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The effect of Planck scale quantum geometrical effects on measurements with interferometers is
estimated with standard physics, and with a variety of proposed extensions. It is shown that effects
are negligible in standard field theory with canonically quantized gravity. Statistical noise levels are
estimated in a variety of proposals for non-standard metric fluctuations, and these alternatives are
constrained using upper bounds on stochastic metric fluctuations from LIGO. Idealized models of
several interferometer system architectures are used to predict signal noise spectra in a quantum
geometry that cannot be described by a fluctuating metric, in which position noise arises from
holographic bounds on directional information. Predictions in this case are shown to be close to
current and projected experimental bounds.

I. INTRODUCTION

It is often remarked that quantum gravity should lead
to the creation and annihilation of high energy vir-
tual particles that gravitationally alter spacetime to be
“foamy” or “fuzzy” at the Planck scale. While various
models mathematically suggest such nonclassicality[1–5],
it is unclear exactly how much the actual physical metric
departs from the classical structure, particularly in sys-
tems much larger than the Planck length. In particular,
it is not known how the effects of Planck scale fluctua-
tions perturb the geodesic of a macroscopic experimental
object.

Laser interferometry is a particularly good experimen-
tal tool to test theories of position, because it is the most
precise measure of relative space-time position of mas-
sive bodies. The LIGO collaboration has previously pub-
lished limits on the stochastic gravitational-wave back-
ground that correspond to a spectral density of noise be-
low the Planck spectral density– that is, the formal ex-
perimental bound on variance in dimensionless strain per
frequency interval is now less than the Planck time. Hav-
ing crossed the Planck threshold in experimental tech-
nique, there is a need for better controlled theoretical
predictions for the characteristics of Planckian spacetime
noise as they actually appear in interterferometer data,
and a more systematic application of the experimental
constraints to model parameters. This paper presents a
survey of candidate models of Planckian quantum geom-
etry, and computes their effects using schematic theoreti-
cal models of interferometers that are sufficiently detailed
and well characterized to provide useful constraints on
new physics.

A straightforward Planck-scale change in position is
impossible to measure experimentally. Moreover, we
show below that metric perturbations that fluctuate only
at a microscopic scale average out in macroscopic mea-
surements and thus become practically unobservable in
real experiments. However, a beam splitter suspended in
an interferometer such as LIGO is in free fall (i.e. fol-

lowing a geodesic) in horizontal directions at frequencies
much higher than 100Hz [6–8]. Thus, the effects of cer-
tain types of spacetime noise can accumulate over time,
enough for some types of deviations from geodesics to be
observable in extensions of known physics.

We start by calculating, in standard field theory, mea-
surable fluctuations in a macroscopic spacetime distance
expected from vacuum fluctuations in graviton fields.
This calculation confirms the conventional wisdom that
in standard field theory, Planck scale effects stay at the
Planck scale: they average out to create negligible depar-
tures from classical behavior on macroscopic scales.

We then proceed to survey a variety of phenomenolog-
ical proposals, based on conjectures about macroscopic
quantum properties of the space-time metric. These ex-
tensions of standard physics are still based on metric
perturbations, so they can be compared directly with
published bounds on metric fluctuations from gravita-
tional wave backgrounds. We classify the scaling behav-
ior of metric perturbation noise with respect to the length
scales involved in the measurement[9–13], and compare
these with experimental data from LIGO. Among the
alternative models surveyed, we find that they generally
are either already convincingly ruled out by current data,
or do not produce detectable effects.

An important exception lies in a class of models where
Planckian geometrical degrees of freedom cannot be ex-
pressed as fluctuations of a metric, treated in the usual
way as quantized amplitudes of modes that have a deter-
minate classical spatial structure. It has been known
that field modes within a classical background space-
time result in infrared paradoxes of states denser than
black holes[14]. Macroscopic geometrical uncertainty in
a different kind of model can be estimated from the
holographic information content of gravitational systems,
and from general symmetry principles [15–18]. Spatial
information can be regarded as being carried by null
waves subject to a Planck frequency cut-off or bandwidth
limit[19–22]. This hypothesis predicts directional space-
time uncertainty that does not average away in the same

ar
X

iv
:1

41
0.

81
97

v6
  [

gr
-q

c]
  2

7 
Ju

n 
20

16



2

way as fluctuations in field theory[23–25]; indeed by some
measures, it grows with scale. It also allows nonlocal
entanglement of position states of a kind not available
within the local framework of quantum field theory, while
preserving causal relationships.

In these information-bounded models, the spatial co-
herence of fluctuations depends differently on the causal
structure of the space-time than in the case of gravita-
tional waves, or in metric-based extension models. Inter-
ferometers far apart from each other display a coherent,
correlated response to a low frequency stochastic gravita-
tional wave background. This is true even for small inter-
ferometers, as long as their separation is not much larger
than the measured wavelength (on the order of 106m for
gravitational-wave detectors). By contrast, fluctuations
from information bounds are only correlated if the two
interferometers measure causally overlapping space-time
regions. The response of interferometer systems depends
differently on their architectures – the layout of the op-
tical paths in space. The apparatus must be modeled to
take these differences into account in making predictions
for signal correlations.

In the later sections of this paper we compare pre-
dictions in this kind of model with experimental bounds
from LIGO and GEO-600, as well as future tests with the
Fermilab Holometer, a pair of co-located, cross-correlated
interferometers specifically designed to search for such
effects. Since these perturbations are not equivalent to
metric fluctuations, we develop models of the interferom-
eters to estimate their response to this kind of geometri-
cal uncertainty. We find that this class of model is close
to being either ruled out or experimentally detectable.

Throughout this paper, where numerical values are
needed, we use ~ = 6.58 × 10−22 MeV s, G = 6.71 ×
10−39 ~c (GeV/c2)−2, and c = 299792458 m/s [26].

II. CONSTRAINTS ON PLANCKIAN NOISE
FROM METRIC FLUCTUATIONS

A. Standard Field Theory

It is well-known that standard methods of quantizing
general relativity as graviton fields lead to results that
are not renormalizable. However, on macroscopic scales
graviton self-interactions can be neglected, and it is con-
sistent to use the zero-point amplitude of metric fluc-
tuations to estimate the order of magnitude of metric
fluctuations predicted by a model based on field theory.

Assume plane wave solutions in linearized gravity, and
consider a wave incident perpendicular to a length being
measured (e.g. an interferometer arm). The mean am-
plitude of a perturbation vanishes, but a graviton mode
has a typical fluctuation energy on the order of 1

2~ωg,
where ωg is the frequency of the mode. Divided by the
typical scale of volume that such a field would occupy,

this corresponds to an energy density of:

u =
1
2~ωg

(c/ωg)3
(1)

A gravitational wave of strain amplitude h has an energy
density of:

u =
c2

32πG
ω2
gh

2 (2)

Equating the two equations gives us a typical strain am-
plitude of:

h ≈ 4
√
π
lpωg
c

(3)

If a gravitational plane wave of this strain amplitude
travels in the z direction, in a length L orthogonal to
the propagation we expect a position fluctuation of the
following time-dependent magnitude:

∆L = F (z − ct) ≡ 1

2
Lh cos(kz − ωgt) (4)

= 2
√
πL lpωg

c
cos(

ωg
c
z − ωgt) (5)

However, this is not the actual length fluctuation mea-
surable between two macroscopic objects (e.g. mirrors).
To determine the position of a macroscopic object, we
need the object to interact with a measurable field, which
occurs over a nonzero area. If we consider a light beam
of wavelength λ extended over a length L, that would re-
quire the beam to have a minimum cross section width on
the order of the diffraction scale,

√
Lλ/2π. The function

F (z−ct) varies with z at a distance scale of 2πc
ωg

, which is

much smaller than
√
Lλ/2π for the higher-energy modes

that lead to larger metric strain. Therefore the inter-
action between the surface of the object and the light
beam would cause a significant amount of suppression in
the measurable length fluctuation as we average across a
macroscopic boundary of this width.

Now model the cross section of the beam as a gaussian.
A one-dimensional averaging in the direction of an opti-
mally oriented gravitational plane wave mode will suffice
as a demonstrative example.

G(z) ≡ 1√
Lλ

e−
πz2

Lλ (6)

To find the measurable time-dependent fluctuation in L,
we average the fluctuation F (z−ct) over the cross section
of the beam by taking the following convolution with
G(z):

x(t) =

∞̂

−∞

F (z − ct)G(z)dz (7)

= 2
√
π
Llpωg
c

cos(ωgt)e−
Lλω2

g

4πc2 (8)
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Figure 1. RMS length deviation in a 1µm laser beam extended over a 4km macroscopic distance, measured with two macroscopic
boundary surfaces and generated by an optimally oriented graviton vacuum mode of zero-point energy 1

2
~ωg. The result is also

shown in equivalent strain, calculated by assuming a perfect detector response. This is not the same as strain noise observed in
interferometers, as discussed below. Averaging the metric fluctuation over the minimum laser beam width causes exponential
suppression at frequencies higher than ωg = c

√
2π/Lλ, the inverse diffraction scale. The value of the peak, marked above at

2GHz, is 4× 10−30m or 5× 10−35Hz−
1
2 .

Take the RMS value over time:

σ(ωg) =
√

2π
Llpωg
c

e−
Lλω2

g

4πc2 (9)

Figure 1 shows a plot of σ(ωg), assuming λ = 1µm and
L = 4km to match the physical parameters of LIGO, cur-
rently the most sensitive experiment for detecting such
metric strains. As intuitively expected, higher frequency
modes lead to higher zero-point energy and larger met-
ric strain, but averaging the fluctuation over the beam
width exponentially suppresses the observable macro-
scopic length deviation for those short-wavelength gravi-
ton modes. The resultant peak occurs at:

ωg,max = c

√
2π

Lλ
σ(ωg,max) = 2πlp

√
L
eλ

(10)

The plot has a peak value of 4× 10−30m at 2GHz. This
is clearly too small to be observed, and occurs at a fre-
quency many orders of magnitude higher than the opti-
mal measurement band for LIGO, which causes the de-
tectable effect to be even further suppressed.

We sum over all frequency modes to obtain the total
length fluctuation. Since the relevant length scale here is√
Lλ/2π, we perform a dimensionless mode summation

assuming a 1-dimensional box of that size. We apply the
substitution:

ωg = 2πfg = πc

√
2π

Lλ
n (11)

and sum over values of n running from 0 to ∞. Since
these are independent modes, to obtain the overall un-
certainty in L, we sum their contributions in quadrature:

σtot =

ˆ ∞
0

(
√

2π
Llp
c
πc

√
2π

Lλ
ne−

π2

2 n
2

)2

dn

 1
2

(12)

=

√
L
λ
π

3
4 lp (13)

For the physical parameters of LIGO, this gives a total
uncertainty of 2× 10−30m, dominated by the peak value
in Figure 1. Observing this would require either a much
larger apparatus or a light beam of a much higher fre-
quency, both without compromising sensitivity to other
sources of noise.

In an ideal detector, we could make another substitu-
tion to rewrite this integral in terms of frequency:

2πf ≡ πc
√

2π

Lλ
n (14)

σ2
tot =

ˆ ∞
0

(
4

√
π3

c3
Llp

(
Lλ
2π

) 1
4

fe−
πLλ
c2

f2

)2

df (15)

=

ˆ ∞
0

S(f)df (16)

√
S(fmax) =

lp√
ec

(
25L3π3

λ

) 1
4

(17)
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To be clear, this is the positional uncertainty involved
in a light beam statically extended over a single length
L, arising from optimally oriented vacuum plane wave
modes of the graviton field. An actual measurement
of a length L involves a light round trip, in which case
we should consider the frequency response to this time-
varying gravitational wave mode as the light makes for-
ward and return passes. The result is a further suppres-
sion of the measurable noise at higher frequencies relative
to inverse light travel time[27]. The angular response is
even more involved because the polarization of the grav-
itational wave mode is flipped midway relative to the
direction of light propagation.

We should also note here that the frequency depen-
dence of metric strain noise detected in a linear measure-
ment of length is different from the frequency dependence
observed in interferometric experiments, as we will dis-
cuss in a future section.

B. Non-Standard Metric-Based Fluctuations

While field theory gives a spacetime position fluctua-
tion that is clearly too small to be measurable, there have
been proposed extensions of standard physics that give
measurable phenomenological predictions. All of these
models assume that light propagates in a metric in the
usual way, but apply different non-standard assumptions
about quantum fluctuations in the metric, generally with
some degree of non-standard macroscopic coherence, to
discuss how metric perturbations affect macroscopic dis-
tance measurements. It is assumed in all of these models
that the effect of metric fluctuations on a macroscopic ob-
ject can be calculated by treating it as a coherent rigid
body and calculating the effects on the center-of-mass.

With these caveats, we categorize the proposed phe-
nomenologies by how the magnitude of the uncertainty
scales with the macroscopic lengths and times being mea-
sured. We characterize each suggested hypothesis by the
root-mean-square deviation σ and the power spectrum
S(f) of the strain noise h, defined as follows[28, 29]:

〈
h2
〉
≡
〈
x2
〉

L2
=
σ2

L2
=

ˆ fmax

1/t

S(f)df (18)

Here L and fmax are respectively a length scale and a
cutoff frequency associated with an experimental appa-
ratus. In most cases, the integral will be dominated by
the region around f ∼ 1/t, where t is the time scale of
the measurement, usually following t ∼ L/c; this is where
the non-standard macroscopic coherence enters.

1. White Spacetime Noise

One of the simplest conjectures is that S(f) is not depen-
dent on the physical properties of the space-time probe.

Under such an assumption, dimensional analysis leads to
a low-frequency expansion of the type[10]:

S(f) = a0
lp
c

+a1

(
lp
c

)2

f+a2

(
lp
c

)3

f2+· · · ∼ lp
c

(19)

Terms involving f−|n| are not included because they also
involve factors of l−|n|+1

p and thus do not disappear in
the classical limit lp → 0. For cases in which f � c/lp,
the expansion reduces to a “white spacetime noise” that
is frequency independent. This prediction covers a class
of theories in which the strain spectrum of the spatial un-
certainty is not apparatus dependent, although the mea-
sured noise spectrum in specific experiments (e.g. inter-
ferometers) might not be flat, as will be discussed fur-
ther below. In particular, some analogies interpreting
the spacetime foam as a quantum thermal bath suggest
such results[30].

2. Minimum Uncertainty

Another simple hypothesis is that the RMS deviation in
any length follows a “minimum uncertainty” close to the
Planck scale[9, 31, 32]:

σ ∼ lp S(f) ∼
l2p
fL2

(20)

The spectrum in (20) is only approximate, as small log-
arithmic t-dependent corrections are ignored. This pre-
diction might be consistent with some theories of critical
strings [33] and the quantum-group structure described
in [34]; it is also implied by certain models of minimum
distance fluctuations from graviton effects[35, 36].

3. Random Walk Noise

One of the most frequently suggested is the “random
walk” model. The rationale for this model is a gedanken
experiment suggested by Salecker and Wigner in which
a distance is measured by a clock that records the time
taken for a light signal to travel the distance twice, with
the light reflected by a mirror at the end[37, 38]. If
we apply Heisenberg’s uncertainty principle to the posi-
tions and momenta of the mirrors and require that mea-
surement devices be less massive than black holes whose
Schwarzschild radii are equal to the size of the devices,
we obtain[9, 39, 40] (Also see [41]):

σ ∼
√
ctlp S(f) ∼ clp

f2L2
(21)

Since this model predicts a noise level near the cur-
rent limits of experimental accuracy, we will go through
a slightly more involved description of the noise spec-
trum. Note that the effect of this model is as if an object
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deviates from its classical gedesic in a traditional random
walk; i.e. for every Planck time elapsed the object takes a
random step of size lp. This means that its RMS velocity
is always the speed of light, similar to the “Zitterbewe-
gung” of an electron studied by Schrödinger early in the
development of quantum mechanics. Thus, representing
the deviation x as a Fourier integral:

x(t) =

ˆ
dfx̃(f)e2πift (22)

it is straightforward from Parseval’s theorem that the
one-sided power spectrum of the velocity v = dx/dt is
white:

Ξv(f) ∼

{
c2/fN = 2clp if f < fN = 1/2tp
0 if f > fN = 1/2tp

(23)

where fN is the Nyquist frequency. This in turn implies
that the one-sided power spectrum of the strain is given
by:

S(f) ∼ Ξv(f)

4π2f2L2
∼

clp
2π2f2L2

(24)

This prediction is associated with dimensionally de-
formed Poincare symmetries [42, 43] and could also hold
within Liouville (non-critical) string theory[5, 44].

4. One-Third Power Noise

Lastly, there is an intriguing prediction, called the “one-
third power model,” also based on the same Salecker-
Wigner gedanken experiment but with the added as-
sumption that the uncertainty in a length measurement
is bounded by the size of the measurement device, for
example a light clock that measures travel time with its
ticks[9, 39, 45] (Also see [46, 47]). This bound is known to
be in rough agreement with what we get if we divide up a
cube of side L into small cubes of side σ and crudely ap-
ply the Holographic Principle in a directionally isotropic
manner, demanding that the number of degrees of free-
dom (the number of small cubes) match the holographic
limit[11, 48]. This gives:

σ ∼ 3

√
ctl2p S(f) ∼ c2/3l

4/3
p

f5/3L2
(25)

C. Predictions for Measured Noise in
Interferometers

Most, if not all, previously published works assume
that the scaling behavior for the spatial length uncer-
tainties translates into a similar behavior in the noise
measured in interferometers (in the portion of the noise
caused by quantum gravitational effects). However, this
straightforward conversion from the raw noise source to

the measured phenomenon, which works for classical dis-
placement noise applied to the optics, may overestimate
the detector’s sensitivity to quantum gravitational ef-
fects. The meta-models discussed above all assume some
type of fluctuations in the metric, which must coherently
affect the geodesics of both light and matter, so we actu-
ally cannot consider them as classical displacement noises
(in which case many would have been ruled out a long
time ago, as we will see in the following sections). Al-
ternatively, we might assume that these meta-models of
quantum metric fluctuations affect interferometers just
like excitations of gravitational waves, but we know that
in other respects they do not behave exactly the same
way— for example, they do not contribute a mean den-
sity to the system in the same way as a stochastic back-
ground of gravitational waves.

So in order to convincingly rule out any one of these
models, we need a model that establishes a conservative
limit on how much continuous measurements at an in-
terferometer can pick up these quantum gravitational ef-
fects. Let us take a concrete example in which the beam
splitter position variable x is measured (relative to the
end mirror) along the direction of one of the two arms.
We will take the relevant length scale L of the apparatus
to be the length of the arm. The light modes traversing
along the two orthogonal arms of an interferometer re-
flect off the beam splitter at two times separated by an
interval τ = 2L/c.

For a classical displacement noise, the variable x is
picked up once, upon the 90◦ reflection, as a classical de-
viation in x does not affect the length of the other orthog-
onal arm (to leading order). For a gravitational wave,
the signal measured, and its phase noise, are caused by
metric fluctuations along the whole light path of scale L.
The metric fluctuations coherently affect both the optics
and the spatial paths traveled by the light beams, even
though the interference itself happens at the “measure-
ment” or reflection. However, these meta-models posit
metric fluctuations that are quantum in nature. Quan-
tum measurement theory[31, 37, 38, 50–53] has estab-
lished that any physically realizable measurement sys-
tem has to be subject to a universal Planckian frequency
bound in information. Operational definitions of classi-
cal observables such as positions on a classical metric are
inevitably limited by quantum indeterminacies.

Therefore, consistent with the phenomenological mod-
els surveyed above, we consider a detector response model
in which a superposition of entangled states of geome-
try and propagating light remains indeterminate until an
interaction of light with matter (at an optical element)
constitutes a measurement that projects the overall quan-
tum state onto a signal. While the statistical outcome
must be observer-independent, the actual outcome may
depend on the locations of special world lines, such as
the world lines of the beamsplitter or other optical ele-
ments, in a way that is different from gravitational waves.
This allows for the possibility that these quantum fluctu-
ations in the metric might produce correlations of a kind
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RMS
Deviation

σ

Strain Amplitude Spectrum√
S(f)of Metric Noise
(Scaling Behavior)

Strain Amplitude Spectrum√
S∆(f) of Interferometer
Noise (Low Frequency)

√
S∆(f)

(LIGO)
(Hz−1/2)

References

Random
Walk Noise

√
ctlp f−1

√
clpL−1 4π

√
lp/c 3× 10−21 [5, 9, 39–44]

White Space-
Time Noise

√
lp/c 4πf

√
lp/c3L 4× 10−24 [10, 30]

One-Third
Power Noise

3
√
ctl2p f−

5
6 3
√
cl2pL−1 4πf

1
6 3
√
l2p/c2 4× 10−28 [9, 11, 39, 45–48]

Minimim
Uncertainty lp f−

1
2 lpL−1 4πf

1
2 lp/c 7× 10−42 [9, 31–36]

Field Theory
(Graviton 0-pt)

√
ct
λ
π

3
4 lp 4

√
π3

c3
Llp

(Lλ
2π

) 1
4 fe−

πLλ
c2

f2
16
√

π5

c5
L2lp

(Lλ
2π

) 1
4 f2 7× 10−44

Table I. A list of metric-based measurable spacetime uncertainty predictions for a length of scale L, corresponding to a travel
time of scale t. We give the predicted overall RMS length uncertainty from metric fluctuations, the corresponding metric strain
amplitude spectra, and the strain spectra of the noise actually expected in gravitational-wave interferometers. Numbers for
LIGO are calculated assuming L = 4km, λ = 1µm, and f = 100Hz. The scaling dependence on f listed in the

√
S(f) column

are order of magnitude estimates only and likely omits a scalar coefficient from a more robust predictive theory. The
√
S∆(f)

column gives approximate behavior for frequencies lower than the inverse travel time for a single interferometer arm. LIGO’s
95% upper bound at 100Hz on the

√
S∆(f) values is 9× 10−25Hz−1/2[49]. This rules out the “random walk” model and places

a limit a0 < 0.06 on the scalar coefficient that included in (19) for the “white spacetime noise” model.

that can appear in quantum-mechanical systems, but are
impossible for classical systems because they violate lo-
cality. They can add correlations from degrees of freedom
not present in the classical metric.

Think of an interferometer as measuring the metric-
based fluctuation in x over a light round trip, given by:

∆x(t) = x(t+ τ/2)− x(t− τ/2) (26)

This one-dimensional model suffices to derive a scaling
behavior for the measured noise. In Fourier space, the
power spectrum S∆(f) of this measured strain ∆h =
∆x/L is related to the power spectrum S(f) of the raw
spacetime strain h = x/L by:

S∆(f) = 4 sin2(πfτ)S(f) ≈
16π2f2L2

c2
S(f) (27)

where we have taken a low frequency (relative to c/2L)
approximation as appropriate for graviational-wave in-
terferometers.

This should be considered an appropriately conserva-
tive model of the detector response. The output (dif-
ferential arm-length) phase noise “measures” the variable
x twice, including when the light beam passes through
the beamsplitter without a reflection, because equation
(26) preserves the quality of metric fluctuations that they
coherently apply to the Riemannian spacetime manifold
on which both the optics and the light paths reside, at
least locally. But it still allows non-standard macroscopic
quantum nonlocalities of the kinds posited in these meta-
models, in that the metric-light quantum state along the
rest of the light path (where there are no interactions)
is considered indeterminate. By allowing for these cor-

relations, much of the effect cancels out at low frequen-
cies, and using this suppressed detector sensitivity we
can thoroughly test for conservative interpretations of
the meta-models.

Note briefly the implications of this calculation on the
“random walk” model above, intuitively understood as
the quantum system displaying random walk deviations
from the classical geodesic at a rate of one Planck length
per Planck time until an interaction constitutes a mea-
surement and collapses the light-geometry state. This
model now corresponds to a flat spectrum of noise, ex-
pressed in terms of a dimensionless gravitational wave
strain measured inside an interferometer.

D. Comparison with Experimental Data

Currently the experiments closest to the Planckian or
sub-Planckian sensitivity levels required to test the pre-
dictions listed in the previous sections are gravitational
interferometers such as LIGO. Noise levels published by
the LIGO collaboration rule out select classes of metric-
based noise predictions. The LIGO collaboration previ-
ously reported that it had achieved a strain noise of 3×
10−23Hz−1/2 around 100Hz in a single interferometer[56].
Also, by cross-correlating signals from pairs of inter-
ferometers separated by a large distance (the two 4-
km LIGO detectors), the LIGO and Virgo collabora-
tions obtained a more stringent bound on the stochastic
gravitational-wave background, which may be used to set
an upper limit on metric fluctuations as a source of noise.
As long as the effects of Planckian fluctuations can be de-
scribed in terms of a fluctuating metric, these limits can
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Figure 2. Spectra for strain amplitudes in interferometers, assuming metric fluctuations on classical determinate spacetime. The
latest published noise spectra are compared against the predictions from models. Absolute normalizations for noise predictions
are rough estimates only. The dashed line for GEO-600 is the sensitivity before light-squeezing techniques were applied.
Since all predictions are metric-based, they should be compared against the “correlated” data point for LIGO’s stochastic
gravitational-wave background limit, obtained by cross-correlating two interferometers far apart. [54, 55]

be carried over into limits on Planckian physics.
The cross-correlations here are of a different nature

than the cross-correlations used in the Holometer, which
are explained in a later section. In the case of a stochas-
tic gravitational-wave background, as long as two detec-
tors are within a distance smaller than the wavelength
of the gravitational wave (on the order of 106m for a
100Hz wave), they show a coherent response to strains in
the metric. LIGO and Virgo take the measured signals
from two interferometers s1(t) and s2(t) and generate a
time-integrated product signal S ≡

´ T/2
−T/2 dt s1(t)s2(t)

[57]. The two measured signals are each a mixture of
metric strains and instrument noise, but 〈S〉 measures
the correlated strain, while

√
〈S2〉 − 〈S〉 2 measures the

uncorrelated noise.
The gravitational wave energy density is defined as:

ΩGW (f) =
f

ρc

dρGW
df

(28)

ΩGW (f) is characterized by a power law dependence
on f in most models of interest. By assuming a
frequency-independent spectrum over the frequency band
41.5 − 169.25Hz, LIGO and Virgo obtained a result of
ΩGW < 5.6 × 10−6 at 95% confidence[49]. Using the
relationship[8],

√
S∆(f) = 4× 10−22

√
ΩGW

(
100Hz
f

) 3
2

Hz−
1
2 (29)

this corresponds to a strain noise of 9.5× 10−25Hz−1/2.
Referring to Figure 2 and the

√
S∆(f) column of Table

I, it is clear that the “random walk” model is now safely
ruled out. There were previous assertions that this model

was ruled out by the Caltech 40-meter interferometer
data[9, 11], but as discussed in the previous section, such
claims were results of incorrect straightforward compar-
isons between the predicted raw spacetime noise

√
S(f)

and the noise levels measurable specifically in interferom-
eters, which should correspond to

√
S∆(f). Also notable

is that the “white spacetime noise” model, approximat-
ing a class of possibilities in which the strain spectrum
of the raw spatial noise is not dependent on the char-
acteristics of the apparatus, is also probably ruled out:
the 95% upper bound established by LIGO and Virgo is
apparently lower than the predicted level of noise. How-
ever the quoted expression for S(f) was only an estimate
and equation (19) contains an uncalibrated scalar nor-
malization factor that could be numerically much less
than unity. We calculate the limit on this coefficient as
a0 < 0.06, with the same 95% confidence level. The sen-
sitivity of the LIGO system continues to improve, and is
expected to lead to better limits in the future [58, 59].
The “one-third power” model is still out of reach, but
could be within reach of proposed space interferometers
such as eLISA. The simple “minimum uncertainty” model
is quite far out of reach. Our prediction based on a zero-
point field theory calculation also gives a result that is too
small for any foreseeable experimental project. Again,
all of the alternative metric fluctuation-based models are
able to generate larger macroscopic effects only by sug-
gesting non-standard coherence that is not present in
standard field theory of Planckian metric fluctuations.

Other phenomenological approaches have considered
different fundamental length scales for quantum gravity
effects, for example by using the string length instead of
the Planck length[10]. This would increase the predicted
noise level slightly, although not to an extent that would
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significantly change our conclusions about exclusion of
models.

E. Other Constraints Without Macroscopic
Coherence

We have previously stated that these meta-models of
metric based fluctuations make non-standard assump-
tions of coherence in order to generate macroscopically
measurable effects. Without such assumptions, any noise
that scales with distance would eventually result in lo-
cally measurable effects, making it difficult to preserve
locality. There is now an experimental bound on such
effects, established from the sharpness of optical images
seen in telescopes and most stringently improved by ob-
serving TeV γ-rays using Cherenkov telescopes[60]. If
photons from a faraway source were subject to uncer-
tainties that scale with the distance of travel, without an
additional assumption of macroscopic coherence, the lo-
cal images we take (at the telescope) of the source would
suffer a loss of resolution. The clarity of these images
can be used to place a general upper bound on any strain
noise that scales as σ ≈ lαPL1−α, at α ? 0.72, which rules
out both the “random walk” model and the “one-third
power” model if we consider them without macroscopic
coherence.

This constraint demonstrates the difficulty of satis-
fying the holographic information bound while consid-
ering spacetime degrees of freedom. Unlike in local
field theories that attain holographic scaling of informa-
tion through dualities (ignoring infrared paradoxes[14]),
quantum geometric states dominate the field ones in
number once they are counted (e.g. statistical mod-
els of gravity [61, 62]). Examples like the “one-third
power” model suggest that quantum geometric uncertain-
ties must scale with system size in order to sufficiently
limit the total degree of freedom. But an uncertainty
that scales with distance makes it difficult to create a
model that preserves locality, not to mention that a di-
rectionally isotropic strain noise such as the “one-third
power” model violates the fundamental requirement of
diffeomorphism covariance usually present in theories of
spacetime.

III. HOLOGRAPHIC FLUCTUATIONS

A. Theory of Planckian Directional Entanglement

1. Theoretical Motivation

All effective theories treated thus far have assumed a
classical determinate structure of spacetime and consid-
ered metric fluctuations within that structure. However,
there are motivations to relax this assumption.

The theory of black holes suggests that the fundamen-
tal degrees of freedom present within a region of space-

time is not an extensive quantity but instead limited by
the area of a surface bounding a given volume, measured
in Planck units[63–68]. Since it is well-known from con-
siderations of quantum mechanical unitarity[69, 70] that
black holes are objects of maximal entropy, it makes sense
to consider the two-dimensional entropy of black holes as
an upper limit on the entropy contained within any given
volume. Such arguments have led to a Lorentz covariant
entropy bound that generalizes the same principles into
a more precise upper limit, known as the Holographic
Principle or Covariant Entropy Bound: the area of an ar-
bitrary bounding surface in Planck units must be larger
than the entropy contained throughout light sheets en-
closed by that surface[15–18]. This projection of internal
degrees of freedom onto bounding surfaces inspires a non-
local formulation of fundamental physics, as exemplified
by the entanglement across spacelike separations in ba-
sic quantum mechanics, that imposes a Planckian bound
on quantum degrees of freedom stored within spacetime
(which dominate the entropic budget).

Hogan has previously suggested a phenomenological
model of how such holographic bounds might be mani-
fested in the real universe[19–25, 71], leading to an exotic
kind of position fluctuation called “holographic noise.” In
this model, the nonlocality discussed above arises in a
spacetime that is not a fundamental entity but rather an
emergent phenomenon in systems much larger than the
Planck scale. A classical concept of spacetime involves
pointlike events on a determinate manifold, continuously
mapped onto real coordinates. But in quantum mechan-
ics, “position” is a property represented by an operator
acting on a Hilbert space. An added assumption of a
definite background usually leads to contradictions with
gravity[14, 72, 73], and there are arguments that the met-
ric should also be considered an emergent entity[74, 75].
Here, a Hilbert space describes the background space-
time degrees of freedom, and operators that act on such
a Hilbert space generate positions of massive bodies.

In a wave picture, spatial information is carried by
null waves, and the Hilbert space describing spacetime
degrees of freedom “collapses” when null surfaces interact
with matter. The waves are Planck bandwidth-limited,
so they are fundamentally indeterminate in directional
resolution and transverse localization[71].

A simple, well controlled model of such a geometrical
state can also be expressed by a commutator of geomet-
rical operators x̂µ that approximate classical 4-position
coordinates of a body, including time, in the macroscopic
limit[23–25]. We write a manifestly Lorentz-covariant 4-
dimensional formulation of the commutator[25]:

[x̂µ, x̂ν ] =i
1

2
√
π
x̂κÛλεµνκλlp (30)

where Ûλ ≡
˙̂xλ√
˙̂xα ˙̂xα

, ˙̂x ≡ ∂x̂

∂τ
(31)

Here Ûλ represents an operator in the same form as the
dimensionless 4-velocity of a body, and τ denotes proper



9

time.
The x̂µ are not coordinate variables, but rather op-

erators acting on a Hilbert space from which spacetime
emerges. This is not conventional quantum mechanics, in
which operators describe the position of microscopic bod-
ies within a classical spacetime. Instead, these operators
describe the spacetime positions of macroscopic objects,
ignoring in this approximation standard quantum me-
chanics as well as gravity. Thus it is not a fundamental
theory, but gives an effective model of quantum geome-
try, that agrees with gravitational bounds on directional
information. In this model, spacetime itself can undergo
quantum entanglement.

Strangely, x̂0 is an operator that represents proper
time, but is not exactly the classical time variable. This
proper time operator does not commute with the space
operators, and therefore implies slightly different clocks
in different spatial directions. Since an interferometer can
be thought of as light clocks in two orthogonal directions,
this commutator model lends itself well to measurement
with an interferometer. We have seen that the two or-
thogonal macroscopic arms of a Michelson interferome-
ter contain coherent states of photons that are spatially
extended[54].

While this commutator describes a quantum relation-
ship between macroscopically separated world lines based
on relative position and velocity, we still require that
causality remains consistent. Causal diamonds surround
every timelike trajectory, and an approximately classical
spacetime emerges that is consistent wherever the causal
diamonds overlap.

2. Normalization of Holographic Position Fluctuations

To estimate a precise normalization of this model, take
a rest frame limit

[x̂i, x̂j ] = i
1

2
√
π
lpεijkx̂k (32)

Equation (32) is a spin algebra-like representation of
holographic information that can be used to count pre-
cisely the degrees of freedom present in a 2-sphere[25].
Consider |l〉, a radial spatial separation eigenstate of two
bodies separated by a distance L, labeled by its quantum
number.

|x̂|2 |l〉 =
1

4π
l(l + 1)l2p |l〉 = L2 |l〉 (33)

Within a 2-sphere of radius R = 1
2
√
π

√
lR(lR + 1)lp exist

lR discrete radial position eigenstates (1 ≤ l ≤ lR). Each
of them have 2l + 1 eigenstates of direction:

N2S =

lR∑
l=1

(2l + 1) = lR(lR + 2) ≈ 4π

(
R

lp

)2

(34)

The numerical coefficient is chosen to agree with
emergent spacetime theories that describe gravity

entropically[62]. For a length measurement of scale
L, this gives a precisely characterized transverse mean
square position uncertainty of

〈∆x2
⊥〉 =

1

2
√
π
lpL, (35)

which increases with scale.

3. Properties of Holographic Position Noise

The sections that follow estimate the signal response
in various interferometer architectures. Because a met-
ric with classical position coordinates is not assumed, a
holistic analysis is required of the system that includes
the apparatus and the emergent geometry it resides in:
a quantum-geometrical system of matter and light. In-
stead of a fluctuating metric as in the previous sections,
we adopt the following phenomenological model of mat-
ter position and light propagation in an emergent space-
time:

1. Light propagates in the vacuum of emergent space-
time as if it is classical and conformally flat. Thus,
longitudinal propagation and photon quantum shot
noise are standard.

2. In the nonrelativistic limit, the position of matter
is described by a wavefunction that represents spa-
tial information in the geometry, with a transverse
width estimated in in (35). This is not standard
quantum mechanics: it is a geometrical wavefunc-
tion shared by bodies close together in space, sep-
arated by much less than L.

3. Position becomes definite relative to an observer—
any timelike world-line— when the Hilbert space
of the quantum geometry “collapses”, as null wave
fronts, propagating in causal diamonds around the
observer, interact with other matter on null sur-
faces. The finite wave function width thus gives rise
to coherent fluctuations in transverse position, as
well as emergent locality: nearby bodies fluctuate
together with each other, relative to distant ones.
(Here, “null” is used to describe a set of events that
have lightlike separation from an observer’s world-
line.)

4. Relationship Between Planckian Directional
Entanglement and Other Violations of Relativity

In this model of quantum geometry, localized spatial po-
sition coordinates do not have an exact physical mean-
ing, but emerge from the quantum system. While the
commutation relation is covariant and has no preferred
direction, timelike surfaces are now frame-dependent in
ways that describe the observer-dependence of a space-
time. The system violates Lorentz invariance, but as
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mentioned in the introduction, is within established ex-
perimental bounds. It leads to a directional uncertainty
that decreases with separation. Thus the model reduces
to classical geometry in the macroscopic limit.

Thus, the conjectured model is Lorentz covariant, but
it is not Lorentz invariant. The violation of Lorentz in-
variance here is qualitatively different from previously
investigated possible effects, such as those predicted by
some effective field theories[76]. This type of Lorentz
violation does not result in any dispersive change in
photon propagation. Null particles of any energy in
any one direction propagate exactly according to nor-
mal special relativity, consistent with current experimen-
tal limits from cosmic observations of gamma ray bursts
with the Fermi/GLAST satellite[77]. The energy non-
dependence of polarization position angle agrees with
INTEGRAL/IBIS satellite bounds[78], and we do not
propose any kind of dispersive effect on the propagation
of massive particles that could be tested by cold-atom
interferometers[79].

Several recent proposals have suggested experimen-
tally testable mascroscopic phenomena involving gravity
within the framework of traditional quantum mechan-
ics. One idea is to calculate and observe the quantum
evolution of the center of mass of a many-body system
within a classical spacetime[80], which is clearly distinct
from the type of quantum spacetime we are proposing.
Another is to create and study quantum superposition
states of many-particle systems extended across macro-
scopic spatial distances[81, 82], which is different from
the entanglement of spatial degrees of freedom we are
discussing. Lastly, there is a proposal to probe the canon-
ical commutation relation of the center-of-mass mode of
a massive object using quantum optics, assuming certain
modifications to the Heisenberg uncertainty relation aris-
ing from Planck-scale spacetime uncertainties[83]. This
type of experiment is suited to test the kind of meta-
models surveyed in section II B, especially the “minimum
uncertainty” one, but not the type of transverse effect we
are hypothesizing.

The phenomena discussed here are of course distinct
from potential effects of primordial gravitational-wave
backgrounds[84]. The new physics proposed also dif-
fers from microscopic non-commutative directional un-
certainties in models that consider gravity as the gauge
theory of the deSitter group, in which Planck’s constant
is kinematically introduced into gravity through non-
commutative generators[85, 86]. These ideas have not
led to an effective theory that describes a macroscopi-
cally manifested phenomenon.

B. Predictions for Noise in Interferometers

1. Holometer: Simple Michelson

As previously mentioned, Fermilab is commissioning
an experimental apparatus designed to be particularly

sensitive to this type of spacetime uncertainty, named
the Holometer. This experiment uses a simple Michel-
son interferometer configuration, but is sensitive to rapid
Planckian transverse position fluctuations on a light-
crossing time, whose spatial coherence is shaped by
causal structure, as expected for holographic noise.

To predict the noise profile measured in a Michelson
interferometer, we again need to consider the reflections
off of the beam splitter at two different times. Because we
are positing a noncommutative spacetime with an uncer-
tainty of transverse nature, the one-dimensional formu-
lation in (26) is now insufficient. An idealized Michelson
interferometer in a classical geometry, with arms oriented
in the 1 and 2 directions, actually measures the following
macroscopic quantity:

X(t) = x̂2(t)− x̂1(t− 2L/c) (36)

We will approximate the continuous interaction of matter
with null waves as a series of discrete measurements sepa-
rated by Planck times, over which a transverse Planckian
random walk accumulates[23]. We will give two predic-
tions, a baseline prediction based on the most likely in-
terpretation of the theory and a minimal prediction that
assumes the most conservative limit on the accumulation
of spacetime uncertainty between successive collapses of
the wavefunction.

Baseline Prediction

We write down the autocorrelation function for the
arm-length difference X (t) at time lag τ in the following
form:

Ξ(τ) = 〈X(t)X(t+ τ)〉 (37)

=

{
ctp

2
√
π

(2L− c |τ |) 0 < c |τ | < 2L

0 c |τ | > 2L
(38)

Detailed explanations of these calculations are laid out
in previous papers and need not be repeated here, but
the justification for (38) is fairly straightforward. The
aforementioned considerations of an emergent spacetime
obeying causal structures leads us to conclude that this
holographic random walk is bounded by the light round
trip time 2L/c, as causal boundaries dictate this to be the
longest time interval during which the relative phases in
transverse directions deviate before the “memory” is “re-
set” (see Figure 3). In concluding this, we are assum-
ing that the spacetime degrees of freedom in the trans-
verse direction do not collapse upon the interaction of
the information-carrying null waves with the end mir-
rors, and that these null waves complete the two-way
trips between the beam splitter and the end mirrors while
retaining this information. Once we establish that the
autocorrelation Ξ(τ) must decrease to zero at 2L/c, it is
straightforward to conclude that the function must de-
crease linearly from its peak value at zero lag in order to
contain causal diamonds and reflect causal structure in a
scale-invariant way.
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Figure 3. Causal structures of the baseline and minimal mod-
els compared, along with the corresponding behavior in the
signal power of the autocorrelation in differential arm length.
Barely overlapping causal diamonds of two interferometers
separated in time by 2L/c leads to a correlation in the base-
line model, but in the minimal model, the causal diamond
of a single interferometer acts as the causal boundary for the
correlation signal, a minimal departure from classicality.

Figure 4. Predicted noise spectra for the Holometer from
Planckian directional entanglement using two different mod-
els, calculated in eq. (40) and eq. (43). For 40m arms,
the low-frequency limits are 9.86 × 10−21m/

√
Hz and 6.98 ×

10−21m/
√
Hz. The minimal model has a low-frequency value

that is smaller by 1/
√

2, but the first zero occurs at a fre-
quency twice as large compared to the baseline model.

The zero-lag value in (38) naturally follows from (32)
and (35), but it is important to clarify that the value
does not represent the propagation of one null wave over
a distance 2L despite its algebraic appearance. Since
X (t) represents the arm-length difference, each arm con-
tributes its own uncorrelated portion of the total vari-
ance. The uncertainty posited is fundamental to the
spacetime itself—that is, the positions of massive bodies,
such as mirrors—and not applied to the spatial propaga-

tion of light, which is not susceptible to the transverse
fluctuations. The information-carrying null waves only
accummulate transverse uncertainties over the physical
distance of a single arm length L even though the light
beam travels a distance of 2L. The two reflections off
of the beam splitter respectively measure its location in
two orthogonal directions at two different times, and with
each transverse reflection manifests a spatial uncertainty
in the direction transverse to the one being measured.

The corresponding spectrum in the frequency domain
is calculated by the cosine transform (see Figure 4) [23]:

Ξ̃(f) = 2

ˆ ∞
0

dτΞ(τ) cos(2πfτ) (39)

=
c2tp√
π(2πf)2

[1− cos(f/fc)] , fc ≡
c

4πL
(40)

Ξ̃(f � fc) =
2√
π
tpL

2

= [2.47× 10−22Hz−
1
2 ]2 · L2 (41)

As discussed below in more detail, the actual Holome-
ter experiment design includes another feature that is
not described by this simple Michelson model: its sig-
nal is obtained by cross-correlating the outputs of dual
interferometers in a nested configuration. Due to entan-
glement, if the separation is much smaller than the size
of the apparatus, the cross signal approximates the au-
tospectrum estimated here: the beam splitters of the two
interferometers “move together” because the light paths
encompass the same region of space-time and their emer-
gent geometries collapse into the same position state.

Recall the fact that a random walk metric fluctuation
resulted in a white noise spectrum in section IIC. Equa-
tion (40) also gives the same flat spectrum (up to a shoul-
der around inverse light travel time). However, the dif-
ferent physical assumptions about the origin of the noise
lead to different predictions for other interferometer ar-
chitectures. The coherent quantum and transverse na-
ture of holographic fluctuations lead to counterintuitive
behavior that cannot be reproduced in a model based on
a fluctuating metric.

Minimal Prediction

In generating the baseline prediction, we made one as-
sumption that is not obvious from the principles laid out
in section IIIA 3. We now consider the alternative pos-
sibility that the spacetime degrees of freedom collapses
in the transverse directions upon the interaction of the
information-carrying null waves with the end mirrors.
The end mirrors have the effect of isolating the quantum
uncertainty of the spacetime inside the apparatus from
its uncertainty relative to the outside (see Figure 3). Ear-
lier we considered these null waves making two-way trips
between the beam splitter and the end mirrors, but in
actuality, we are talking about a conception of emergent
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spacetime that is covered by these null waves carrying
wavefunctions of transverse quantum uncertainty, at all
points in spacetime and in all directions. Simply con-
sider only the incoming waves from the end mirrors to
the beam splitter, and the time-domain autocorrelation
for X (t) changes to:

Ξ(τ) =

{
ctp√
π

(L− c |τ |) 0 < c |τ | < L

0 c |τ | > L
(42)

The only difference here is that the “memory” has been
reduced to a single arm length. The zero-lag value and
the linear triangular shape of the function remains un-
changed. The corresponding spectrum in the frequency
domain is given by (see Figure 4):

Ξ̃(f) =
2c2tp√
π(2πf)2

[
1− cos(f/f0

c )
]
, f0

c ≡
c

2πL
(43)

Ξ̃(f � f0
c ) =

1√
π
tpL

2

= [1.74× 10−22Hz−
1
2 ]2 · L2 (44)

2. GEO-600: Interferometer with Folded Arms

As there are several interferometric experiments at or
close to Planck sensitivity, it is important to generate
consistent predictions for those experiments in order to
make sure that this hypothesis is not already ruled out.
Here we will focus on two of the most sensitive exper-
iments, first GEO-600 and then LIGO in the following
section. We will be mostly following the assumptions
made for the baseline prediction in the previous section.

The GEO-600 detector uses a Michelson interferometer
with each arm folded once to double the distance traveled
by the light (see Figure 5(a)). In such a case, we expect
the “memory” to last twice as long. But the actual phys-
ical distance being measured is still just a single L, and
the holographic noise only accumulates over a single arm
length, starting or ending at the beam splitter. Again,
the uncertainty is fundamental to the spacetime itself and
not subject on the light propagating through space. A
transverse uncertainty is manifest in each measurement
of the relative distance between two objects, the beam
splitter (BS) and either one of the two end mirrors (B
and D). This directional entanglement only results in ob-
servable noise at instances of orthogonal reflection of the
light, which happens twice at the beam splitter.

One might raise the objection that if these hypothe-
sized uncertainties are inherent to the fabric of space-
time itself, the mirrors near the beam splitter (A and C)
should appear to move coherently with the beam splitter,
allowing the device to accumulate spatial noise over the
full length of the folded arm. In fact, such posited space-
time coherency is integral to the design of the Holometer.

Figure 5. (a) Schematic diagram of GEO-600. (b) Schematic
diagram of LIGO.

But for the GEO-600 setup, this coherence would not af-
fect the contribution of folded arms to the signal.

As mentioned in the previous section, we may see the
interferometer as a pair of independent orthogonal light
clocks and consider the delocalized quantum modes ex-
tended within the arms. Consider the fact that the
proper time operator does not commute with either of
the two non-commuting orthogonal space operators, and
it becomes clear that a transverse uncertainty is manifest
only upon the measurement of a single non-folded arm
length. For example, when the distance between the BS
and B is being measured, the horizontal arm comprised
of C, D, and the BS acts as a light clock. Its horizontal
position (and the associated uncertainty), transverse to
the vertical distance being measured, is coherent within
causal bounds.

For a semi-classical explanation, consider localized
modes of the information-carrying null waves. In this
formulation, the quantum wavefunction of the geometry
collapses every time the null waves interact with matter
(e.g. a mirror) even though the actual measurement is
made only when the photon is observed. Consider look-
ing at the interferometer from the perspective of B and
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Figure 6. Plots of time-domain autocorrelation functions for X (t) at time lag τ , using the baseline model: eq. (38) for the
Holometer, eq. (46) for GEO-600, and eq. (50) for LIGO. All axes have been normalized to the same appropriate unitless scale
to provide a clear comparison between different interferometer configurations independent of experimental parameters. The
simple Michelson configuration has a Ξ(τ = 0) value that shows the random walk variance in (35) applied over two independent
arm lengths, along with a time memory of one light round trip time over one arm length. The folded Michelson configuration
has a time memory that lasts over two light round trip times but preserves the same area underneath the function. The model
for an interferometer with Fabry-Perot cavities uses a probabilistic summation of the autocorrelation functions for Michelson
interferometers with arms that are folded multiple times.

observing the location of the BS (and A) via a null wave
along the vertical arm. This reference null wave accumu-
lates transverse phase uncertainty over a single vertical
arm length. From this perspective we can consider the
horizontal arm as a light clock, and indeed the transverse
(horizontal) uncertainty at the BS is coherently applica-
ble to C, as the distance between the two is well within
the causal bounds established by the travel time of said
vertical null wave.

However, consider a light beam that has just reflected
off of C and traveling towards D. As the light beam makes
the trip over the length of the horizontal arm, we can
imagine another null wave that carries the information
about the horizontal deviation at C (transverse to the ref-
erence null wave) also making the same trip and reaching
D at the same time as the light beam. Thus, the uncer-
tainties in the horizontal positions of the BS or C do not
affect the travel time of the horizontal light beam dur-
ing 3/4 of the beam’s propagation within the arm. The
transverse (horizontal) uncertainty really only comes into
play on 1/4 of the beam path, as the reference null wave
measures the vertical distance from B to the BS and the
relative transverse uncertainty created affects the light
beam’s travel time between D and the BS.

We can now conclude that the low-frequency limit of
the displacement amplitude spectrum Ξ̃(f) calculated in
eq. (41) must remain the same despite the folded arms,
because at frequencies much below inverse light stor-
age time the phenomenon described must behave almost
“classically,” and the extended “memory” should not af-
fect the measured uncertainty at all. If we imagine a
simple Michelson interferometer co-occupying the space
of the GEO-600 detector in parallel configuration, the
two devices should demonstrate equal phase noise at such

low frequencies. These requirements lead us to write (see
Figure 6):

X(t) =x̂2(t)− x̂1(t− 4L/c) (45)

Ξ(τ) = 〈X(t)X(t+ τ)〉

=

{
1
22

ctp
2
√
π

(2 · 2L− c |τ |) 0 < c |τ | < 4L

0 c |τ | > 4L
(46)

Ξ̃(f) =
1

22

c2tp√
π(2πf)2

[1− cos(f/f ′c)] (47)

where f ′c ≡
1

2

c

4πL

This gives the same low-frequency limit as equation (41).
We still cannot simply compare this prediction to the

noise in differential arm length measured at GEO-600,
because noise from metric fluctuations behaves differ-
ently from this posited holographic noise. Experiments
designed for gravitational waves look for strains in the
metric applied to the entire arm length and the entire
light path. They assume that the perturbation in the
location of the beam splitter is coherent with those of
the inboard mirrors (e.g. A and C in Figure 5(a)) in
all spatial directions, and hence can claim an increase in
sensitivity by reflecting light back and forth within the
arms. GEO-600 attains a twofold enhancement in sensi-
tivity at low frequencies (relative to inverse light storage
time) by making the laser beam do two round trips within
each arm, during which the strain in the metric will af-
fect a light path that is twice as long. But for the kind
of directional entanglement based on the assumptions in
section IIIA 3, the inboard mirrors no longer contribute
the same noise as the beam splitters, for reasons laid
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out in detail above. This means that for the purposes of
measuring the effects of this noncommutative emergent
spacetime, for frequencies lower than inverse light storage
time f = c/4L (to account for the extended “memory”)
we must correct the sensitivity of GEO-600 data by a fac-
tor of 1

2 (i.e. multiply the position noise level by a factor
of 2). Since the light storage time in the arms is quite
short, this correction applies to the spectrum of GEO-
600 over the entire relevant frequency range. (For this
design, we do not count the “storage time” represented
by the entire power-recycled cavity, only that between
encounters with the beamsplitter.)

If we convert the holographic noise prediction into a
gravitational wave strain equivalent expected to be ob-
served in GEO-600 (instead of correcting the sensitivity
of GEO-600 data for holographic noise), we get:

h̃eq(f � f ′c) =
1

2
·

√
Ξ̃(f � f ′c)

L
=

1

2

√
2tp√
π

(48)

= 1.23× 10−22Hz−
1
2

In the case of the minimal model, the folded arms
of GEO-600 does nothing to change the causal struc-
ture of the system (including the length of the “mem-
ory”) or the low-frequency amplitude of the displacement
spectrum. So the time and frequency-domain behav-
iors take the exact same functional forms as the min-
imal prediction for the simple Michelson configuration
of the Holometer, equations (42)∼(44), simply numer-
ically adjusted for the longer 600m arm length. Con-
verted to a gravitational wave strain equivalent, we get
h̃eq(f � f0

c ) = 1
2

√
tp/
√
π = 8.72× 10−23Hz−

1
2 .

3. LIGO: Interferometer with Fabry-Perot Cavities

The prediction for LIGO is subject to more compli-
cations than the GEO-600 example. The detector uses
Fabry-Perot (F-P) cavities within each arm with average
light storage times (for the device as used in published
bounds) of r = 35.6 light round trips[8] (see Figure 5(b)).
We need to devise a simple model of the response such a
system has to holographic noise.

We will work within the assumptions of the baseline
model. Think of each incoming light wavefront as hav-
ing an exponentially decreasing probability e−(n−1)/r of
making at least n round trips within the cavity, and sum
the contribution of each possibility to the total noise. A
natural extension of the arguments made for the 2 round
trips within a GEO-600 arm gives (see Figure 6):

Ξ(τ) =

∞∑
n=1

(e−(n−1)/r − e−n/r)

×

{
1
n2

ctp
2
√
π

(2nL− c |τ |) 0 < c |τ | < 2nL

0 c |τ | > 2nL
(49)

Ξ̃(f) =

∞∑
n=1

(e−(n−1)/r − e−n/r)

× 1

n2

c2tp√
π(2πf)2

[
1− cos(f/f (n)

c )
]

(50)

where f (n)
c ≡ 1

n

c

4πL

The low-frequency limit is still equal to equation (41).
However, in constructing the model above, we in-

troduced an additional assumption that these nonlocal
modes of light respond coherently to holographic noise.
While it is tempting to think of localized light being “re-
flected” or “transmitted” by the input test mass (ITM),
the actual quantum modes in the system are of course
delocalized. A model of localized light modes can accu-
rately be used to describe a light cavity responding to
time-fluctuations in the metric, as long as we build into
our calculations the time delays after each successive re-
flection. But this implcitly assumes that there is only one
“clock,” and for this type of noise generated by a quantum
spacetime, there are two independent clocks in noncom-
muting orthogonal directions. Therefore the fact that
the quantum wavefunction of the geometry collapses af-
ter each interaction of null waves with matter invalidates
such a classical calculation. So without a rigorously for-
mulated structure for this emergent spacetime, let alone
a precise quantum mechanical description of how these
null wave modes interact with matter, it is unclear that
this model gives an accurate description of the actual
physical phenomenon.

We could instead think of delocalized light modes being
stored within the cavity for an extended period of time
before collapsing outside of the cavity, hence averaging
the position variance present at the beam splitter across
a longer period of time. Such considerations lead us to
suggest eq. (50) only as a best guess, not a rigorous
prediction of directional entanglement.

We also need to remove LIGO’s enhancement factor
for gravitational waves that do not apply to the conjec-
tured effects of directional entanglement. The correction
here necessary to generate the applicable noise spectrum
is much more involved than the GEO-600 case. LIGO’s
light storage time is long enough that the correction fac-
tor is no longer constant across its entire measurement
spectrum. Also, we might naively assume that an r -fold
increase in light storage time would result in an r -fold en-
hancement in sensitivity to gravitational waves, but this
is not actually the case. The sensitivity to gravitational
wave strain is enhanced by a factor somewhat greater
than r due to optical resonance. The transfer function
from an optimally oriented and polarized gravitational
wave strain to the optical phase shift measured at the
laser output is given by (at low frequencies f < c/4πL)
[29, 87]:

φ

h
(f) =

(
16πLr

λ

)
1√

1 + (8πfLr/c)2
(51)
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We have argued that at low frequencies, the predicted
directional entanglement will manifest in a folded inter-
ferometer such as GEO-600 in a manner that seems al-
most “classical.” Since we used for LIGO a rough model
of probabilistically summing up light packets that go
through n round trips before exiting the Fabry-Perot
cavities, we argue that at low frequencies LIGO also re-
sponds to holographic noise as if it was a simple Michel-
son interferometer. The transfer function for a simple
Michelson interferometer operating at the low-frequency
limit, given the same kind of optimally configured gravi-
tational wave strain as above, is given by:

φ0

h
(f → 0) =

(
2π

λ

)
(2L) · 2 · 1

2
(52)

where the factor of 2 comes from the two arms contribut-
ing equal parts, and the 1

2 comes from translating metric
strain into length strain. This means that the sensitivity
of LIGO is reduced by the following factor when mea-
suring the uncertainty in beam splitter position due to
holographic noise (instead of gravitational waves):

φ

φ0
(f) =

4r√
1 + (8πfLr/c)2

(53)

The gravitational wave equivalent we expect to detect in
LIGO can be calculated by writing

h̃eq(f) =

√
Ξ̃(f)

2 · 1
2 · L

(
φ

φ0
(f)

)−1

(54)

and substituting equations (50) and (53) into the expres-
sion.

Assuming the minimal model has rather drastic conse-
quences for the LIGO case. The ITM creates a boundary
condition that is defined very close to the beam splitter,
where the quantum wavefunction containing the space-
time degrees of freedom would collapse. One could ar-
gue that the beam splitter never “sees” the entire arm
and the end mirror, leading to a tiny undetectable holo-
graphic noise since the ITM is very close to the beam
splitter. We discounted this possibility in the baseline
model, citing the view that the arms can be regarded as
(non-commuting) directional light clocks whose phases
are compared at the beam splitter, but it cannot be con-
clusively ruled out.

C. Comparison with Experimental Data

1. Expected Sensitivity for the Holometer

The Fermilab Holometer implements a design that is
optimized to look for this noise from Planckian direc-
tional entanglement. By operating at high frequencies
above 50kHz, it minimizes noise sources that are difficult

to control such as seismic noise, thermal noise, or acous-
tic noise[6–8]. A flat Poisson shot noise dominates the
spectrum at a phase spectral density of[88–90]:

Φshot =
1√
ṅBS

=

√
Eγ
PBS

= 9.6× 10−12rad/
√
Hz (55)

where ṅBS is the number of photons incident on the beam
splitter per unit time, Eγ = 1.2eV is the energy of the
infrared photons used, and PBS = 2kW is the intracavity
power of the laser after recycling. This noise is about a
factor of 330 above the predicted signal from holographic
fluctuations, calculated in (41) using the baseline model.

However, the Holometer is a set of two overlapping
Michelson interferometers co-occupying almost the same
space. If the holographic noise is inherent to the space-
time itself, we can reasonably expect the signal to be cor-
related across the two devices since the two beam split-
ters are close together, well within the causal bounds
established by null wave travel times. In contrast, shot
noise will obviously be uncorrelated. So we may write
the phase fluctuations observed in the two detectors
as dφtot1i = dφcorri + dφuncorr1i and dφtot2i = dφcorri +
dφuncorr2i , where i indexes the data taken each sampling
time. Therefore if we cross-correlate the measured fluc-
tuations from the two interferometers and integrate over
an extended period of time, the signal from the corre-
lated noise from emergent quantum geometries will re-
main at a constant level, while the cross-correlation of
the two uncorrelated shot noises will decrease by a factor
of 1/

√
N , where N is the ratio of the integration time

over the sampling time[88–90]:

dφtot1i × dφtot2i

≈ 1

N

N∑
i

(dφcorri dφcorri + dφuncorr1i dφuncorr2i ) (56)

=
〈
(dφcorr)2

〉
+

2

π

1√
N

〈
(dφuncorr)2

〉
(57)

where 2/π is the average absolute value of the phasor
inner product between two uncorrelated noise sources of
unit magnitude. This gives a signal-to-noise ratio of:

SNR2 =
√
N
π

2

〈
(dφcorr)2

〉
〈(dφuncorr)2〉

(58)

Various choices are possible for frequency binning in
the 1 ∼ 10 MHz range for the actual experimental analy-
sis, but here we will just provide one numerical example.
If we set the sampling rate at 2L/c = 2.7×10−7s, we can
use a frequency band ranging up to the Nyquist frequency
f = c/4L = 1.9 MHz. If we choose a bin ranging from
half that frequency, f = c/8L = 0.94 MHz, up to that
limit, we get unity signal-to-noise after an integration
time of 42 minutes, and highly significant detection after
longer integration times, as shown in Figure 7. We should
again note here that the correlated behavior is only exhib-
ited within causally overlapping spacetime regions, and
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Figure 7. Spectra for beam splitter position fluctuations, assuming the noise source to be Planckian directional entanglement
(baseline model). To give the appropriate reduced sensitivity in measuring such noise, we increase LIGO’s published noise levels
for differential arm length by the sensitivity enhancement factor for gravitational wave strain calculated in (53). For GEO-600
data, the amplification factor is simply 2. The dashed lines represent uncorrected raw published noise curves. Predicted noise
spectra are from eq. (47) for GEO-600 (folded Michelson), eq. (50) for LIGO (Fabry-Perot cavity), and eq. (40) for the
Holometer (simple Michelson). Expected levels of flat shot noise are plotted for comparison, as the Holometer operates at a
high enough frequency that we expect this noise source to dominate. By using an integration time that is N times longer than
sampling time, with data from two overlapping interferometers, we can significantly reduce the uncorrelated shot noise by a
factor of 1/

√
N while keeping the signal from correlated holographic noise constant. A frequency bin ranging from f = c/8L

to c/4L is shown as an example. [54, 55]

the kind of cross-correlation over large distances done
in the LIGO analysis for stochastic gravitational-wave
backgrounds would not be able to detect this holographic
noise at all.

2. Comparison with Published Data from GEO-600 and
LIGO

We present the predicted and measured noise spectra
from the baseline models in two different ways. Figure 7
shows the spectra plotted in terms of beam splitter po-
sition noise, relevant to measurements of Planckian di-
rectional entanglement. This figure displays all of the
predicted spectra for holographic noise calculated in the
previous section, and applies the previously calculated
conversions to the noise spectra published by LIGO and
GEO-600 in order to obtain the correct levels of sensitiv-

ity to this type of effect from noncommutative emergent
spacetime.

Figure 8, on the other hand, presents everything in
terms of equivalent levels of gravitational wave strain.
Unlike the preceding plot, published noise curves from
LIGO and GEO-600 are left unaltered. Instead of con-
verting the published noise curves to reflect sensitivity to
holographic noise, for this plot we have converted the pre-
dicted levels of holographic noise into gravitational wave
strain equivalents to show what we expect to be mea-
surable in experiments designed to detect gravitational
wave strains coherently applied to folded light paths or
Fabry-Perot cavities.

It should again be noted that the predicted holographic
noise curves for LIGO are based on an effective model
without a rigorous theory of how this Planckian direc-
tional entanglement would manifest in delocalized light
modes within Fabry-Perot cavities. Hence the LIGO
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Figure 8. Spectra for holographic noise (baseline model),
expressed as effective strain noise observed in gravitational
wave interferometers. Published noise curves from LIGO and
GEO-600 have been left in their original form to reflect sen-
sitivity to gravitational wave strain. Predicted spectra for
holographic noise have been converted into gravitational wave
strain equivalents to demonstrate the levels observable in data
published for gravitational wave strain. The predicted spec-
trum for GEO-600 is given by dividing eq. (47) by 2L and
obtaining eq. (48), as the folded arm enhances gravitational
wave sensitivity by an amplification factor of 2 that is not
applicable to holographic noise. The spectrum for LIGO is
given in eq. (54), where the spectrum in eq. (50) is di-
vided by the amplification factor from Fabry-Perot cavities
given in eq. (53). The flat strain amplitude for GEO-600, at
1.23 × 10−22Hz−1/2, is consistent with the unidentified noise
detected. [54, 55, 91]

curves should be subject to some uncertainty in regions
where the prediction based on probabilistic summation
deviates from the reference curve for a simple Michelson
configuration (see Figure 7). The prediction for GEO-600
is more quantitatively certain. But both predictions ac-
tually depend on our lengthy discussion in section III B 2
being entirely correct about the nature of orthogonal in-
terferometer arms as independent light clocks. It is pos-
sible that there are inaccuracies in our arguments about
Hilbert space collapse. We should allow for the possibil-
ity that these estimates might be off by factors of 2 when
determining the amplitude of transverse noise accumu-
lated through the distances measured within the arms,
or when adding the effects from the two arms in orthog-
onal directions. Still, these simple models allow a direct
comparison of the various different configurations.

We have also omitted from our analysis any possible ef-
fect from the cavities created by signal recycling mirrors
in GEO-600 or LIGO. While we expect the corrections
necessary to be small, as our posited noise is fundamental
to the spacetime itself, a more careful analysis is certainly
due if any meaningful signal is detected in future exper-

imental data.
The data from GEO-600 is of particular note, as it is

the experiment closest to the sensitivity levels required
to detect the effects of this hypothetical Planckian di-
rectional entanglement. Current sensitivity levels[91] are
slightly better than the latest published levels[54] used in
the figures, by approximately 10-15% in strain amplitude
at the lowest point. Sources of non-holographic environ-
mental and technical noise are difficult to comprehen-
sively identify[92], but the collaboration has developed a
reliable model for shot noise and conducted a rough anal-
ysis of the frequency region where this is the only signifi-
cant source of noise. At present, the data and model are
consistent with unidentified flat-spectrum noise close to
our baseline prediction of 1.23× 10−22Hz−1/2 in eq. (48)
and Figure 8 [91]. Recent improvements in the sensitivity
of the LIGO system are expected to bring its future noise
spectra close to our predictions for holographic noise as
well [58]. We conclude that holographic noise is not ruled
out, but if it exists, should be measurable with a reason-
able improvement in sensitivity or with the experimental
design of the Holometer.

IV. CLOSING REMARKS

As noted previously, amongst the metric-based meta-
models, LIGO data has made it clear that the “random
walk” model with the flat measured noise spectrum can-
not be valid, and indications are that the strain power
spectrum of the spacetime noise cannot be independent
of the physical scales of the measurement appartatus (the
“white spacetime noise” model). The only simple theoret-
ically motivated prediction that remains untested (albeit
lacking in covariance) is the “one-third power” model.

These alternative models assume non-standard coher-
ences that do not exist in field theory. Without those
coherences, a simple field theoretic consideration shows
that the interaction of a finite-width beam with the sur-
face boundary conditions of a macroscopic object would
average out the metric fluctuations in a way that would
exponentially suppress the actually observable deviation
in macroscopic distance. Experimental constraints also
rule out the “one-third power” model in this case without
macroscopic coherence[60].

The effective theory of position noise suggested by
Hogan[23] posits a noncommutative spacetime and de-
rives a Planckian random walk noise only in directions
transverse to separation between bodies whose position
is measured, over a time corresponding to that separa-
tion. The fluctuations in this case are not describable
as perturbations of any metric, but are instead consid-
ered to be a result of a directionally entangled spacetime
that emerges from overlapping causal diamonds amongst
events and observers. Therefore more careful attention
must be paid to the interferometer configuration to de-
rive limits, by considering the phases of null waves whose
interactions with matter define position operators. Our



18

estimates show that the predicted level of noise is com-
parable to the unidentified noise observed in GEO-600,
the detector most sensitive to this type of noise. The
Holometer design should be able to reach a highly signifi-
cant detection, or a constraining upper limit, by sampling
data at high frequencies, and using two cross-correlated
interferometers co-occupying the same space in order to
average out uncorrelated high frequency shot noise over
long integration times.
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