonances are well separated.

In such strongly scattering systems, spectrally separated modes generally exhibit

less spatial overlap and thus, less interaction [12, 13]. However, we shall show that

lasing modes can still interact strongly through the gain medium whose homogeneously

broadened spectrum covers multiple resonances.

2.2. Frequency-dependent Linear Gain Model

The transfer matrix (TM) method developed in [14] is used to simulate lasing modes

at threshold with linear gain. Gain is linear in that it does not depend on the

electromagnetic field intensity. Thus, gain saturation is not included and consequently,

mode interactions via spatial hole burning are neglected. Solutions are only valid at

or below threshold [15], not above it where gain saturation is needed to reach a steady

state.

The lasing solutions must satisfy the time-independent wave equation with a

complex frequency-dependent dielectric function

ǫ(x, k) = ǫr(x) + χg(x, k), (2)

where a real wavenumber k = 2π/λ describes the light frequency in vacuum, and

ǫr(x) = n2(x) is the dielectric function of the passive background material. The

frequency dependence of ǫr is ignored. χg(x, k), corresponding to the susceptibility

of the atomic material, is given by

χg(x, k) =
−AeNA(x)

k2
a − k2 − ik∆ka

, (3)

where Ae is a material-dependent constant, NA(x) is the spatially dependent density

of atoms, ka is the atomic transition frequency, and ∆ka is the spectral width of the

atomic resonance. Real quantum transitions may be considered [16] to induce a response

proportional to the population difference density ∆NA. NA(x) is thus replaced in

equation (3) by ∆NA(x) = N2(x) − N1(x), the difference in population between the

upper and lower energy levels (i.e., population inversion). ǫ(x, k) therefore includes

absorption [∆NA(x) < 0] or gain [∆NA(x) > 0]. The complex, frequency-dependent

index of refraction used in the TM method is calculated as

ñ(x, k) =
√

ǫr(x) + χg(x, k). (4)
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The atomic transition frequency is set to ka = 10.5 µm−1, the corresponding

wavelength λa = 600 nm. The width of the gain spectrum is chosen such that it spans

ten resonances of the passive system, giving ∆ka = 3.7 µm−1 and in wavelength-space,

∆λa = 200 nm. Propagation of the electric field through the structure is calculated via

the 2× 2 matrix M . Boundary conditions with only emission out of the system require

M22 = 0. We consider a spatially uniform population inversion (∆NA(x) → ∆NA) to

avoid additional light scattering caused by the spatial inhomogeneity of gain (imaginary

part of ñ(x, k)). Although it does not correspond to common experimental situations

where gain atoms are incorporated only in the dielectric layers, it is possible to have gain

atoms in the gas phase distributed in the air gaps. Lasing frequencies and thresholds

are determined by finding the values of k and ∆NA, respectively, that satisfy M22 = 0.

2.3. Maxwell-Bloch Equations

This numerical method is based on the finite-difference time-domain (FDTD)

formulation we developed to study the effects of noise on light-atom interaction in

complex systems without prior knowledge of resonances [17, 10]. Two-level atoms are

uniformly distributed over the entire random system to avoid additional light scattering

caused by the spatial inhomogeneity of gain. The two-level model of atoms is a simplified

approach that can be applied to actual lasers based on three-level atoms such as Ruby

and Erbium lasers, as the population in the third level is negligibly small [18].

The atomic transition frequency is set to ka = 10.5 µm−1, the corresponding

wavelength λa = 600 nm. The lifetime of atoms in the excited state T1 and the

dephasing time T2 are included in the Bloch equations. The width of the gain spectrum

is given by ∆ka = (1/T1 + 2/T2)/c. We set T1 = 1.0 ps. The value of T2 = 1.8 fs is

chosen such that the gain spectrum spans ten resonances of the passive system. We

also include incoherent pumping of atoms from level 1 to level 2. The rate of atoms

being pumped is proportional to the population of atoms in level 1 [ρ11(x)] and the

proportionality coefficient Pr is called the pumping coefficient. In the steady state, a

spatially-dependent population inversion ρ3(x) = ρ22(x)− ρ11(x) emerges and is within

the interval [-1, 1]. This quantity is spatially averaged and represents the pump level.

This number can be compared with the threshold population inversion ∆NA found via

the TM method. The spatial properties of ρ3(x) are also examined. These Maxwell-

Bloch (MB) simulations solve for the atomic population inversion ρ3(x) and atomic

polarization ρ1(x) = ρ12(x) + ρ21(x) and ρ2(x) = i[ρ12(x)− ρ21(x)].

To introduce noise to the MB equations, we use the stochastic c-number equations

that are derived from the quantum Langevin equations in the many-atom limit [19].

Based on the fluctuation-dissipation theorem, noise accompanies decay of the light field

and atomic dissipation. The amplitude of classical noise accompanying the field decay

is proportional to the square root of the thermal photon number. At room temperature

the number of thermal photons at visible frequencies is negligible. Thus the noise related

to field decay is ignored here. At higher temperatures or longer wavelengths, this noise
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Figure 1. Lasing solutions with frequency-dependent linear gain (TM method) shown

via a map of M22(λ, ∆NA), where dark regions indicate values near zero. Gain

saturation is neglected. Lasing modes are marked by white squares. 23 modes are

found in the wavelength range with a wide distribution of thresholds. The bright

region near λa = 600 nm indicates large values of M22, meaning large-threshold modes

may not exist near the gain center wavelength.

becomes significant. The thermal noise and its temporal coherence can be incorporated

into the FDTD algorithm following the approach we developed in our previous work

[17].

We consider noise associated with three dissipation mechanisms for atoms

(described in detail in [10]) (i) dephasing events, (ii) excited state decay, (iii) incoherent

pumping (from ground state to excited state). The stochastic MB simulations solve for

the atomic population inversion ρ3(x) and atomic polarization ρ1(x) and ρ2(x). With

T2 ≪ T1, we neglect the influence of population fluctuations on the polarization because

it is orders of magnitude smaller than noise due to dephasing. All calculations here are

done in the regime ρ22 & ρ11, where stochastic terms in the density matrix evolution of

the macroscopic system successfully mimic spontaneous emission [10, 20].

3. Nonlinear Effects Above the First Lasing Threshold

3.1. Effects of Gain Saturation

Gain saturation is first neglected in the frequency-dependent TM calculation and the

lasing thresholds of the random system found. Figure 1 maps the wavelengths and

5



 0

1

2

3

 400  500  600  700  800

T
hr

es
ho

ld
 (

× 
10

-3
)

Wavelength (nm)

(1)

(2)

(3)

(4)

(5)
(6)

(7)

Figure 2. Threshold population inversion of the first 7 lasing modes without (TM–

filled circles) and with (MB–open circles) gain saturation included. TM thresholds are

normalized relative to the first MB threshold. Modes are labeled in order of increasing

threshold without gain saturation.

thresholds (λ, ∆NA) of lasing modes. Many possible lasing modes exist due to the width

of the gain spectrum. In this strongly scattering system, the intensity distributions of

modes are distributed throughout the structure, but still fully contained inside the

structure (ξ < L). Such systems possess a wide distribution of decay rates [21, 22, 23].

This translates into a wide distribution of lasing thresholds [24, 25]. The effect is seen

clearly in figure 1 where threshold values extend over an order of magnitude. Near

the gain center wavelength, amplification is large and thus, lasing modes have smaller

thresholds. Large-threshold modes are not observed in this region as indicated by the

bright region where M22 is far from zero. We focus here on the small-threshold modes

(small ∆NA).

Figure 2 reveals the wavelengths and thresholds of the first 7 lasing modes. Both

vary stochastically due to the randomness of the structure. In general, modes closer

to λa = 600 nm have smaller thresholds. However, some modes farther from the gain

center (e.g., mode 4) are associated with quasimodes which have smaller decay rates

and thus, have smaller thresholds.

Effects of gain saturation are examined here through MB simulations (without

noise). Emission spectra are found through fast Fourier transformations of the

steady-state output field. A Welch window is used to keep large-amplitude peaks

from overlapping and thereby masking small-amplitude peaks in the spectra. Lasing

thresholds are determined to be at the lowest pump level at which a peak appears in the

emission spectrum. The steady-state spatiotemporally averaged population inversion is

compared to the threshold population inversion found via the TM method. The first

lasing threshold should be the same for both the TM and MB calculations since, at this

point, there is no gain saturation nor mode competition. Thus, the first TM threshold

is normalized to the first MB threshold. All other TM thresholds are scaled by the same
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Figure 3. (a) Emission spectrum from MB simulations with gain saturation for

〈ρ3(x, t)〉 = 2 × 10−3. Lasing modes are enumerated in figure 2. The four lasing

peaks are labeled (1, 3, 4, 5) and the wavelengths of the three suppressed lasing modes

(2, 6, 7) are indicated by vertical blue lines. Various other peaks appear in the emission

spectrum due to nonlinear wave-mixing. Two four-wave mixing peaks (involving modes

1, 3, and 5) are labeled as examples. (b) Intensity of random lasing modes with

increasing 〈ρ3(x, t)〉. Vertical lines indicate the corresponding TM thresholds. Modes

4 and 5 switch order with gain saturation included.

ratio and the results are shown in figure 2.

MB thresholds of modes 3, 4, and 5 are larger than their TM counterparts. This is

expected [6, 7, 9] since spatial hole burning caused by the first mode reduces the gain

available for larger-threshold modes, thereby increasing their thresholds. Three modes,

2, 6, and 7, are missing from the MB simulations. The emission spectrum near the

lasing threshold of mode 4 is shown in figure 3(a) to verify this behavior. It is clear

that mode 2 is suppressed in this case, i.e., it is not lasing. Higher pump levels were

checked but modes 6 and 7 were not found. Their behavior shall later be discussed in

more detail.

Figure 3(b) reveals the intensity of lasing modes as a function of the pump level

above threshold. A sharp increase of mode intensity is seen near the lasing threshold,

which is larger than the corresponding TM threshold indicated by a vertical line. Within

a small range of pump levels (approximately 1.5× 10−3 < 〈ρ3(x, t)〉 < 2× 10−3), mode

4 is suppressed while mode 5 lases. Eventually mode 4 reaches its lasing threshold and

quickly overtakes mode 5 in intensity. In general, stronger scattering systems have less

mode overlap and therefore weaker competition effects [13]. However, the relatively large

number of lasing modes (due to a wide gain spectrum) encourages mode interaction and

stimulates mode suppression.

3.2. Nonlinear Wave-Mixing

Nonlinear wave-mixing in random media is well known [26, 27, 28, 29] and occurs

regularly due to random quasi-phase-matching. However, such effects have only been

observed recently in random lasers through numerical simulations with four-level gain
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Figure 4. Emission spectra from MB simulations without noise for 〈ρ3(x, t)〉 = (black

solid line) 3.84×10−3, (red dotted line) 5.89×10−3, and (blue dashed line) 6.84×10−3.

The spectrum is focused around λ7 = 601.4 nm (thick vertical gray line). Though noise

is not included in these simulations, the spectrum appears noisy due to nonlinear wave-

mixing (FWM wavelengths marked by vertical black dotted lines). A broad distribution

of intensity appears around λ7 for high pump levels.

atoms [9]. Here, with two-level gain atoms, a higher pump level results in four-

wave mixing (FWM) involving modes 1 and 3 seen in figure 3(a), with a peak at

(2λ−1

1
− λ−1

3
)−1 ≈ 740 nm. Another peak, with mixing involving modes 1 and 5, is seen

at (2λ−1

1
−λ−1

5
)−1 ≈ 690 nm. Many such peaks exist and other nonlinear processes, such

as third-harmonic generation, occur simultaneously but at much shorter wavelengths.

The amplitude of FWM peaks is orders of magnitude smaller than the lasing peaks

with which they are associated. The FWM peaks may not generally influence steady-

state lasing properties due to their small amplitudes. However, they can be comparable

in amplitude to higher-threshold lasing modes [e.g., lasing peak 4 and FWM peak (1,3)]

in figure 3(a)].

Another example showing the influence of FWM peaks is shown in figure 4, where

mode 7 is examined. The lasing threshold for mode 7 predicted by the TM method is

〈ρ3(x, t)〉 = 2.5×10−3. Above this pump level, a multitude of FWM peaks are generated

at wavelengths close to mode 7, which obfuscates the character of the mode. The signal

integrated around the mode 7 wavelength λ7 is orders of magnitude smaller than the

signal of known lasing modes at the same pump level. However, it appears that the

fields generated by FWM are somewhat trapped by the resonance at λ7 resulting in a

broad peak around λ7 in figure 4. The center of the broad peak does not exactly coincide

with λ7, but this could be attributed to frequency pulling caused by the large amount

of gain. Similar behavior occurs for modes 2 and 6. We conclude that these modes do

not lase without noise. Fields due to FWM can be trapped at these resonances, but

a thorough examination of this effect on lasing of large threshold modes is beyond the

scope of this paper.
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Figure 5. Emission spectra from MB simulation with noise at the transparency point

(〈ρ3(x, t)〉 = 0). (top) Vertical lines mark the resonance wavelengths found via the TM

method.

4. Impact of Noise

4.1. Spectral Behavior

We first introduce the emission spectra for the pump level at the transparency point then

investigate higher pump levels. Without noise, at a pumping coefficient of Pr = 1.00,

the system becomes transparent (ρ3 = ρ22 − ρ11 = 0 at the steady state). Since there is

no net gain, the initial seed pulse dies away, and there is no signal at the steady state.

Noise slightly reduces the excited state population [30], thus the system is just below the

transparency point for Pr = 1.00. The pumping coefficient Pr can be adjusted so that

the steady-state spatiotemporally averaged population inversion is zero (〈ρ3(x, t)〉 = 0).

Figure 5 shows the steady-state emission spectrum with noise |E(λ)|2 at this point when

there is no net gain nor absorption. The spectrum is broad and centered at the atomic

transition wavelength λa = 600 nm.

Spectral modulation of emission intensity is evident in figure 5 though there is

no net gain. Without amplification, the system cannot support lasing. However, due

to strong scattering, the dwell time of light at resonant frequencies is longer than at

nonresonant frequencies so the field builds up in the system. Peaks due to this buildup

are visible because the resonance peaks are spectrally separated (g = 0.18). Thus,

modes are visible as peaks in the emission spectrum without gain.

Introducing amplification (ρ3 > 0) allows the first lasing threshold to be reached

without noise at 〈ρ3(x, t)〉 = 0.3 × 10−3 in figure 6(a). The single lasing peak matches

the lasing mode 1 wavelength found in the absence of gain saturation. A narrow spectral

peak also appears at the same wavelength with noise. Due to the smooth transition from

amplified spontaneous emission (ASE) to lasing [11], determining lasing thresholds with

noise is nontrivial and shall be discussed later. Meanwhile, we observe that most of

the resonance peaks exist in the spectrum with noise (though some may be buried) and
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Figure 6. Emission spectra without noise (red) and with noise (black) for 〈ρ3(x, t)〉 =

(a) 0.30× 10−3, (b) 1.1× 10−3, (c) 1.8× 10−3, (d) 1.9× 10−3. Modes [enumerated in

figure 2] are marked in sequence along with along with relevant peaks due to four-wave

mixing. Spectra without noise are vertically offset and normalized for clarity.

become narrower by light amplification.

With gain saturation included, the second mode to reach its lasing threshold in

the absence of noise [figure 6(b)] is mode 3 (enumerated in figure 2). Gain saturation

evidently causes mode 2 to be suppressed. With noise, however, both modes 2 and 3

are seen in the emission spectrum. The mode 2 peak has a smaller amplitude and a

larger linewidth than mode 3.

Mode 5 is next to reach the lasing threshold without noise in figure 6(c) meaning

mode 4 is suppressed. Again, mode 4 is observed in the emission spectrum with noise

but is slightly stronger than mode 5 in this case. Even though mode 4 is farther from the

gain center wavelength, its amplitude is comparable to that of mode 5. The linewidth

of mode 4 is also slightly narrower than that of mode 5.

Without noise, mode 4 begins lasing at a higher pump level as shown in figure 6(d).

A corresponding peak is seen easily in the spectrum with noise. Though much higher

pump levels were checked, modes 2, 6, and 7 are never seen clearly in the emission

spectrum without noise. The peak in the spectrum without noise [in figure 6(d)], whose

frequency is close to that of mode 6, is in fact a FWM peak involving modes 1 and 5,

i.e., (2λ−1

1
−λ−1

5
)−1. All three modes (2, 6, 7), however, clearly exist in the spectra with
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Figure 7. Mode intensities vs. population inversion with noise for representative

modes. Modes 1 and 3 are lasing without noise while modes 2 and 6 are suppressed

without noise. Slopes of linear fits on a log-log scale indicate the power m of intensity

increase, i.e., intensity ∝ ρm
3
. The lasing modes 1 and 3 experience superlinear increase

above a threshold pump level. The lasing threshold is defined as the intercept of the

two linear fits. Suppressed mode 2 does not but mode 6 does, indicating it is lasing

when noise is included.

noise.

Note that although modes appear as peaks in the emission spectra with noise, FWM

peaks are not clearly observed. It is unclear if the FWM peaks are merely hidden in

the noise background or if FWM is suppressed by noise. One possibility is that noise

continually randomizes the phases of modes making even random quasi-phase-matching

difficult to achieve.

4.2. Lasing Threshold

The results in section 4.1 illustrate that suppression of lasing modes due to gain

saturation is weakened in the presence of noise. Some resonant modes, which fail to

lase without noise, manage to lase in the presence of noise, however, a proper definition

of the lasing threshold is lacking. The co-existence of multiple lasing modes and

their interactions through the gain material make it difficult to define the threshold

for each separate mode using previously developed methods for single mode lasers

[31, 32, 33, 34, 35]. The data in figure 7 clearly displays an abrupt change of slope

for the mode intensity versus pump level. This allows us to define a lasing threshold in

the presence of noise and multiple lasing modes.

The mode intensities in figure 7 are plotted on a log-log scale in order to better

examine the rate of increase. The slope indicates the power m of increase, m < 1 is

11



sublinear and m > 1 is superlinear. When the pump level exceeds a threshold, the mode

intensity changes from a sublinear to a superlinear increase. This reflects the onset of

light amplification by stimulated emission into the mode. We define this threshold as

the lasing threshold for the mode.

For modes 1 and 3, the thresholds are 〈ρ3(x, t)〉 = 9.7 × 10−3 and 12.4 × 10−3,

respectively. Noise has increased the absolute lasing thresholds. However, relative to

one another, the thresholds are closer together with noise. Without noise, mode 6 is

suppressed, in other words it does not lase. With noise, the threshold is 〈ρ3(x, t)〉 =

19.7 × 10−3. and is much closer to the first lasing threshold. Thus, noise reduces the

difference in thresholds of different modes, which makes the system behave more similar

to a linear gain system (TM method).

Noise weakens the nonlinear effect of gain saturation. Although mode 6 manages

to lase with noise, the other suppressed modes (2 and 7) do not lase even with noise

included. Mode 2 is shown in figure 7. No clear turn-on exists; its slope remains

fairly constant and sublinear. The same behavior occurs for mode 7 (not shown). The

remaining cases of modes 4 and 5 do display a change of slope, but the superlinear

increase of intensity is weak. The range of superlinear increase, due to stronger mode

competition at higher pump levels, is not enough to find a reasonable linear fit so their

thresholds are not defined.

5. Spatial Behavior

Due to gain saturation, the mechanism through which mode competition and mode

suppression occur is spatial hole burning. In previous sections, spatial properties have

been averaged out and only the spectral steady-state properties examined. However,

above threshold, spatial hole burning creates “dead” regions since there is no gain left

for larger-threshold lasing modes. Next, we investigate the spatial properties of the

population inversion and on it, the effects of noise.

5.1. Well Above the Lasing Threshold

Our previous study demonstrated [11] that the spatial behavior of the population

inversion is similar with and without noise at high pump levels, well above the lasing

threshold. Only at low pump levels does ASE dominate the emission spectrum With

an increasing pump level, gain saturation quickly sets in to suppress the fluctuations.

Without noise, the population inversion reaches a fairly stationary level and temporal

averaging over one optical cycle T ≈ λa/c gives an accurate assessment of inversion

behavior. With noise, averaging only over T yields a more transient behavior of the

gain medium [see figure 8(a)]. Much larger spatial fluctuations of the population

inversion averaged over T reflect stronger temporal fluctuations on the time scale of

T ; the inversion even becomes negative at some locations. The optical cycle T = 2.0 fs,

dephasing time T2 = 1.9 fs, and average cavity lifetime τ = 17 fs are all similar. The
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Figure 8. Time-averaged population inversion 〈ρ3(t)〉 vs. position x without noise

(red) and with noise (black) for 〈ρ3(x, t)〉 = 3.68×10−3. (a) ρ3 with noise is averaged in

time over one optical cycle T . (b) ρ3 with noise is averaged in time over 2T1. Intensity

without noise (magenta) and with noise (blue) is also shown; spatial hole burning is

much weaker in (a).

atomic population changes over the much longer timescale of T1 = 1 ps, which is the

longest time scale in the system. Thus, with noise, the population inversion is averaged

over 2T1 to remove short-time dynamic behavior. Results are shown in figure 8(b) along

with the field intensity to illustrate spatial hole burning. When averaging over 2T1, the

spatial behavior of gain is quite similar with and without noise. This means noise does

not remove the “dead” regions at high pump levels. This is expected since the influence

of noise decreases far above threshold when the lasing signal is much larger than that

of noise.

5.2. Near the Lasing Threshold

The spatial behavior of the population inversion with and without noise for a low pump

level is shown in figure 9(a). Without noise, ρ3(x) is averaged over T and with noise,

it is averaged over 2T1. Even averaging over the longest time scale in the system in

this case, does not make ρ3 with noise converge to that without noise. Note that the

population inversion without noise is plotted on a different scale for comparison, since it

is over an order of magnitude smaller. The inversion with noise fluctuates dramatically

in space with some spatial points (not shown) becoming negative [similar to figure 8(a)].

Not only does the inversion fluctuate strongly in space, but also in time. In a spatial

region not greatly influenced by spatial hole burning (x = 0.5 µm), the inversion in figure

9(b) fluctuates greatly in time, even though averaged over 2T1. These fluctuations still

occur when spatial hole burning is strong, for example, at x = 3 µm. At this location,

the inversion is dynamically “dead” without noise, i.e., ρ3 ∼ 0, due to the low-threshold

lasing modes depleting the gain. Figure 9(b) illustrates the changes of the inversion

〈ρ3(t)〉2T1
in time at x = 3 µm due to noise. The gain medium is constantly altered

by spatial and temporal fluctuations and dead regions are overcome. In other words,

spatial hole burning is unable to continually enforce gain depletion in the presence of
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Figure 9. (a) Time-averaged population inversion 〈ρ3(t)〉 without noise (red) and

with noise (black) for 〈ρ3(x, t)〉 = 0.86 × 10−3. (b) 〈ρ3(t)〉 with noise at x = 3 µm

(circles) and x = 0.5 µm (squares). The solid horizontal line marks 〈ρ3(t)〉 = 10−4

without noise at x = 3 µm and the dotted horizontal line marks 〈ρ3(t)〉 = 0.03 without

noise at x = 0.5 µm. ρ3 is averaged over 2T1 = 2 ps with noise in (a) and (b).

noise.

5.3. Gradual behavioral change

From the results above, it is clear that the spatial profile of the population inversion

with noise is most different from that without noise near the lasing threshold. Without

noise, the population inversion is depleted in regions of high laser intensity. With noise,

the gain has a more uniform spatial behavior. Thus, noise weakens gain depletion. This

helps to overcome the spatial regions of gain that would be depleted without noise. To

quantize the difference of population inversion with noise (ρ3(x))n and without noise

(ρ3(x))w, we take the difference between the two,

K =

∫ L

0
|(ρ3(x))n − (ρ3(x))w|dx

∫ L

0
(ρ3(x))wdx

. (5)

Figure 10 shows K as a function of the pump level ρ3. The spatial distributions

(ρ3(x))n and (ρ3(x))w are compared when their spatially averaged quantities are roughly

equal. For low pump levels, the difference is greatest. The distributions converge toward

one another at high pump levels, as expected.

6. Stochastic Resonance and Stochastic Linearization

In nonlinear systems, the mechanism of stochastic resonance (SR) [36] manifests itself

when noise is able to amplify a weak signal past a certain threshold. With noise included,

it was observed in section 4 that peaks appeared in the emission spectra which are absent

from the spectra without noise. The appearance of such peaks with noise suggests the

mechanism of SR. However, in typical SR cases, an external driving source forces a

“resonance” peak in the power spectrum at the driving frequency if the noise is strong

enough [37, 38]. The random lasers considered here employ an incoherent pump to drive
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Figure 10. Spatial differences K between the population inversion with and

without noise calculated via equation (5). With spatial averaging, the two inversion

distributions are roughly equal (horizontal axis). Their spatial differences increase

greatly at low pump levels.

the system. Thus, the typical mechanism of SR is not observed. The peaks that appear

in the emission spectrum are associated with intrinsic resonances of the underlying

random structure [5].

Closely related to stochastic resonance is the mechanism of stochastic linearization.

Noise added to a continuous signal subject to nonlinear effects (in this case due to gain

saturation) and a threshold condition (in this case the lasing threshold), has the effect

of linearizing the output [39]. In digital signal processing, this is known as dithering

[40] or stochastic linearization (SL). In section 4, we observed that strong nonlinear

effects, such as the suppression of lasing modes due to gain saturation, are weakened

with noise included in the calculation. Moreover, in section 5, it was observed that

regions of depleted gain were overcome by noise, a typical marker of SL. In this section,

we further explore the occurrence of SL in random lasers.

For a signal subject to a threshold condition, nonlinearity can cause unwanted errors

in the detection of that signal. On one hand, nonlinearity may push the original signal

above threshold causing a false positive detection. On the other hand, nonlinearity may

pull the original signal below threshold causing a false negative. Adding the proper

amount of noise to such a system can remove the detection errors. For example, with a

signal originally above threshold, random noise can mitigate the effects of nonlinearity

so that the signal is pulled below threshold less frequently. Thus, if many measurements

are taken, a positive detection of the signal being above threshold occurs most often. A

statistical average of measurements therefore yields the correct detection of the signal

being above threshold. Likewise, a signal originally below threshold can be correctly

detected if the proper amount of noise is added to remove the effects of nonlinearity. It

is in this sense that a signal is linearized by a stochastic process since the effects of the

nonlinearities are removed.
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Figure 11. Mode intensities vs. population inversion without noise (red dashes)

and with noise (black solid circles) for lasing modes 1 and 3, and modes 2 and 6,

which are suppressed without noise. The vertical blue dotted lines indicate the lasing

thresholds without gain saturation (via the TM method). The vertical green solid lines

indicate the lasing thresholds with noise (via the stochastic MB method). The nearly

vertical increase of red dashes indicates the lasing threshold without noise (via the MB

method).

In random lasers, we check if noise linearizes the emission signal across the lasing

threshold. We define the lasing threshold to be reached as the threshold without

gain saturation (found via the TM method). Since we observed mode suppression,

nonlinearity (gain saturation) in random lasers only influences the emission in one way,

i.e., the signal is pulled below its threshold. Therefore, as suggested by sections 4 and 5,

we check if noise is able to push the signal up above threshold again thereby removing

the influence of nonlinearity.

The effect of noise on representative random laser modes is shown in figure 11. Mode

intensity with noise is clearly nonzero for all cases below the TM threshold (marked by

the vertical blue line). A nonzero signal, however, does not indicate the threshold has

been reached. From the steady-state value of the population inversion, we see that

there is no sustained lasing oscillation in these cases since there is not enough gain to

compensate the loss. The noise can push the system above the lasing threshold for

short periods of time, however, the population inversion that is time-averaged over 2T1

does not reach the threshold value for lasing. This time-averaging is equivalent to the

statistical averaging discussed above in relation to stochastic linearization. The time-

averaged nonzero signal below the lasing threshold is attributed to spontaneous emission

for ρ3 < 0 and ASE for ρ3 > 0 [11].

The signals with noise in figure 11 cross the TM lasing thresholds in a continuous
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manner, a behavior typical of SL. However, the signals with noise for modes 1 and 3

have not yet reached their lasing threshold, as defined in section 4.2 and indicated by

vertical green lines. For mode 1, gain saturation does not play a role since no other

modes lase to suppress it [9]. Noise influences mode 1 by pulling it below its threshold

so that it does not lase. This occurs because noise draws energy away from the lasing

mode and distributes it over many other modes via ASE. For mode 3, the effects of gain

saturation and noise influence its behavior; they both cause an increase of the lasing

threshold. However, the threshold with and without noise is nearly the same. Though

the lasing threshold is increased with noise, the effects of gain saturation are mitigated

with noise. These two effects are balanced for this particular mode resulting in a similar

threshold with and without noise.

Lasing oscillation in modes 2 and 6 in figure 11 are always suppressed without

noise. With noise, much larger signals appear in the emission spectra. For mode 6, noise

allows the lasing threshold to be reached when it is otherwise impossible (due to mode

suppression). Without noise, nonlinearity due to gain saturation caused an “error,” in

that its signal was not detected when it otherwise would have been above the threshold

without gain saturation. Inherent noise weakens the effects of gain saturation enough

so that the signal is detected. In the case of mode 2, the proper amount of noise does

not inherently exist in the system to remove this error. The appearance of mode 2 with

noise for ρ3 > 0 is merely due to spontaneous emission, since a superlinear behavior of

the emission signal is never observed.

We believe the inability of noise to excite mode 2 to lase is because of improper

“tuning.” The noise we consider in random lasers is inherent and therefore, not tuned

to give optimal output. This opens the question, however, if noise can be tuned, e.g., by

adjusting the atomic interaction with the heatbath. With the proper amount of noise,

mode 2 may lase and its amplitude maximized.

7. Conclusion

Gain saturation causes strong nonlinear effects in random lasers in the multimode

regime. We have shown these effects, such as the increased lasing thresholds and

mode suppression, by comparing full-wave Maxwell-Bloch simulations to linear gain

simulations that exclude gain saturation. Inherent noise of the laser system was found

to somewhat mitigate the nonlinear effects. Noise increases the first lasing thresholds

due to redirection of energy out of lasing modes, but reduces the thresholds of modes

that lase at higher pump levels. Noise constantly excites all modes and their dwell

time in the random system results in peaks in the emission spectrum that are absent

without noise. Above the transparency point, amplified spontaneous emission enhances

the mode amplitude and allows a smooth transition to lasing. In some cases, this process

allows lasing of modes that are suppressed when noise is not included. The result is

inherent stochastic linearization. We have shown that this is made possible when noise

overcomes “dead” regions of gain caused by spatial hole burning. We further suggest
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that noise may be tuned by adjusting the atomic medium providing gain, to possibly

excite and maximize the amplitude of all possible lasing modes. It may also be possible

to frustrate lasing in particular modes by properly adjusting the noise.
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