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Abstract

We consider perfect fluid bodies (“stars”) in general relativity, with the local state of the fluid

specified by its 4-velocity, ua, its “particle number density,” n, and its “entropy per particle,”

s. A star is said to be in dynamic equilibrium if it is a stationary, axisymmetric solution to the

Einstein-fluid equations with circular flow. A star is said to be in thermodynamic equilibrium if

it is in dynamic equilibrium and its total entropy, S, is an extremum for all variations of initial

data that satisfy the Einstein constraint equations and have fixed total mass, M , particle number,

N , and angular momentum, J . We prove that for a star in dynamic equilibrium, the necessary

and sufficient condition for thermodynamic equilibrium is constancy of angular velocity, Ω, red-

shifted temperature, T̃ , and redshifted chemical potential, µ̃. A star in dynamic equilibrium is

said to be linearly dynamically stable if all physical, gauge invariant quantities associated with

linear perturbations of the star remain bounded in time; it is said to be mode stable if there are

no exponentially growing solutions that are not pure gauge. A star in thermodynamic equilib-

rium is said to be linearly thermodynamically stable if δ2S < 0 for all variations at fixed M , N ,

and J ; equivalently, a star in thermodynamic equilibrium is linearly thermodynamically stable if

δ2M − T̃ δ2S − µ̃δ2N − Ωδ2J > 0 for all variations that, to first order, satisfy δM = δN = δJ = 0

(and, hence, δS = 0). Friedman previously identified positivity of canonical energy, E , as a criterion

for dynamic stability and argued that all rotating stars are dynamically unstable to sufficiently non-

axisymmetric perturbations (the CFS instability), so our main focus is on axisymmetric stability

(although we develop our formalism and prove many results for non-axisymmetric perturbations

as well). We show that for a star in dynamic equilibrium, mode stability holds with respect to all

axisymmetric perturbations if E is positive on a certain subspace, V, of axisymmetric Lagrangian

perturbations that, in particular, have vanishing Lagrangian change in angular momentum density.

Conversely, if E fails to be positive on V, then there exist perturbations that cannot become asymp-

totically stationary at late times. We further show that for a star in thermodynamic equilibrium,

for all Lagrangian perturbations, we have Er = δ2M−Ωδ2J , where Er denotes the “canonical energy
in the rotating frame,” so positivity of Er for perturbations with δJ = 0 is a necessary condition

for thermodynamic stability. For axisymmetric perturbations, we have E = Er, so a necessary

condition for thermodynamic stability with respect to axisymmetric perturbations is positivity of

E on all perturbations with δJ = 0, not merely on the perturbations in V. Many of our results are

in close parallel with the results of Hollands and Wald for the theory of black holes.
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I. INTRODUCTION

In a recent paper, Hollands and Wald [1] applied Lagrangian methods to analyze the

linear stability of black holes. They showed that the necessary and sufficient condition

for dynamical stability of a black hole with respect to axisymmetric perturbations is the

positivity of canonical energy, E , on the subspace of perturbations with vanishing first order

change in mass, angular momentum, and area, δM = δJ = δA = 0. They further showed

that for axisymmetric perturbations, the canonical energy is given in terms of second order

variations by

E = δ2M − κ

8π
δ2A− ΩHδ

2J , (1)

thereby showing that for perturbations with δM = δJ = δA = 0, dynamical stability of a

black hole is equivalent to its thermodynamic stability (with κ/2π identified with tempera-

ture and A/4 identified with entropy).

It is of interest to know whether similar results hold for the dynamic and thermodynamic

stability of ordinary perfect fluid stars in general relativity. This question is in some ways

simpler than the corresponding question for black holes, since the black hole horizon was

the source of many of the difficulties and subtleties in the analysis of [1]. On the other

hand, a number of new difficulties and subtleties arise in the Lagrangian formulation of the

Einstein-fluid equations, which, in some ways, make the analysis of the relationship between

dynamic and thermodynamic stability for fluid stars more difficult than for black holes.

There have been many previous analyses of the stability of relativistic fluid stars. The

most relevant for our work are the analyses of Friedman [2] and Lindblom and Hiscock

[3]. Based upon earlier work by Chandrasekhar [4] and Friedman and Schutz [5], Friedman

investigated the dynamic stability of relativistic stars with respect to perturbations that

arise in the Lagrangian displacement framework. He showed that positivity of canonical

energy defined with respect to the time translation Killing field provides a criterion for

dynamic stability, and he used this criterion to show that all rotating perfect fluid stars

are dynamically unstable to non-axisymmetric perturbations of sufficiently high angular

quantum number m (the CFS instability). Lindblom and Hiscock investigated the effects of

viscosity and thermal conductivity on “short length scale” perturbations of rigidly rotating

stars with constant redshifted temperature. Their investigation is therefore closely related to

the thermodynamic stability of stars that are in thermal equilibrium. They argued that the
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appropriate condition for stability with respect to such dissipative processes is the positivity

of a similar canonical energy, Er, that is defined with respect to the Killing field to which

the fluid 4-velocity is proportional. Lindblom and Hiscock also argued that such dissipative

processes would damp out the dynamic instability found by Friedman for perfect fluid stars.

In this paper, we will give a comprehensive, unified analysis of the dynamic stability and

thermodynamic equilibrium and stability of fluid stars in general relativity. The derivation

of some of our results will be restricted to fluid perturbations that can be described within

the Lagrangian displacement framework, but many of our results, including all of the results

of section III, will apply to completely general fluid perturbations.

With regard to dynamic stability, our analysis will largely reproduce results of Friedman

with respect to non-axisymmetric perturbations, but there will be a number of significant

differences and extensions in the axisymmetric case. In particular, we shall see that in the

axisymmetric case, we must impose a physical restriction on the perturbations to which the

positivity of canonical energy criterion can be directly applied: Axisymmetric stability can

be directly tested via positivity of canonical energy only on a subspace, V, of perturbations
that, in particular, have vanishing Lagrangian change in the angular momentum per particle,

∆j. Nevertheless, we prove that positivity of canonical energy on this restricted class of

perturbations implies mode stability for all perturbations—including those that cannot be

described in the Lagrangian displacement framework—so positivity of E on V is necessary

and sufficient for dynamic stability with respect to axisymmetric perturbations.

Our analysis of thermodynamic stability of stars that are in thermodynamic equilibrium

will depart significantly from Lindblom and Hiscock and others in that it will be based upon

consideration of the total entropy of perfect fluid solutions rather than particular forms of

the dynamical equations for a dissipative fluid. As explained further below, our approach

should lead to results equivalent to those that would be obtained by considering dissipative

fluids—provided that all forms of dissipation are included—but our approach is completely

incapable of yielding any information concerning the growth rate of any thermodynamic

instability. We will show that the criterion found by Lindblom and Hiscock for short length

scale perturbations—namely positivity of canonical energy, Er, defined with respect to the

Killing field to which the fluid 4-velocity is proportional—arises in a very simple and natural

way as a necessary condition for thermodynamic stability: For a perfect fluid star to be

thermodynamically stable, Er must be positive on the space of perturbations that can be
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described within the Lagrangian displacement framework and satisfy1 δJ = 0, where J

denotes the total (ADM) angular momentum. It is easily seen that all rotating stars are

thermodynamically unstable2 to suitable non-axisymmetric perturbations. For axisymmetric

perturbations, we have Er = E , so a necessary condition for thermodynamic stability to

axisymmetric perturbations is positivity of E on all perturbations with δJ = 0 rather than

merely on perturbations in V.
We now state our assumptions concerning the type of perfect fluid matter we consider,

and we will then define precisely what we mean by dynamic and thermodynamic equilibrium

and stability of fluid stars.

By a perfect fluid, we mean matter that has a stress energy tensor of the form

Tab = (ρ+ p)uaub + pgab (2)

with uaua = −1. We will be concerned in this paper with perfect fluids whose local state

is characterized by a “particle number density,” n, and an “entropy per particle,” s. The

energy density ρ is taken to be a prescribed function, ρ = ρ(n, s), of the variables (n, s).

The temperature, T , and chemical potential, µ, of the fluid are defined by

T ≡ 1

n

∂ρ

∂s
, µ ≡ ∂ρ

∂n
− Ts . (3)

The pressure, p, of the fluid is then assumed to be given by

p = −ρ+ µn+ Tsn = n
∂ρ

∂n
− ρ , (4)

where the first equality corresponds to the integrated form of the Gibbs-Duhem relation.

The above definitions of T and µ imply that the local first law of thermodynamics

dρ = Td(ns) + µdn (5)

1 The additional conditions δN = δS = 0 of our criterion given below for thermodynamic stability hold

automatically for fluid perturbations describable in the Lagrangian displacement framework.

2 This does not contradict the conclusion of Lindblom and Hiscock that viscosity and thermal conductivity

can damp the CFS instability and thereby stabilize a star in the sense of vastly increasing the timescale

needed for a star to radiate all of its angular momentum; however, on general thermodynamic grounds,

dissipative processes can never stabilize a dynamically unstable equilibrium configuration, since dissipative

processes can only increase the region of phase space that is accessible to the system under dynamical

evolution.
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holds as a mathematical identity. The function ρ(n, s)—which characterizes all of the prop-

erties of the fluid—is assumed to be chosen so that for all allowed (n, s) we have

ρ ≥ 0 , p ≥ 0 , T > 0 , 0 ≤ c2s ≤ 1 , (6)

where

c2s ≡
(
dp

dρ

)

s

≡ ∂p/∂n

∂ρ/∂n
=
n ∂2ρ/∂n2

∂ρ/∂n
. (7)

In eq. (17) below, we will give additional conditions on the functional form of ρ(n, s) that

must be satisfied if local thermodynamic stability of the fluid is to hold.

The fluid equations of motion consist of conservation of stress energy,

∇aT
ab = 0, (8)

together with conservation of the particle number current,

∇a(nu
a) = 0. (9)

The ua component of (8) (conservation of energy) together with (9) imply conservation of

entropy along worldlines,

ua∇as = 0. (10)

More generally, any two of (9), (10), and the ua component of (8) imply the third.

By a perfect fluid star, we mean a globally hyperbolic, asymptotically flat solution of

the Einstein-fluid equations where n has compact spatial support. The total mass-energy,

M , and angular momentum, J , of the star are taken to be the ADM mass and angular

momentum, whereas the total particle number, N , and entropy, S, of the star are defined

by

N = −
∫

Σ

nuaνa, (11)

S = −
∫

Σ

snuaνa, (12)

where Σ is any Cauchy surface, νa is the unit future-directed normal to Σ, and the volume

element on Σ induced by the space-time metric is understood. Note that the integrals in
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(11) and (12) are independent of the choice of Cauchy surface Σ by virtue of eqs. (9) and

(10), i.e., N and S are conserved under dynamical evolution. Note also that the presence

of gravitational radiation can contribute to M and J but is assumed not to contribute to

S, even though in a complete physical theory, gravitational radiation would be expected to

contribute to the total entropy.

A fluid star is said to be in dynamic equilibrium if it is a stationary, axisymmetric solution

to the Einstein-fluid equations and, in addition, the velocity flow is circular in the sense that

ua takes the form

ua = (ta + Ωϕa)/|v| (13)

for some function Ω, called the angular velocity, where ta and ϕa are, respectively, the

timelike and axial Killing fields, and

|v|2 ≡ −(ta + Ωϕa)(ta + Ωϕa) . (14)

An important consequence of the circular flow assumption is the existence of an additional

t − ϕ reflection symmetry when Einstein’s equation is satisfied [6]. The requirements of

axisymmetry and circular flow have been imposed for technical convenience, but it is not

expected that these additional conditions exclude any cases of interest.

A fluid star is said to be in thermodynamic equilibrium if it is in dynamic equilibrium and,

in addition, the total entropy, S, of the star (12) is an extremum at fixed total mass, M ,

angular momentum, J , and particle number, N , i.e., if δS = 0 for all first order perturbations

of the star that satisfy the linearized constraint equations and for which δM = δJ = δN = 0.

Thus, if a star is in dynamic equilibrium but is not in thermodynamic equilibrium, then its

entropy can be increased to first order without changing M , J , and N . As seen above,

the perfect fluid equations of motion do not allow changes of S to occur dynamically, so

such states of higher entropy are not dynamically accessible for a perfect fluid. However,

the perfect fluid equations are expected to be only an idealized description of physically

realistic systems. When deviations from perfect fluid behavior are taken into account—i.e.,

“dissipative processes,” such as heat conduction, viscosity, and diffusion—one would expect

that the dynamical evolution would be restricted only by the fundamental conservation laws

of M , J , and N . Since S is supposed to measure the “number of micro-states” associated

with the macroscopic fluid description, if a star is thermodynamically unstable, one would
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expect evolution to higher values of S to occur, although perhaps on a much longer timescale

than typical dynamical timescales. Stars that are in dynamic equilibrium but are not in

thermodynamic equilibrium can increase their entropy to first order at fixed M , J , and N ,

so they would be expected evolve away from their initial perfect fluid equilibrium state—

towards a state of higher entropy—when such dissipative processes are taken into account.

We will prove in section III below that the necessary and sufficient condition for a star in

dynamic equilibrium to be in thermodynamic equilibrium is that its angular velocity, Ω,

redshifted temperature, T̃ ≡ T |v|, and redshifted chemical potential, µ̃ ≡ µ|v|, be constant

throughout the star. We will also show that perturbations of a star in thermodynamic

equilibrium satisfy the first law of thermodynamics in the form

δM = T̃ δS + µ̃δN + ΩδJ . (15)

A fluid star that is in dynamic equilibrium is said to be linearly dynamically stable if

any initially smooth, asymptotically flat solution to the linearized Einstein-fluid equations

remains bounded (in some suitable gauge) for all time; otherwise the star is said to be linearly

dynamically unstable. A much simpler condition to analyze is “mode stability”: A fluid star

that is in dynamic equilibrium is said to be mode stable if there do not exist any smooth,

asymptotically flat, non-pure-gauge linearized solutions with time dependence of the form

exp(αt) with Re(α) > 0. Obviously, linear dynamic stability implies mode stability. One

way of proving mode stability is to find a positive-definite conserved norm on perturbations,

since this precludes solutions with exponential growth. The existence of a positive-definite

conserved norm on perturbations (together with the similar norms on time derivatives of

the perturbations) may also enable one to prove linear dynamic stability—as has been done

for the case of perturbations of the Schwarzschild metric [7, 8]—but considerable further

analysis beyond what is needed to prove mode stability would be required to establish

dynamic stability. In particular, from the existence of a conserved, positive-definite norm

depending on first derivatives of the perturbation, it may not be straightforward to rule out

the existence of perturbations that grow linearly in time. In this paper, we shall obtain a

criterion for stability in terms of the existence of a conserved positive-definite norm. The

satisfaction of our criterion implies mode stability, but we shall not attempt to show that it

implies linear dynamic stability.
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A fluid star that is in thermodynamic equilibrium is said to be linearly thermodynamically

stable if S is a strict local maximum at fixedM , J , and N , i.e., if we have δ2S < 0 for all first

and second order variations that satisfy the constraint equations and keepM , J , and N fixed

to both first and second order. Note that it makes sense to inquire about thermodynamic

stability only for stars in thermal equilibrium, since otherwise S can be increased to first

order at fixed M , J , and N . Now, it follows directly from the first law of thermodynamics

(15) that the quantity

E ′ ≡ δ2M − T̃ δ2S − µ̃δ2N − Ωδ2J (16)

is independent of the choice of second order perturbation, and thus is a bilinear quantity

in the first order perturbation. For variations for which δ2M = δ2J = δ2N = 0, positive-

definiteness of E ′ is obviously equivalent to negative-definiteness of δ2S, since we assume

T > 0 (see (6)). However, since E ′ does not depend upon the choice of second order

perturbation, and since second order perturbations can be chosen so as to give δ2M , δ2J

and δ2N any values one wishes, it follows that thermodynamic stability is equivalent to

positivity of E ′ for all perturbations for which δM = δJ = δN = 0 (and hence, by the first

law, δS = 0), but with no restrictions placed on the second order perturbation.

If a star is thermodynamically stable, then for initial conditions sufficiently close to that of

the star—and with the same M , J , and N as the star—dissipative processes should increase

S and thereby drive the state of the system back towards that of the star. Conversely, if

one can make E ′ negative for a perturbation with δM = δJ = δN = 0, then dissipative

processes should drive the star away from its thermal equilibrium state. Thus, our notion

of thermodynamic stability obtained by examining properties of the entropy functional S

on perfect fluid states should be equivalent to notions of thermodynamic stability obtained

by examining the dynamics of dissipative fluids, provided that all forms of dissipation are

included. Our approach via the entropy functional is much cleaner, simpler, and more general

than a direct analysis of a particular form of dissipative equations—and it avoids all of the

difficulties associated with obtaining mathematically consistent equations for relativistic

dissipative fluids—but it has the disadvantage that one cannot estimate growth timescales,

i.e., although one can argue that the star will “eventually” evolve to a state of higher

entropy, one cannot estimate how long it will take the star to evolve to this state, since this

will depend upon the detailed nature of the dissipation.
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It should be noted that linear thermodynamic stability implies linear dynamic stability

in the sense of mode stability for perturbations with δM = δJ = δN = 0, since E ′ provides

a conserved (for perfect fluids) norm on such perturbations. However—just as there is no

reason why dynamic equilibrium need imply thermodynamic equilibrium—there is no reason

why linear dynamic stability need imply linear thermodynamic stability; the star could be

stable with respect to perfect fluid dynamics and yet have nearby states of larger S at fixed

M , J , and N . As explained in the previous paragraph, a physically realistic star that is

linearly thermodynamically unstable would be expected to have instabilities that are driven

by dissipative processes. If the matter that composes the star is well approximated as being

a perfect fluid, then the growth timescale of these instabilities would be expected to be

much longer than typical dynamical timescales, and there is no reason why the growth need

be exponential (as opposed, e.g., to linear) in time. A thermodynamic instability that is

not associated with a dynamic instability corresponds to the notion of a secular instability,

defined as an instability that only appears in the presence of a “dissipative force” and has

a growth rate proportional to the strength of the dissipative force [9, 10] although this

terminology is not always used consistently3.

It is worth noting that for an infinite, uniform, non-gravitating fluid system, linear ther-

modynamic stability will hold if and only if entropy always decreases to second order by

any first order exchange of energy and number of particles between two fixed volumes of the

fluid. This is equivalent to the condition that the matrix of second derivatives of sn with

respect to the variables ρ and n be negative definite. Equivalently, linear thermodynamic

stability will hold if and only if the matrix of second derivatives of ρ with respect to the

variables sn and n is positive definite. This, in turn, is equivalent to the positivity of the

determinant and trace of this matrix. This yields the relations

0 <
∂2ρ

∂n2

∂2ρ

∂s2
−
(
∂2ρ

∂n∂s
− T

)2

0 < n2 ∂
2ρ

∂n2
+ (1 + s2)

∂2ρ

∂s2
− 2sn

(
∂2ρ

∂n∂s
− T

)
,

(17)

3 In particular, from our perspective, “gravitational radiation reaction” is not a “dissipative force,” as it is

an integral aspect of the overall conservative dynamics of a fluid-gravitational system within the context

of general relativity. Thus, we would characterize the CFS instability [2] of rotating fluid stars in general

relativity as a dynamic instability, even though the timescale for this instability may be much longer

than typical dynamical timescales. Nevertheless, Friedman and Stergioulas [11] apply the term “secular

instability” to this instability when its timescale is sufficiently long, although they state on p. 251 that

this characterization cannot be made precise and “becomes increasingly blurred as the radiation reaction

timescale approaches the period of oscillation of a mode.” In a footnote to that statement, they propose

making this distinction in terms of whether the unstable mode is time symmetric.
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which further restrict the functional form of ρ beyond the relations (6). These additional

necessary and sufficient conditions for the linear thermodynamic stability of a uniform, non-

gravitating fluid are also necessary and sufficient conditions for thermodynamic stability of

a star with respect to short length scale perturbations4, since a sufficiently small region of

the star can be treated as a homogeneous system, so if relations (17) fail, we can increase

entropy by energy and particle exchanges within this region, without affecting the global

structure of the star. However, satisfaction of (17) is not sufficient to ensure the linear

thermodynamic stability of a star, since thermodynamic instabilities of a global nature may

occur.

The contents of the remainder of this paper are as follows. In section II, the general

Lagrangian framework of diffeomorphism covariant theories is reviewed, including the defi-

nition of the symplectic form and the derivation of a key identity. In section III, following

Iyer [12], we will apply these results with respect to only the gravitational part of the La-

grangian to derive a first law of thermodynamics relation between the variation of the ADM

mass, M , and integrals over the fluid involving the the perturbations to the particle density,

δn, entropy per particle, δs, and angular momentum per particle, δj. This formula will then

be used to prove that the necessary and sufficient condition for a star in dynamic equilibrium

to be in thermodynamic equilibrium is that its angular velocity, redshifted temperature, and

redshifted chemical potential be constant throughout the star. In that case, the first law of

thermodynamics takes the form (15). The results of section III do not require a Lagrangian

framework for the description of the perfect fluid.

In section IV, we introduce a Lagrangian framework for perfect fluids, which is of the

type used by Friedman [2]. To formulate this precisely, we introduce in subsection IVA a

4-dimensional “fiducial manifold” M ′ that is diffeomorphic to the spacetime manifold M .

On M ′ are defined a fixed closed 3-form N ′ and scalar function s′, satisfying dN ′ = 0 and

d(s′N ′) = 0. The dynamical variables of the theory then consist of a spacetime metric gab

onM and a diffeomorphism χ :M ′ → M . The entropy per particle, s, on spacetime is taken

to be the pushforward of s′ toM under χ, whereas n and the fluid 4-velocity ua on spacetime

are constructed from the spacetime metric and the pushforward, N , of N ′ toM . Linearized

perturbations are then described by a perturbed spacetime metric δgab and a vector field

ξa, known as the Lagrangian displacement vector field, representing the infinitesimal change

4 Lindblom and Hiscock [3] gave only a condition that corresponds to the first of our conditions.



13

in χ. An arbitrary Einstein-fluid solution can be represented in this framework by suitably

choosing s′ and N ′. However, once s′ and N ′ are chosen, they are required to remain fixed,

so consideration is thereby restricted in the Lagrangian framework only to perturbations

that correspond to “moving fluid elements around,” i.e., the only kinematically allowed

changes in entropy per particle and particle current 3-form are of the form −£ξ s and

−£ξ N , respectively. The symplectic current of the Einstein-fluid system also is obtained

in subsection IVA. This symplectic current is then used in subsection IVB to construct the

phase space. It is shown that specification of a point in phase space is equivalent to the

specification on a Cauchy surface Σ of a spatial metric hij , the usual gravitational canonical

momentum πij , a diffeomorphism from the manifold of “fiducial flowlines” (the manifold

of integral curves of the vector field on M ′ that annihilates N ′ through contraction) to Σ,

and the spatial components of the fluid 4-velocity, ui. A Hilbert space structure, K, on

perturbations is also defined in subsection IVB. The phase space includes a subspace of

“trivial displacements,” which produce no changes in the physical state of the fluid5. The

properties of these trivial displacements are analyzed in subsection IVC.

The canonical energy, E , is defined in section V. The canonical energy is conserved in the

sense of taking the same value on all asymptotically flat Cauchy surfaces. However, if the

perturbation asymptotically approaches a stationary perturbation at late retarded times,

then E has a positive net flux at null infinity [1, 2]. In that case, E can only decrease if

evaluated on a hypersurface terminating at null infinity at late retarded times. In order to

be able to use the positivity of E as a criterion for dynamic stability, it is essential that

E be degenerate precisely on the perturbations that are physically stationary. Namely, if

E were degenerate on perturbations that are not physically stationary, its non-negativity

cannot guarantee stability, since the perturbations on which it is degenerate could grow

exponentially with time. Conversely, if E were non-degenerate on physically stationary

perturbations, then its failure to be positive cannot guarantee instability, since it could take

negative values on physically stationary perturbations, which are manifestly stable. We show

that in order to make E degenerate precisely on the physically stationary perturbations, it is

necessary to restrict the action of E to the subspace V of perturbations that are symplectically

orthogonal to all of the trivial displacements. Perturbations in V must satisfy ∆α = 0,

5 The symplectic form is degenerate on trivial displacements of the form ξa = fua for any function f , so

the trivial displacements of this form are automatically eliminated from the phase space. However, there

remain additional trivial displacements that are not degeneracies of the symplectic form.
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where ∆α denotes the Lagrangian change in circulation, and—depending on the properties

of the background star—some additional restrictions may also hold on perturbations in V.
If E ≥ 0 on V, then mode stability holds for perturbations in V, whereas if E < 0 for some

perturbation in V , then this perturbation cannot asymptotically approach a stationary final

state, indicating dynamic instability.

As shown by Friedman [2], if Ω 6≡ 0, one can find non-axisymmetric perturbations in V
for which E < 0, thus showing that all rotating stars are dynamically unstable (the CFS

instability). As also shown by Friedman, in the non-axisymmetric case, the restriction to

perturbations in V is not a physical restriction—at least for certain background solutions—

in that it can be imposed on a general perturbation by addition of a perturbation arising

from a trivial displacement. In other words, in the non-axisymmetric case, restriction to

V corresponds to merely a “gauge choice” on the choice of Lagrangian displacement rather

than a physical restriction on the perturbation. However, for axisymmetric perturbations,

restriction to V is a physical restriction on perturbations. Thus, in the axisymmetric case,

positivity of E on V directly shows mode stability only on this restricted class of perturba-

tions. However, we prove in section V that, given an arbitrary perturbation—possibly not

even describable in the Lagrangian framework—its second time derivative yields a pertur-

bation in V. Consequently, in the axisymmetric case, mode stability for perturbations in

V implies mode stability for all perturbations, and positivity of E on V is necessary and

sufficient for dynamic stability with respect to all axisymmetric perturbations.

Finally, thermodynamic stability of stars in thermodynamic equilibrium is analyzed in

section VI. It is shown that a necessary condition for linear thermodynamic stability is pos-

itivity of the canonical energy Er—defined with respect to the Killing field va to which the

fluid 4-velocity is proportional—on the space of Lagrangian perturbations having δJ = 0,

where J is the total (ADM) angular momentum. It is easily seen that if Ω 6= 0, non-

axisymmetric perturbations can be found for which Er < 0, so all rotating stars are ther-

modynamically unstable, although not necessarily on a physically interesting timescale (see

footnote 2). For axisymmetric perturbations, we have Er = E , so this necessary condition

for thermodynamic stability in the axisymmetric case is positivity of E (on all perturbations

with δJ = 0, not merely the ones in V).
Our notation and conventions will generally follow [13]. Latin indices from the early part

of the alphabet (a, b, c, . . . ) will denote abstract spacetime indices, whereas Latin indices
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from the mid-alphabet (i, j, k, . . . ) will denote abstract spatial indices associated with a

Cauchy surface. Bold typeface will indicate that differential form indices on spacetime have

been omitted, e.g., N denotes the tensor field Nabc = N[abc].

II. LAGRANGIAN FRAMEWORK FORDIFFEOMORPHISMCOVARIANT THE-

ORIES

In this section, we will review the basic constructions of the Lagrangian framework for

diffeomorphism covariant theories. We will apply these results to the vacuum Einstein-

Hilbert Lagrangian in section III (even though we will derive results there that are valid

when perfect fluid matter is present) and we will apply these constructions to the Einstein-

fluid Lagrangian in section IV. We refer the reader to [14–17] for a much more complete

account.

We assume that we are given a diffeomorphism covariant Lagrangian 4-form Labcd that

is locally and covariantly constructed out of the spacetime metric, gab, and other tensor

fields χa1...ak
b1...bl

. We collectively denote the dynamical fields as φ = (gab, χ
a1...ak

b1...bl
) and

suppress all spacetime indices on the dynamical fields for the remainder of this section.

Variation of the Lagrangian yields

δL = E ·δφ+ d θ(φ; δφ) , (18)

where E = 0 are the field equations6, and the symplectic potential 3-form θ corresponds

to the boundary term that would arise if the variation were performed under an integral

sign. The quantity δφ may be formally viewed as a vector—which we denote as δφA—in the

tangent space at φ of the (infinite dimensional) space of field configurations F . We will not

attempt to define a manifold structure on F , so our tensor operations on F below should

be viewed as merely “formal”; they will be used only to motivate various definitions.

At each φ ∈ F , we obtain a linear map from vectors, δφA, into numbers by integration

of the 3-form θ over a Cauchy surface Σ. We can interpret this linear map as defining a

6 Besides the 4-form indices, the additional indices of E that are dual to φ have been suppressed; the “·” in

(18) denotes that those additional indices are fully contracted into all tensor indices of δφ. For example,

in vacuum general relativity we have E ·δφ = − 1

16πG
abδgab ǫ.
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1-form field ΘA on F
ΘAδφ

A =

∫

Σ

θ(φ; δφ) . (19)

The symplectic form is defined by

WAB = (DΘ)AB , (20)

where D denotes the “d” (exterior derivative) operation on forms on F . In order to evaluate

WAB(δ1φ)
A(δ2φ)

B at a point φ ∈ F , we obviously need only specify the vectors δ1φ
A and

δ2φ
B at φ. However, it is useful to evaluate WAB(δ1φ)

A(δ2φ)
B via the formula7

WAB(δ1φ)
A(δ2φ)

B = Lδ1φ(ΘBδ2φ
B)− Lδ2φ(ΘAδ1φ

A)−ΘA(Lδ1φδ2φ)
A , (21)

where L denotes the Lie derivative on F . Use of this formula requires us to extend the

definitions of δ1φ
A and δ2φ

B off of φ, which can be done in an arbitrary manner. For

most purposes, it is convenient to choose the extended vector fields δ1φ
A and δ2φ

B so as

to commute, which can be done by choosing a 2-parameter family of field configurations

φ(λ1, λ2) and choosing δ1φ = ∂φ/∂λ1 and δ2φ = ∂φ/∂λ2. In that case, the last term in (21)

vanishes. However, in the case where the field variations δ1φ
A and/or δ2φ

B arise from the

action of an infinitesimal diffeomorphism on φ, it is convenient to choose the extension of

δ1φ
A and/or δ2φ

B to be the field variation produced by the action of the same infinitesimal

diffeomorphism, in which case δ1φ
A and δ2φ

B need not commute, and the last term in (21)

must be kept.

Equation (21) corresponds to the formula

WAB(δ1φ)
A(δ2φ)

B =

∫

Σ

ω(φ; δ1φ, δ2φ) (22)

where the symplectic current 3-form ω on spacetime is defined by

ω(φ; δ1φ, δ2φ) = δ1 θ(φ; δ2φ)− δ2 θ(φ; δ1φ)− θ(φ; δ1δ2φ− δ2δ1φ) (23)

and δ1 and δ2 denote the variation of quantities induced by the field variations δ1φ and δ2φ

7 The formulas (20) and (21) can formally be seen to be equivalent by introducing an arbitrary derivative

operator, ∇A, on F and expanding both formulas in terms of ∇A using the usual Lie derivative and

exterior derivative expressions.
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respectively. It follows immediately from (18) that

dω(φ; δ1φ, δ2φ) = δ2E ·δ1φ− δ1 E ·δ2φ , (24)

so ω is closed whenever δ1φ and δ2φ satisfy the linearized equations of motion δ1E =

δ2E = 0. Consequently, if the linearized equations of motion hold, then WAB(δ1φ)
A(δ2φ)

B

is conserved in the sense that it takes the same value if the integral defining this quantity

is performed over the surface Σ′ rather than Σ, where Σ′ and Σ bound a compact region.

For asymptotically flat space times, WAB(δ1φ)
A(δ2φ)

B takes the same value on any two

asymptotically flat Cauchy surfaces Σ and Σ′ provided that δ1φ and δ2φ satisfy the linearized

equations of motion and have suitable fall-off at infinity.

For a diffeomorphism covariant Lagrangian, the Noether current 3-form, J X , on space-

time associated with an arbitrary vector field Xa is defined by

J X = θ(φ;£Xφ)− iX L, (25)

where £ denotes the spacetime Lie derivative and iX denotes contraction of Xa into the first

index of a differential form. A simple calculation [15] shows that the first variation of J X

(with Xa fixed, i.e., unvaried) satisfies

δJ X = −iX [E(φ) · δφ] + ω (φ; δφ,£Xφ) + d(iX θ) , (26)

where, in this formula, it has not been assumed that φ satisfies the field equations nor that

δφ satisfies the linearized field equations. Furthermore, it can be shown [16] that J X can

be written in the form

J X = CX +dQX , (27)

where QX is the Noether charge and CX ≡ CaX
a with Ca = 0 being the constraint

equations of the theory [17]. Combining eqs. (26) and (27), we obtain the fundamental

identity

ω(φ; δφ,£Xφ) = iX(E(φ) · δφ) + δCX(φ) + d [δQX(φ)− iX θ(φ; δφ)] . (28)
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It should be emphasized that eq. (28) holds for arbitrary Xa, φ, and δφ. In particular, φ

need not satisfy the equations of motion and δφ need not satisfy the linearized equations of

motion.

One immediate consequence of (28) is the gauge invariance of the symplectic form. If

φ satisfies the equations of motion, E(φ) = 0, if δφ satisfies the linearized constraints,

δCa = 0, and if Xa is of compact support (or vanishes sufficiently rapidly at infinity and/or

any boundaries), integration of (28) over a Cauchy surface Σ yields

WAB(δφ)
A(£Xφ)

B = 0 . (29)

Consequently, the value of WAB(δ1φ)
A(δ2φ)

B is unchanged if either δ1φ or δ2φ is altered by

a gauge transformation δφ→ δφ+£X φ with Xa of compact support.

Another very important application of the identity (28) concerns the case where Xa

approaches a nontrivial asymptotic symmetry rather than being of compact support, in

which case we can derive a formula for the Hamiltonian, HX , conjugate to the notion of “time

translations” defined by Xa, and, thereby, a definition of ADM-type conserved quantities.

Consider asymptotically flat spacetimes with one asymptotically flat “end”. Integrating (28)

over a Cauchy surface Σ, we obtain8

WAB(δφ)
A(£Xφ)

B =

∫

Σ

[iX(E(φ) · δφ) + δCX(φ)] +

∫

S∞

[δQX(φ)− iX θ(φ; δφ)] , (30)

where the second integral is taken over a 2-sphere S that limits to infinity. Suppose that, in

this limit, we have

lim
S→S∞

∫

S

iX θ(φ; δφ) = lim
S→S∞

δ

∫

S

iXB(φ) (31)

for some (“non-covariant”) 3-form B constructed from φ and the background asymptotic

structure near infinity. Then, if φ satisfies the equations of motion, E(φ) = 0—but δφ is

not required to satisfy the linearized equations of motion—we have

WAB(δφ)
A(£Xφ)

B = δHX (32)

8 Additional “boundary terms” would appear in (30) if Σ terminated at a bifurcate Killing horizon or if

there were additional asymptotically flat ends.
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where

HX ≡
∫

Σ

CX +

∫

S∞

[QX −iXB] . (33)

Writing δHX = (δφ)ADA(HX), we may rewrite (32) as

WAB(£Xφ)
B = DA(HX) . (34)

We now pass from field configuration space, F , to phase space, P, by factoring by the degen-

eracy orbits of WAB, as described in [14]. On P, WAB is well defined and, by construction,

is nondegenerate. Let WAB denote the inverse of WAB, so that WABWBC = δAC where δAC

denotes the identity map on P. Then, we have

(£Xφ)
A = WABDB(HX) , (35)

which is the usual form of Hamilton’s equations of motion on a symplectic manifold. Thus,

if both the asymptotic conditions on φ and the asymptotic behavior of Xa are such that a

3-form B satisfying (31) exists, (33) yields a Hamiltonian conjugate to the notion of “time

translations” defined by Xa. Note that when evaluated on solutions, CX = 0, so HX is

purely a “surface term”

HX |E=0 =

∫

S∞

[QX −iXB] . (36)

In the case where Xa is asymptotic to a time translation at infinity, a B satisfying (31)

can be found [15], and (36) with Xa = ta defines the ADM mass

M =

∫

S∞

[Qt−itB] . (37)

In the case where Xa is asymptotic to a rotation tangent to Σ at infinity and S is chosen

so that Xa is tangent to S, the pullback of iX θ to S vanishes, and (36) with Xa = ϕa and

B = 0 defines minus9 the ADM angular momentum

J = −
∫

S∞

Qϕ . (38)

9 The map X → HX is a linear functional and thus is a “covector”. To get the energy-momentum vector,

we have to “raise the index” with the Minkowskian metric. This accounts for the relative minus sign

between M and J in their definitions in terms of HX .
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Finally, let us return to (30) in the case where φ has a time translation symmetry, i.e.,

£tφ = 0 for a vector field ta that approaches a time translation at infinity. We further

assume that the equations of motion, E(φ) = 0, hold in a neighborhood of infinity, but we

do not assume that they hold in the interior of the spacetime. We similarly assume that

δφ satisfies the linearized constraints near infinity, but do not assume that these hold in the

interior of the spacetime, nor do we make any symmetry assumptions on δφ. Then the left

side of (30) vanishes for Xa = ta, and the surface integral on the right side simply yields

δM . Thus we obtain

δM = −
∫

Σ

[it(E(φ) · δφ) + δC t(φ)] . (39)

As we shall see in the next section, this formula yields the first law of thermodynamics for

fluid stars.

III. THE FIRST LAW OF THERMODYNAMICS AND THERMODYNAMIC

EQUILIBRIUM

Following Iyer [12], we now apply the results of the previous section to the vacuum

Einstein-Hilbert Lagrangian

Labcd =
1

16π
Rǫabcd , (40)

to obtain the first law of thermodynamics for perfect fluid stars10. For this Lagrangian, the

equations of motion tensor field (see (18)) is

Eab
cdef = − 1

16π
Gabǫcdef , (41)

the constraint 3-form CX is

(CX)abc =
1

8π
XdGd

eǫeabc , (42)

and the Noether charge 2-form is

(QX)ab = − 1

16π
∇cXdǫ

cd
ab . (43)

10 Bardeen, Carter, and Hawking [18] derived the first law only for the case of stationary and axisymmetric

perturbations. The first law for general perturbations is implicit in Corollary 6.6 of Schutz and Sorkin

[19]. Here we follow Iyer’s [12] derivation.
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Let gab be any asymptotically flat, stationary (i.e., £tgab = 0 for some ta that is timelike

near infinity) metric that is a vacuum solution of Einstein’s equation near infinity. Let δgab

be any asymptotically flat perturbation of gab that satisfies the linearized vacuum Einstein

equation near infinity. Then eq. (39) yields

δM =
1

8π

∫

Σ

ta
[
1

2
Gbcδgbcǫadef − δ

(
Ga

bǫbdef
)]

. (44)

We now further assume that, in addition to being stationary and asymptotically flat, gab

is axisymmetric (i.e., £ϕgab = 0 for some space like ϕa with closed orbits) and satisfies

Gab = 8πTab (45)

for some Tab of the perfect fluid form (2) having compact spatial support. We further assume

that the 4-velocity ua appearing in (2) has circular flow (13). In other words, we assume

that gab is the metric of a fluid star in dynamic equilibrium, as defined in the Introduction.

In addition, we assume that δgab satisfies the linearized Einstein-fluid equations

δGab = 8πδTab , (46)

where δTab takes the form of a perturbed perfect fluid (2) of compact spatial support.

However, we impose no symmetry conditions on δgab, nor do we impose any conditions on

the perturbed 4-velocity δua. For convenience, we choose Σ to be axisymmetric in the sense

that ϕa is tangent to Σ, so that the pullback of ϕaǫabcd to Σ vanishes. Using the circular

flow condition (13) of the background spacetime to write

ta = |v|ua − Ωϕa , (47)

we have11

δM =

∫

Σ

ta
[
1

2
T bcδgbcǫadef − δ

(
T b
a ǫbdef

)]

=

∫

Σ

{
|v|ua

[
1

2
T bcδgbcǫadef − δ

(
T b
a ǫbdef

)]
+ Ωδ

(
ϕaT b

a ǫbdef
)}

.

(48)

11 The vector fields ta and ϕa are fixed (“field independent”), so δta = δϕa = 0.
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We define the particle current 3-form, N , by

Ndef = nuaǫadef , (49)

the entropy current 3-form, S, by

Sdef = sNdef . (50)

and the angular momentum current 3-form, J , by

Jdef = ϕaT b
a ǫbdef . (51)

The following lemma allows us to write the first two terms in (48) a convenient form:

Lemma III.1. For any smooth one parameter family of Einstein-perfect fluid field configu-

rations (not necessarily satisfying the field equations), we have

ua(λ)

[
1

2
T bc(λ)

dgbc
dλ

ǫadef (λ)−
d
(
T b
a ǫbdef

)

dλ

]
= µ(λ)

dNdef

dλ
+ T (λ)

dSdef

dλ
, (52)

Proof: Using the perfect fluid form of the stress energy (2), the relation (4), and the local

first law of thermodynamics (5) in the alternative form

dp = ndµ+ nsdT, (53)

we calculate

d

dλ

(
uaT b

a ǫbdef
)
=

d

dλ
[−(ρ+ p)uaǫadef + puaǫadef ]

=
d

dλ
[−(µ+ sT )nuaǫadef + puaǫadef ]

= −µ d

dλ
(nuaǫadef )− T

d

dλ
(snuaǫadef )−

(
dµ

dλ
+ s

dT

dλ

)
nuaǫadef +

d

dλ
(puaǫadef )

= −µdNdef

dλ
− T

dSdef

dλ
− dp

dλ
uaǫadef +

d

dλ
(puaǫadef )

= −µdNdef

dλ
− T

dSdef

dλ
+ p

dua

dλ
ǫadef +

1

2
pgbc

dgbc
dλ

uaǫadef .

(54)

Furthermore, from

ua
dua

dλ
= −1

2
ubuc

dgbc
dλ

, (55)
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we have
dua

dλ
T b
a ǫbdef = (ρ+ p)ubǫbdefua

dua

dλ
+ p

dua

dλ
ǫadef

= −1

2
(ρ+ p)ubuc

dgbc
dλ

uaǫadef + p
dua

dλ
ǫadef .

(56)

Thus, we obtain

ua
d

dλ

(
T b
a ǫbdef

)
=

d

dλ

(
uaT b

a ǫbdef
)
− dua

dλ
T b
a ǫbdef

= −µdNdef

dλ
− T

dSdef

dλ
+

1

2
pgbc

dgbc
dλ

uaǫadef +
1

2
(ρ+ p)ubuc

dgbc
dλ

uaǫadef

= −µdNdef

dλ
− T

dSdef

dλ
+

1

2
T bcdgbc

dλ
uaǫadef ,

(57)

which completes the proof.

Defining the redshifted temperature and chemical potential by

T̃ = T |v| ,

µ̃ = µ|v| ,
(58)

we can now write (48) in the form

δM =

∫

Σ

(
µ̃δN +T̃ δS+Ωδ J

)
. (59)

Equation (59) is our desired form of the first law of thermodynamics, which holds for ar-

bitrary perturbations off of a fluid star in dynamic equilibrium. If a black hole also was

present, there would be an additional contribution to (59) from the black hole horizon [12].

The 3-forms N , S, and J are dual, respectively to the particle number current nua, the

entropy current, snua, and the angular momentum current ϕbT a
b . The first two currents

are conserved by (9) and (10), and, in the axisymmetric case (i.e., if ϕa is a Killing field) we

also have ∇a(ϕ
bT a

b ) = 0. Thus, N and S are always closed

dN = 0 , dS = 0, (60)

and in the axisymmetric case, we also have

dJ = 0 . (61)



24

By (11) and (12), the total number of particles, N , and the total entropy, S, are given by

N =

∫

Σ

N , S =

∫

Σ

S . (62)

In addition, for an axisymmetric metric gab that is a vacuum solution to Einstein’s equation

near infinity, the ADM angular momentum (38) is given by

J = −
∫

S∞

Qϕ = −
∫

Σ

dQϕ

= − 1

8π

∫

Σ

∇e(∇[eϕd])ǫdabc

=
1

8π

∫

Σ

ϕeRe
dǫdabc

=

∫

Σ

ϕeTe
dǫdabc

=

∫

Σ

J ,

(63)

where (43) was used in the second line. Furthermore, for any first order (possibly non-

axisymmetric) perturbation δgab of an axisymmetric metric, we have

δJ =

∫

Σ

δ J . (64)

Namely, we can write a general perturbation δgab as a sum of perturbations satisfying

£ϕδgab = imδgab. Perturbations with m = 0 are axisymmetric and thus satisfy (63). Per-

turbations with m 6= 0 satisfy δJ = 0 and
∫
Σ
δ J = 0. Thus, all first order perturbations

satisfy (64). However, at second order, in general, we have

δ2J 6=
∫

Σ

δ2 J (65)

since gravitational radiation can now contribute to the ADM angular momentum.

As stated in the introduction, a fluid star in dynamic equilibrium is said to be in thermo-

dynamic equilibrium if and only if δS = 0 with respect to all perturbations that satisfy the

linearized Einstein constraint equations and for which δM = δN = δJ = 0. We conclude

this section with the following theorem.

Theorem III.1. A dynamic equilibrium configuration is in thermodynamic equilibrium if
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and only if T̃ , µ̃, and Ω are uniform throughout the star.

Proof: The proof of the “if” part is entirely straightforward: If T̃ , µ̃, and Ω are constant

throughout the star, the first law (59) reduces to

δM = µ̃

∫

Σ

δN +T̃

∫

Σ

δ S+Ω

∫

Σ

δ J

= µ̃δN + T̃ δS + ΩδJ , (66)

from which it is immediately obvious that δS = 0 for any perturbation with δM = δN =

δJ = 0.

The proof of the “only if” part would be similarly straightforward if one could freely

choose the quantities δN , δ S, and δ J , where an overline denotes the pullback to Σ. If

that were the case, it follows immediately from (59) that if at least one of T̃ , µ̃, or Ω were

nonuniform, one could find a perturbation with δS = δN = δJ = 0 but with δM 6= 0. Since

T̃ > 0 (see (6)), one could then find a second perturbation with δN = δ J = 0 (and, hence,

δN = δJ = 0) but δS 6= 0 in such a way that δS 6= 0 and δM 6= 0. By combining these

two perturbations one can then obtain a perturbation with δM = δN = δJ = 0 but δS 6= 0,

thereby showing that a dynamic equilibrium star with nonuniform T̃ , µ̃, or Ω cannot be in

thermodynamic equilibrium.

However, the Einstein constraint equations impose nontrivial restrictions on the allowed

perturbations, and, a priori, it is far from obvious that δN , δ S, and δ J can be chosen

freely. Nevertheless, we prove in appendix A that this is the case: On a t − ϕ reflection

invariant Cauchy surface Σ of the background spacetime, a solution to the linearized Einstein

constraint equations always can be found for any given axisymmetric specifications of δN ,

δ S, and δ J . This completes the proof.

We note the following simple corollary:

Corollary. A dynamical equilibrium configuration is in thermodynamic equilibrium if and

only if δM = 0 for all perturbations that satisfy the linearized Einstein constraint equations

and for which δS = δN = δJ = 0.

Proof: By the same type of argument as in the proof of the theorem, we have δM = 0

for all perturbations that satisfy the linearized Einstein constraint equations and for which

δS = δN = δJ = 0 if and only if T̃ , µ̃, and Ω are uniform throughout the star.
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IV. LAGRANGIAN FORMULATION OF PERFECT FLUIDS: SYMPLECTIC

STRUCTURE, PHASE SPACE, AND TRIVIAL DISPLACEMENTS

A. Lagrangian and Symplectic Form

As discussed in the Introduction, we wish to consider fluids whose local state is charac-

terized by a particle number density, n, and entropy per particle, s. The energy density,

ρ, is taken to be a prescribed function of these variables, ρ = ρ(n, s), and the pressure is

assumed to be given by (4). The physical fields describing the fluid-gravitational system are

thus n and s, together with the fluid 4-velocity, ua, and the spacetime metric, gab. Equiv-

alently, we may take the physical fields to be (Nabc, s, gab), since this contains exactly the

same information as (n, ua, s, gab), given the definition (49) and the normalization condition

uaua = −1.

Unfortunately, it is not possible to formulate an unconstrained Lagrangian description of

a perfect fluid in terms of these physical fields [19]. Various Lagrangian formulations can be

given in which potentials or other variables are taken to be the dynamical fields, from which

the physical fields can then be obtained [12]. We will make use of a Lagrangian formulation

described by Friedman [2] and others, in which a diffeomorphism, χ, plays the role of the

dynamical variable describing the fluid.

In this formulation, one introduces a fiducial manifold, M ′, that is diffeomorphic to the

spacetime manifold, M . Then one chooses12, onM ′, a fixed scalar field s′ and a fixed 3-form

field N ′, satisfying

dN ′ = 0,

d(s′N ′) = 0.
(67)

The dynamical fields consist of a metric, gab, on M and a diffeomorphism χ :M ′ →M . We

denote the dynamical fields collectively by

φ = (gab, χ) . (68)

12 In this section, we will assume for simplicity that s′ and N ′ are everywhere nonvanishing, as this will

make the discussion of the phase space less cumbersome. We are, of course, primarily interested in the

case where s′ and N ′ are nonvanishing only inside a worldtube (corresponding to a “star”), but this can

be straightforwardly dealt with by redefining χ below to be a map from the worldtube into M .
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The physical fluid fields on M are defined by pushing forward with χ:

N ≡ χ∗N
′ , (69)

s ≡ χ∗s
′ . (70)

It follows from (67) that the field configurations allowed in this formalism automatically

satisfy conservation of particle current, (9), and conservation of entropy along worldlines,

(10). Any Einstein-fluid field configuration that satisfies these two conservation laws (but

not necessarily the other field equations) can be constructed in this formalism by an ap-

propriate choice of N ′ and s′. However, once chosen, N ′ and s′ are required to remain

fixed. Consequently, the kinematically allowed field variations are those that correspond to

“moving fluid elements around”—without changing the number of particles or the entropy

in any fluid element13—together with arbitrary changes to the metric. These kinematical re-

strictions are compatible with dynamical evolution, but they restrict the variations in initial

conditions that one is allowed to consider.

It should be noted that there is a redundancy in this description of the fluid—in addition

to the usual diffeomorphism redundancy of general relativity. Namely, two field configu-

rations having the same spacetime metric, φ = (gab, χ) and φ̃ = (gab, χ̃), are physically

equivalent if they give rise to the same N and s, i.e., if χ∗N
′ = χ̃∗N

′ and χ∗s
′ = χ̃∗s

′, or,

equivalently, if N ′ and s′ are unchanged under χ̃−1 ◦ χ (which is a diffeomorphism on M ′).

We say that two such field configurations are trivially related.

The Lagrangian for the Einstein-fluid system is taken to be

L = L(g) +L(m) =
1

16π
R ǫ−ρ(n, s) ǫ . (71)

Here ρ(n, s) is the function that specifies the energy density of the fluid under consideration

in terms of (n, s). However, in (71), ρ is to be viewed as a function of the dynamical

variables φ = (gab, χ), from which (n, s)—and, hence ρ—can be computed, given the (fixed)

specification of N ′ and s′ on the fiducial manifold M ′. In order to apply the constructions14

13 In particular, the total number of particles and the total entropy cannot be varied.

14 It was assumed in the constructions of section II that all of the dynamical fields are tensor fields. The

diffeomorphism χ is not a tensor field, but by introducing local coordinates on M ′, one may view χ−1

as a collection of 4 scalar fields—namely, the maps from spacetime into each of the 4 coordinates on M ′

(see the end of appendix B)—thereby allowing us to treat the dynamical fields within the framework of

section II.
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of section II, one must consider variations about an arbitrary field configuration φ. To do

this, introduce a one-parameter family of dynamical fields, φ(λ) = (gab(λ), χλ). The one-

parameter family of diffeomorphisms χλ ◦ χ−1
0 : M → M is generated to first order by a

vector field ξa known as a Lagrangian displacement. Thus, a first order perturbation is

completely specified by a pair, δφ ≡ (δgab, ξ
a), consisting of a metric perturbation and a

Lagrangian displacement. The first order variations of N and s are given by

δN = −£ξ N , δs = −£ξ s . (72)

Note that a general Einstein-fluid perturbation (δgab, δN , δs) can be described within our

Lagrangian framework if and only if there exists a vector field ξa such that (72) holds. This

will be the case [2] if and only if (i) there is no variation of total particle number and entropy,

δN = δS = 0, and (ii) δs/|Das| is bounded (so, in particular, δs = 0 at any point where

∇as = 0). In accord with the remark at the end of the previous paragraph, a first order

perturbation is said to be trivial if δgab = 0, £ξ N = 0, and £ξ s = 0; i.e., if all of the

physical variables are unchanged by the perturbation.

Following common terminology, a first order variation, δQ, of an arbitrary tensor quantity

Q on M induced by δφ is called an Eulerian perturbation. More generally, the kth-order

Eulerian perturbation of Q is given by

δkQ ≡ dk

dλk
Q(λ)

∣∣∣∣
λ=0

. (73)

However, for many purposes, it is convenient to pull back φ(λ) = (gab(λ), χλ) by the space-

time diffeomorphism χλ ◦ χ−1
0 to obtain the gauge equivalent field configuration φ̂(λ) =

(
(χλ ◦ χ−1

0 )∗gab(λ), χ0

)
. This corresponds to expressing the φ(λ) in a gauge where the lo-

cation of each fluid element in spacetime does not change with λ. We define the kth-order

Lagrangian perturbation of Q to be the kth-order perturbation of Q in this gauge, i.e.,

∆kQ ≡ dk

dλk

(
(χλ ◦ χ−1

0 )∗Q(λ)
)∣∣∣∣

λ=0

. (74)

The Eulerian perturbations compare Q(λ) and Q(0) at the same point P ∈ M , whereas

the Lagrangian perturbations can be viewed as comparing Q(λ) and Q(0) at the same fluid

element. It follows immediately that the Lagrangian perturbations of N and s vanish at all



29

orders

∆ks = 0 , (75)

∆kN = 0 . (76)

Since, for any tensor quantityQ, the first order Lagrangian perturbation, ∆Q, differs from

the first order Eulerian perturbation, δQ, by the action of an infinitesimal diffeomorphism

generated by the Lagrangian displacement ξa, we have

∆Q = δQ+£ξ Q . (77)

As noted above, we have ∆s = ∆N = 0, whereas by (77), we have

∆gab = δgab + 2∇(aξb) . (78)

The Lagrangian perturbation of any other physical field can thus be expressed in terms of

∆gab and background (λ = 0) quantities. In particular, we obtain

∆ ǫ =
1

2
ǫ gab∆gab , (79)

∆ua =
1

2
uaubuc∆gbc , (80)

∆n = −1

2
nqab∆gab , (81)

where

qab ≡ gab + uaub (82)

is the projector orthogonal to ua and (49) together with the normalization condition,

NabcN
abc = 6n2 , (83)

has been used.
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Returning to the Lagrangian (71), we see that variation of the matter part yields

δL(m) = −δ (ρ ǫ) = −∆(ρ ǫ) +£ξ (ρ ǫ) = −∆(ρ ǫ) + d(iξρ ǫ)

= −ρ+ p

n
ǫ∆n− 1

2
ρ ǫ gab∆gab + d(iξρ ǫ)

=
1

2
(ρ+ p) ǫ qab∆gab −

1

2
ρ ǫ gab∆gab + d(iξρ ǫ)

=
1

2
T ab(δgab + 2∇aξb) ǫ+d(iξρ ǫ)

=
1

2
T abδgab ǫ−ξb∇aT

ab ǫ+∇a(ξ
bT a

b ) ǫ+d(iξρ ǫ)

=
1

2
T abδgab ǫ−ξb∇aT

ab ǫ+d(iy ǫ) ,

(84)

where

ya = ξbT a
b + ρξa . (85)

Taking account of the variation of L(g) (see (41)), we see that the equations of motion

obtained from L are

− 1

16π
Gab +

1

2
T ab = 0 , (86)

−∇aT
ab = 0 . (87)

Thus, L yields the correct Einstein-fluid equations of motion.

From (84), we also may read off the matter part of the symplectic potential current θ(m)

θ
(m)
abc (φ, δφ) = ρξdǫdabc + ξdT e

d ǫeabc = (ρ+ p)ξdq e
d ǫeabc = ξdPdabc, (88)

where we have defined

Pdabc ≡ (ρ+ p)q e
d ǫeabc. (89)

As explained in section II, in order to calculate the symplectic current ω from θ using (23),

we need to choose an extension of δ1φ = (δ1gab, ξ
a
1) and δ2φ = (δ2gab, ξ

a
2) away from the field

point φ at which we are calculating ω. We choose δ1gab and δ2gab to correspond to variations

along a two parameter family of metrics, gab (λ1, λ2), and we choose ξa1 and ξa2 to be fixed,

i.e.,

δ1ξ
a
2 = 0 , δ2ξ

a
1 = 0 . (90)
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With this choice, we have δ2δ1gab = δ1δ2gab (partial derivatives with respect to λ1 and λ2

commute), whereas

δ1δ2s− δ2δ1s = −δ1 (ξa2∇as) + δ2 (ξ
a
1∇as)

= −ξa2∇aδ1s+ ξa1∇aδ2s

= ξa2∇a

(
ξb1∇bs

)
− ξa1∇a

(
ξb2∇bs

)

= [ξ2, ξ1]
b∇bs

= −£[ξ1,ξ2] s,

(91)

and similarly,

δ1δ2N −δ2δ1N = −£[ξ1,ξ2]N . (92)

Thus, the perturbation δ1δ2φ− δ2δ1φ is given (at φ) by (δgab = 0, ξa = [ξ1, ξ2]
a).

We now have all we need to calculate the matter part of the symplectic current:

ω
(m)
abc (φ; δ1φ, δ2φ) = δ1θ

(m)
abc (φ, δ2φ)− δ2θ

(m)
abc (φ, δ1φ)− θ

(m)
abc

(
φ, δ1δ2φ− δ2δ1φ

)

= ξd2δ1Pdabc − ξd1δ2Pdabc − [ξ1, ξ2]
dPdabc .

(93)

Thus, the symplectic form (22) is given by

W [φ; δ1φ, δ2φ] =W (g)[gab; δ1gab, δ2gab] +W (m)[φ; δ1φ, δ2φ]

=
1

16π

∫

Σ

[
(δ2hij)(δ1π

ij
klm)− (δ1hij)(δ2π

ij
klm)

]

+

∫

Σ

[
ξa2δ1Paklm − ξa1δ2Paklm − [ξ1, ξ2]

aPaklm

]
,

(94)

where we have used the well known expression [1, 14, 15] for the contribution of L(g) to the

symplectic current and

πij
klm =

(
Kij − hijK

)
ǫ̂klm (95)

is the usual canonical momentum of general relativity, with Kij being the extrinsic curvature

and ǫ̂ being the induced volume 3-form on Σ.
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B. Phase Space

Following the prescription of Lee and Wald [14], phase space is constructed by factoring

the space of all fields (gab, χ) on spacetime by the degeneracies of W , i.e., phase space

is the space of equivalence classes of field configurations, where two field configurations are

equivalent if they lie on an orbit of degeneracy directions ofW . In vacuum general relativity,

where W is given by the first term on the right side of the second equality of (94), it follows

immediately that phase space may be identified with the space of the fields (“initial data”)

(hij , π
ij
klm) on Σ. However, on account of the presence of the commutator term in (94), it

is not as straightforward to determine the phase space of the Einstein-fluid system.

To describe the phase space of the Einstein-fluid system, it is useful to introduce the

3-manifold, Σ′, of “fiducial flowlines” on M ′, defined as follows: Since N ′ is a 3-form on

the fiducial 4-manifold M ′, there exists a nonvanishing vector field U ′a′ on M ′—unique up

to scaling at each point—such that iU ′ N ′ = 0. The integral curves of U ′a′ are uniquely

determined by N ′ as unparameterized curves. We define Σ′ to be the manifold of orbits

of U ′a′ . We note that a Lagrangian formulation of the Einstein-fluid system—essentially

equivalent to ours—can be given [20] by taking the dynamical variable to be a smooth map

fromM into Σ′ (rather thanM ′) with the additional requirement that the restriction of this

map to any Cauchy surface be a diffeomorphism.

It is shown in appendix B that the phase space of the Einstein-fluid system may be

identified with the space of quantities (hij , π
ij
klm, ψ, u

i) on Σ, where ui = hiaua is the fluid

3-velocity, and ψ is the diffeomorphism from Σ′ to Σ obtained by intersecting with Σ the

images under χ of the fiducial flowlines. The statement that the phase space is given by

(hij , π
ij
klm, ψ, u

i) on Σ is equivalent (by definition) to the statement that δφ is a degeneracy

of W if and only if 0 = δhij = δπij
klm = δψ = δui on Σ. Note that δψ = 0 if and only if

the Lagrangian displacement vector field ξa on Σ is parallel to the background 4-velocity ua,

i.e., if and only if qabξ
b = 0 on Σ.

Although (hij , π
ij
klm, ψ, u

i) on Σ provide coordinates on phase space, they are not “canon-

ically conjugate coordinates,” as can be seen from the fact that the symplectic product of two

pure ψ perturbations does not vanish in general. For the purpose of introducing a Hilbert

space structure on perturbations, it is useful to introduce canonically conjugate coordinates
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(qα, pα) such that W takes the form

W [φ; δ1φ, δ2φ] =

∫

Σ

∑

α

(δ2q
α · δ1pα − δ1q

α · δ2pα) , (96)

where each qα is a tensor field on Σ and each pα is a tensor density on Σ dual to qα. In

appendix B we show how to obtain such canonically conjugate variables by representing

the dynamical diffeomorphism χ as a collection of scalar fields. As seen in appendix B,

qα consists of the perturbation to the spatial metric, δhij , together with 3 scalar fields

representing the fluid perturbation, but the explicit form of (96) is not needed here.

Using such canonically conjugate coordinates, we can define a Hilbert space structure K
on perturbations by introducing the L2 inner product15

〈δ1φ, δ2φ〉 =
∫

Σ

∑

α

(δ1q
α · δ2qα + δ1pα · δ2pα) , (97)

where “·” now denotes contraction of all tensor indices after using the background metric

hab on Σ to raise and lower indices. Thus, the elements of K are the square integrable tensor

fields (qα, pα) on Σ. Note that perturbations for which δM 6= 0 fall off too slowly to be

square integrable, but K contains all perturbations of interest for which δM = 0.

By inspection of (96) and (97), it can be seen that W is a bounded quadratic form on K
and thus corresponds to a bounded linear map Ŵ : K → K such that

W [φ; δ1φ, δ2φ] = 〈δ1φ, Ŵδ2φ〉. (98)

It is not difficult to see that

Ŵ (qα, pα) = (−pα, qα) , (99)

where it is understood that any tensor indices on (qα, pα) are converted to the corresponding

dual indices on the right side of this equation via raising and lowering with hab and hab and

we have assumed h = 1 (see footnote 15). It follows immediately from (99) that Ŵ 2 = −I
and Ŵ † = −Ŵ , so, in particular, Ŵ is an orthogonal map.

15 If qα is a tensor and pα is a tensor density with dual indices as assumed above, then no volume element

need be specified in (96). However, a volume element must be specified in (97). If we take the volume

element in (97) to be a fixed volume element on Σ, then the term |qα|2 should be multiplied by h1/2 and

the term |pα|2 should be multiplied by h−1/2 where h denotes the determinant of the background spatial

metric hab on Σ with respect to the fixed volume element. For notational simplicity, we have ignored

these factors, since, for any fixed background, we may assume that h = 1.
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Let S be any subspace of K. We define the symplectic complement, S⊥S , of S by

S⊥S =
{
v ∈ K

∣∣〈v, Ŵu〉 = 0 ∀u ∈ S
}
. (100)

Clearly, we have S⊥S = (Ŵ [S])⊥, where Ŵ [S] denotes the image of S under Ŵ and

“⊥” denotes the ordinary orthogonal complement in K. Since Ŵ is orthogonal, we have

(Ŵ [S])⊥ = Ŵ [S⊥], and since Ŵ 2 = −I, we have

(S⊥S)⊥S = (Ŵ [S⊥])⊥S = Ŵ 2[(S⊥)⊥] = (S⊥)⊥ = S , (101)

where the bar denotes the closure in K. Thus, the double symplectic complement of any

subspace is its closure.

Now let φ satisfy the equations of motion and let Xa be smooth and of compact support.

By (30), we have for all δφ ∈ K

〈δφ, Ŵ £X φ〉 =
∫

Σ

XaδCa . (102)

By definition, the right side of this equation vanishes if and only if δφ is a weak solution of

the constraint equations, δCa = 0. Thus, if we take G to be the subspace of K spanned by

perturbations of the form £X φ, we see that G⊥S is precisely the subspace, C, of weak solu-

tions to the constraints. Furthermore, by the general argument of the previous paragraph,

we have C⊥S = G. Another way of saying this is that if we restrict the action of the original

quadratic form W to C × C, it becomes degenerate precisely on (the closure of) the gauge

transformations £X φ.

C. Trivial Displacements

We will see in the next section that it will be important important to determine the sym-

plectic complement, V, within C of the subspace of phase space perturbations corresponding

to field variations of the form (δgab = 0, ηa), where ηa is a trivial displacement, i.e.,

0 = δs = −£η s ,

0 = δN = −£η N .
(103)
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We first find the general form of a trivial displacement. Since uaNabc = 0, any vector field

ηa inside the star can be uniquely decomposed as

ηa = fua +
1

n2
NabcHbc , (104)

where f is an arbitrary function and Hab is an arbitrary 2-form satisfying uaHab = 0. Since

dN = 0, the necessary and sufficient condition to satisfy the second equality in (103) is

0 = £η N = d(iη N) = 2dH , (105)

where we have used
1

n2
NabcNade = 2q[bdq

c]
e (106)

to calculate iη N . It follows immediately that £u H = iudH + d(iuH) = 0, so H may

be viewed as a 2-form on the manifold of orbits of ua. Assuming that the star is simply

connected, (105) then yields

H = dZ , (107)

where Z is an arbitrary 1-form on the manifold of ua-orbits or, equivalently, Z is a 1-form

on spacetime satisfying iuZ = 0 and £u Z = 0. Thus, the necessary and sufficient condition

for ηa to satisfy £η N = 0 is that it be of the form

ηa = fua +
1

n2
Nabc∇bZc , (108)

where Za satisfies

uaZa = 0 , £u Za = 0 . (109)

Since ua∇as = 0, the necessary and sufficient condition for ηa to also satisfy ηa∇as = 0 is

∇[as∇bZc] = 0 . (110)

Eqs. (108)–(110) are necessary and sufficient for ηa to be a trivial displacement.

It should be noted that if ∇as 6= 0 and the surfaces of constant s are simply connected
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(i.e., spheres), then it is possible to show further that

ηa = fua +
1

n2
Nabc(∇bs)(∇cF ) , (111)

where £u F = 0, which is the form given in [2] for the case where ∇as 6= 0. However, if the

surfaces of constant s are not simply connected (i.e., tori), then (a small class of) additional

trivials are also allowed. Similarly, if ∇as = 0 in an open region, then writing Za as a sum

of terms of the form F∇aG, it can be seen from (108) and (109) that ηa can be written as

a sum of terms of the form [2]

ηa = fua +
1

n2
Nabc(∇bF1)(∇cF2) , (112)

where £u F1 = £u F2 = 0. However, in order to avoid dealing with these different special

cases, we will use the form (108)–(110), which is valid in all cases.

We now compute the symplectic product of a trivial perturbation, (δgab = 0, ηa), with an

arbitrary perturbation. It is not difficult to see that all of the flowline trivials, ηa = fua for

any f , are degeneracies of W since they have 0 = δhij = δπij
klm = qabξ

b = δui on Σ. Thus,

these trivial perturbations are not represented in phase space, i.e., they are “factored out”

by our above construction of phase space. However, all of the nonvanishing trivials η̃a of the

form

η̃a =
1

n2
Nabc∇bZc (113)

with Za satisfying (109) and (110) are not degeneracies of W . Indeed, for an arbitrary δφ,

by working in a gauge where the Lagrangian displacement is zero (which we can do since
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the symplectic product is gauge invariant), we have

W [φ; δφ, (0, η̃a)] = W [φ; (∆gab, 0), (0, η̃
a)]

=

∫

Σ

η̃a∆Pabcd

=

∫

Σ

1

n2
Naef∇eZf∆Pabcd

=

∫

Σ

∇eZf∆

(
1

n2
NaefPabcd

)

= 6

∫

Σ

∇[bZc∆

(
ρ+ p

n
ud]

)

= 6

∫

Σ

Z[b∆

(
∇c

ρ+ p

n
ud]

)

=

∫

Σ

Z ∧∆d

(
ρ+ p

n
u

)
.

(114)

The 2-form d [(ρ+ p)u/n] is known as the vorticity, so we see that a sufficient condition for

symplectic orthogonality to the trivials is vanishing Lagrangian change of the vorticity16.

This condition is necessary in open regions where ∇as = 0.

Consider, now, the case of axisymmetric trivials. Then it is easy to verify directly from

(103) that

ηa = fϕa (115)

is a trivial displacement17 for any axisymmetric function f satisfying £u f = 0. We now

show that the time derivative, £t η
a of any axisymmetric trivial is a trivial of this form, up

to the addition of a flowline trivial. To see this, we take the Lie derivative of (113) and use

the circular flow condition (13) of the background to write

16 A necessary (but not sufficient, unless the level surfaces of s in the background are spheres) condition

for symplectic orthogonality to the trivials is vanishing Lagrangian change in the quantity ds∧ d
(
ρ+p
n u

)
,

known as the circulation, as can be seen by considering the particular trivials of the form Z = Fds in

(114). In the case of nonaxisymmetric perturbations, Friedman [2] shows that for certain backgrounds

the condition of vanishing Lagrangian change in circulation is not a physical restriction—in the sense that

for any perturbation δφ, one can always find a trivial perturbation to add to δφ such that the sum has

zero Lagrangian change in circulation. However in the axisymmetric case the corresponding condition,

∆j = 0, is a physical restriction.
17 In fact, it can be seen from (111) that in the case where the level surfaces of s in the background are spheres,

any axisymmetric trivial displacement can be written in the form ηa = f1u
a + f2ϕ

a with £u f2 = 0.
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£t η̃
a = £t

(
1

n2
Nabc∇bZc

)

=
1

n2
Nabc

[
∇b

(
£|v|u Zc

)
−£Ωϕ (∇bZc)

]

= −2
1

n2
Nabc (∇bΩ)

(
ϕd∇[dZc]

)
,

(116)

where in the last equality we used axisymmetry of η̃a and the properties (109) of Za. Since

both ∇aΩ and ϕb∇[bZa] vanish when contracted with ϕa, it follows from (116) that £t η̃
a

must be proportional to ϕa, which establishes our claim.

Finally, in parallel to (114), the symplectic product of an arbitrary axisymmetric pertur-

bation with an axisymmetric trivial of the form ηa = fϕa is

W [φ; δφ, (0, fϕa)] =W [φ; (∆gab, 0), (0, fϕ
a)]

=

∫

Σ

fϕa∆Pabcd

=

∫

Σ

fϕa∆

[
ρ+ p

n
(nǫabcd + uaNbcd)

]

=

∫

Σ

fNbcd∆

(
ρ+ p

n
ϕaua

)
,

(117)

where we have chosen Σ to be axisymmetric so that the pullback of ϕaǫabcd vanishes. Thus,

in the axisymmetric case, the necessary and sufficient condition for symplectic orthogonality

to the trivials of the form ηa = fϕa is

∆j = 0 , (118)

where

j ≡ ρ+ p

n
ϕaua (119)

has the interpretation of being the “angular momentum per particle”.

V. CANONICAL ENERGY AND DYNAMIC STABILITY

The canonical energy E is a bilinear form on the space of solutions to the perturbation

equations, defined by

E(δ1φ, δ2φ) =W [φ; δ1φ,£t δ2φ], (120)
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where ta is the timelike Killing vector field of the stationary background. More precisely, we

define E to be the quadratic form (120) on the Hilbert space C ⊂ K defined at the end of

subsection IVB, with domain taken to be the smooth elements δφ ∈ C with suitable decay

properties at infinity18. An explicit formula for E is given in [2], and an expression for E in

terms of second order variations will be obtained in the next section.

Although the definition of E is asymmetric in δ1φ and δ2φ, it is, in fact, symmetric in its

arguments,

E(δ1φ, δ2φ) = E(δ2φ, δ1φ). (121)

To prove this, we note that (93) expresses the symplectic current ω in terms of the pertur-

bations (δ1φ, δ2φ) and the background physical quantities gab, ρ, p, and u
a. Since £t applied

to the background physical quantities vanishes, we have

£tω(φ; δ1φ, δ2φ) = ω(φ;£t δ1φ, δ2φ) + ω(φ; δ1φ,£t δ2φ) . (122)

By the standard Lie derivative identity for forms, we have

£tω = itdω+d(itω) = d(itω) , (123)

where the fact that ω is closed (see (24)) was used in the last equality. Integration of (122)

over a Cauchy surface Σ then yields (121).

In addition to its symmetry, E satisfies the following important properties: (i) E is con-

served, i.e., E is independent of the choice of Σ. This follows immediately from the con-

servation of W on solutions (see (24)), given that if δφ is a solution, then so is £t δφ. (ii)

E is gauge invariant for gauge transformations of compact support. This follows immedi-

ately from (29). (iii) E(δφ, δφ) has a positive net flux at null infinity if the perturbation is

asymptotically stationary at late times. This has been shown in [2] and [1].

There is one further property that we need E to satisfy in order to use the positivity

of E as a necessary and sufficient condition for stability: We want E to be degenerate

precisely on the linearized solutions δφ that are physically stationary. (Here, E is said

to be degenerate on δφ if E(δφ, δφ′) = 0 for all δφ′ in the domain of E .) Below, we will

18 More precisely, the domain is U ∩ C where U is the intersection of weighted Sobolev spaces analogous

to those defined in [1]. This domain can be shown to be dense in C by the type of argument given in

proposition 5 of [1].
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define what we mean by a “physically stationary linearized solution,” and we will then

explain why this degeneracy property is needed in order to use positivity of E as a criterion

for dynamic stability. Unfortunately, we will then find that E is not degenerate on all

physically stationary solutions. The cure for this difficulty will be to restrict the subspace

of solutions on which E is defined so as to make it degenerate on the physically stationary

solutions. As a consequence, we can only directly test dynamic stability on a restricted

subspace of perturbations. Nevertheless, we will then show that, in the axisymmetric case,

mode stability on this restricted subspace implies mode stability for general perturbations,

including perturbations that cannot be obtained in the Lagrangian framework.

A smooth linearized solution δφ = (δgab, ξ
a) is said to be physically stationary if the

physical fields δgab, δN , and δs can be made stationary by a gauge transformation, i.e., if

there exists a smooth vector field Xa, which is an asymptotic symmetry near infinity, such

that

0 = £t[δgab +£X gab] , (124)

0 = £t[δN +£X N ] = £t[−£ξ N +£X N ] = −£[t,ξ−X]N , (125)

0 = £t[δs+£X s] = £t[−£ξ s+£X s] = −£[t,ξ−X] s . (126)

Equations (125) and (126) are equivalent to the statement that the perturbation (0, [t, ξ −X ]a)

is trivial, i.e.,

£t[ξ
a −Xa] = trivial displacement. (127)

Thus, δφ = (δgab, ξ
a) is physically stationary if and only if there exists a smooth vector field

Xa, which is an asymptotic symmetry near infinity, such that

£t δφ =
(
−£[t,X] gab, [t, X ]a

)
+ trivial . (128)

Now, if it were true that E(δφ, δφ) > 0 for all linearized solutions δφ, then E would provide

a positive definite conserved norm, thereby implying mode stability (see the discussion given

in the Introduction). Since physically stationary perturbations are obviously physically

stable, we would also have mode stability if we merely had E(δφ, δφ) ≥ 0 for all linearized

solutions δφ, but with equality holding only for physically stationary perturbations. In other

words, it does no harm to the argument for dynamic stability if we merely have E(δφ, δφ) ≥ 0
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provided that E is degenerate only on physically stationary solutions. On the other hand, we

need E to be degenerate on all physically stationary solutions in order to argue for instability

in the alternative case where E(δφ, δφ) < 0 for some linearized solution δφ. Specifically, we

need degeneracy of E on physically stationary solutions in order to obtain a contradiction

with such a δφ asymptotically approaching a physically stationary solution at late retarded

times: If δφ asymptotically approached a physically stationary solution, the above positive

flux result would imply that E could only become more negative at late times, whereas

the degeneracy of E on physically stationary solutions would imply E → 0, thus yielding

a contradiction. Thus, we need E to be degenerate precisely on the physically stationary

solutions in order to use positivity of E as a criterion for both stability and instability,

i.e., to be able to prove that (i) non-negativity of E implies mode stability and (ii) failure

of non-negativity implies the existence of solutions that cannot asymptote to a physically

stationary final state.

What are the degeneracies of E? Since E(δφ′, δφ) = W (φ; δφ′,£t δφ), it follows that δφ is

a degeneracy of E if and only if £t δφ is a degeneracy of W . As discussed at the end of sub-

section IVB, when restricted to C, W is degenerate precisely on the gauge transformations

that go to zero at infinity. Thus, the degeneracies of E are precisely the δφ in the domain of

E such that

£t δφ = (£Y gab,−Y a) , (129)

where Y a is smooth and goes to zero at infinity. Comparison of eqs. (128) and (129) shows

that the degeneracies of E are a proper subset of the physically stationary solutions. Thus,

although E satisfies the desired property of being degenerate only on physically stationary

solutions, it fails to be degenerate on all physically stationary solutions.

A cure for this difficulty is to restrict E to a smaller space, so as to make it degenerate on

all physically stationary solutions. If δpsφ is a physically stationary perturbation, we have,

from (128),

E(δφ, δpsφ) =W [δφ,£t δpsφ]

= −W
[
δφ,

(
£[t,X] g,−[t, X ]

)]
+W [δφ, trivial] .

(130)

Now, for a general asymptotic symmetry Xa, the commutator [t, X ]a is, at most, an asymp-

totic translation (as occurs when Xa is an asymptotic boost). Therefore, in order to ensure

that the first term vanishes, we must restrict δφ so that δPi = 0, where δPi denotes the ADM
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linear momentum (see (32) and (36)). This is an innocuous restriction on perturbations,

since we can achieve this by addition of the action of an infinitesimal Lorentz boost on the

background solution, so δPi = 0 does not impose a physical restriction on the perturbations

being considered. On the other hand, in order to ensure that the second term vanishes, we

must restrict δφ so that

W [δφ, trivial] = 0 (131)

for all trivials.

Let V be the Hilbert subspace of C composed of perturbations that have δPi = 0 and

are symplectically orthogonal to all trivials. Then V is the symplectic complement in the

Hilbert space K of the subspace, W, of perturbations consisting of trivials together with

gauge transformations generated by vector fields Xa that approach asymptotic translations

at infinity. Since the double symplectic complement of W in K is simply the closure, W , of

W in K (see (101)), when restricted to V, the degeneracies of W are precisely the elements

of W ∩ V. Furthermore, by arguments similar to given in [1] (see remark 2 of section 4 of

that reference), the smooth elements of W lie in W. It follows that, when restricted to V,
E is degenerate precisely on the physically stationary solutions.

Putting together all of the above results and arguments, we have the following theorem:

Theorem V.1. Let V ⊂ C be the space of linearized solutions within the Lagrangian frame-

work that are symplectically orthogonal to all trivial perturbations and satisfy δPi = 0. If

E is non-negative on this subspace, then one has stability on this subspace of perturbations

in the sense that there do not exist any exponentially growing modes lying in this subspace.

Conversely, if E(δφ, δφ) < 0 for some δφ ∈ V, then one has instability in the sense that such

a δφ cannot approach a physically stationary solution at asymptotically late times.

We note that Friedman [2] has shown that if Ω is not identically zero, there exist per-

turbations in V of sufficiently high angular quantum number m such that E < 0, thus

establishing that all rotating stars are dynamically unstable (the CFS instability) in the

sense of this theorem. Furthermore, for slowly rotating stars, all “r-modes” with m ≥ 2

have E < 0 and thus are unstable [21, 22]. For slowly rotating stars, the growth timescale

of the unstable modes will be very long (see footnote 3), but the instability may occur on

dynamically relevant timescales for rapidly rotating compact stars.

As previously mentioned in the Introduction and footnote 16, Friedman [2] has shown
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that for non-axisymmetric perturbations, restriction to V does not impose a (significant)

physical restriction on perturbations, i.e., for suitable background stars, any nonaxisymmet-

ric perturbation can be written as the sum of a trivial perturbation and a perturbation in

V. However, in the axisymmetric case, restriction to V does impose a physical restriction on

perturbations. In particular, as shown in subsection IVC, symplectic orthogonality to triv-

ials of the form fφa requires ∆j = 0, which is a significant physical restriction. It is worth

noting that by eqs. (59) and (64) expressed in a gauge where δ = ∆, the condition ∆j = 0

implies δJ = δM = 0, so all perturbations in V satisfy19 δJ = δM = 0. It is interesting

that the same condition δJ = δM = 0 in a space directly analogous to V also arose in the

black hole stability analysis of Hollands and Wald [1], but for completely different reasons

(involving the horizon Killing field).

On account of the physical restrictions associated with considering only perturbations in

V, Theorem V.1 is of rather limited utility as it stands for determining the dynamic stability

of a star with respect to axisymmetric perturbations, since it gives a stability criterion only

for perturbations in V. Fortunately, in the axisymmetric case, these restrictions can be

removed: Mode stability for perturbations in V implies mode stability for all perturbations,

including those that cannot be described within the Lagrangian displacement framework.

This result is a direct consequence of the following lemma:

Lemma V.1. Let δQ = (δNabc, δs, δgab) be an axisymmetric solution to the linearized

Einstein-fluid equations (not necessarily arising in the Lagrangian displacement framework).

Then there exists a vector field ξa such that

£t δNabc = −£ξ Nabc ,

£t δs = −£ξ s ,

£t δj = −£ξ j .

(132)

Thus, £t δQ can be represented in the Lagrangian displacement framework and has ∆j = 0.

Furthermore £2
t δQ ∈ V.

Proof: Let

ξa = |v|δua + βϕa, (133)

19 The Hilbert space K excludes perturbations with δM 6= 0 in any case because of the failure of square

integrability.
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where va = ta + Ωϕa and β is any axisymmetric scalar that satisfies

ua∇aβ = (δua)∇aΩ . (134)

The perturbed conservation of entropy equation yields

0 = δ(ua∇as) = ua∇aδs+ (δua)∇as

=
1

|v|(t
a + Ωϕa)∇aδs+ (δua)∇as =

1

|v|t
a∇aδs+ (δua)∇as

(135)

where we have used axisymmetry of the perturbation in the last step. Thus, we have

£t δs = −|v|(δua)∇as = −£ξ s. (136)

An identical calculation using the perturbed conservation of angular momentum equation,

δ(ua∇aj) = 0, shows

£t δj = −£ξ j. (137)

Finally, the perturbed conservation of particle number yields δ(dN) = d(δN) = 0, so

£t δN = t · d(δN) + d(t · δN) = d [(|v|u− Ωϕ) · δN ]

= d [|v|δ(u ·N)− |v|(δu) ·N − Ωϕ · δN ]

= d [−ξ ·N + βϕ ·N − Ωϕ · δN ]

= −£ξ N + d [ϕ · (βN − ΩδN )]

= −£ξ N +£ϕ (βN − ΩδN)− ϕ · d (βN − ΩδN)

= −£ξ N − ϕ · d (βN − ΩδN) .

(138)
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But d (βN − ΩδN ) is a 4-form, so

ϕ · d (βN − ΩδN) = 0

⇐⇒ d (βN − ΩδN) = 0

⇐⇒ N ∧ dβ − δN ∧ dΩ = 0

⇐⇒ ǫabcdNbcd∇aβ − ǫabcdδNbcd∇aΩ = 0

⇐⇒ nua∇aβ −
(
uaδn + nδua +

1

2
nuagbcδgbc

)
∇aΩ = 0

⇐⇒ ua∇aβ = (δua)∇aΩ.

(139)

But we defined β so as to satisfy the last equality, so we have shown that

£t δNabc = −£ξ Nabc . (140)

Thus, we have shown that £t δQ can be represented in the Lagrangian displacement frame-

work and has ∆j = 0.

Now, let ηa be any axisymmetric trivial displacement. Then we have

W [(0, η),£2
t δQ] = −W [(0,£t η),£t δQ] = 0 , (141)

where the first equality follows from the same argument as used above to prove that E is

symmetric, and the second equality follows from the fact that £t η
a is an axisymmetric

trivial displacement of the form fϕa (see subsection IVC) and £t δQ satisfies ∆j = 0.

Thus, £2
t δQ is symplectically orthogonal to all trivial perturbations. Furthermore it follows

immediately from conservation of ADM momentum that £t δQ and £2
t δQ have vanishing

linearized momentum. Thus, £2
t δQ ∈ V.

Now, if δQ has exponential growth in time, then so does £2
t δQ. Therefore, the absence of

exponentially growing solutions of the form £2
t δQ implies the absence of any exponentially

growing solutions at all. In view of this fact and the previous theorem, we have the following

result:

Theorem V.2. If E is non-negative on the subspace of axisymmetric perturbations in V,
then there are no smooth, axisymmetric solutions to the Einstein-fluid equations with suitable
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fall-off at infinity that have exponential growth in time, i.e., mode stability holds for all

axisymmetric perturbations. Conversely, if E(δφ, δφ) < 0 for some axisymmetric δφ ∈ V,
then one has instability in the same sense as in Theorem V.1.

VI. THERMODYNAMIC STABILITY

We turn our attention now to the thermodynamic stability of stars in thermal equilibrium.

As explained in the Introduction, the criterion for thermodynamic stability is positivity of

the quantity

E ′ ≡ δ2M − T̃ δ2S − µ̃δ2N − Ωδ2J (142)

for all perturbations with δM = δN = δJ = 0 (and, hence, δS = 0). In the case of dynamic

stability, one can consider stability with respect to perturbations that lie in subspaces that

are preserved under dynamic evolution, such as the subspace V in Theorem V.1. However,

the premise behind the notion of thermodynamic stability is that all states are accessible

under the true dynamics, provided only that the fundamental conservation laws of M , J ,

and N are respected. Thus, to prove thermodynamic stability of any perturbation, one must

show positivity of E ′ on all perturbations with δM = δN = δJ = 0 (or, in the axisymmetric

case, all axisymmetric perturbations with δM = δN = δJ = 0).

We shall show that for all perturbations in the Lagrangian displacement framework, we

have

Er = E ′ , (143)

where Er is the canonical energy in the “rotating frame,” i.e., defined with respect to the

Killing field va = ta+Ωϕa to which ua is proportional. Thus, a necessary condition for ther-

modynamic stability is positivity of Er on all perturbations within the Lagrangian frame-

work with δJ = 0 (since δN = δS = 0 holds automatically for perturbations within the

Lagrangian framework). Now, as previously mentioned, any perturbation with δN = δS = 0

can be described within the Lagrangian framework provided only that δs/|Das| is bounded
[2]. Thus, for example, if the background star is such that Das = 0 at only one point and this

zero is of order 1, then the smooth Lagrangian perturbations are of co-dimension 1 in the

space of all smooth perturbations with δN = δS = 0. Thus, positivity of Er on Lagrangian

perturbations with δJ = 0 should also be “nearly sufficient” for thermodynamic stability.
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However, we shall not attempt to establish any sufficiency results along these lines, except

for a remark about the isentropic case at the end of this section.

We begin by deriving an expression for the ordinary canonical energy, E , for perturbations
of a star in dynamic (but not necessarily thermodynamic) equilibrium in terms of second

order variations. Since E is gauge invariant, we may evaluate it in a gauge where the

Lagrangian displacement vanishes. We thereby obtain

E (δ1φ, δ2φ) = W (g) [gab; ∆1gab,£t ∆2gab] , (144)

where W (g) is the “gravitational part” ofW (see (94)), since the matter contribution, W (m),

vanishes when the Lagrangian displacement vanishes. Now consider a 1-parameter family

of solutions, φ(λ), corresponding to the perturbation δφ, expressed in a gauge where the

Lagrangian displacements vanish to all orders. Denoting the physical quantities in this

gauge by Q̂(λ), we obtain

E(δφ, δφ) = W (g) [gab; ∆gab,£t∆gab]

= W (g)

[
ĝab(λ);

d

dλ
ĝab(λ),£t

d

dλ
ĝab(λ)

]∣∣∣∣
λ=0

=
d

dλ
W (g)

[
ĝab(λ);

d

dλ
ĝab(λ),£t ĝab(λ)

]∣∣∣∣
λ=0

=
d2

dλ2
M̂(λ)

∣∣∣∣
λ=0

+

∫

Σ

d

dλ

(
ta
[
d

dλ

(
T̂ b
a (λ)ǫ̂bdef (λ)

)
− 1

2
T̂ bc(λ)

dĝbc(λ)

dλ
ǫ̂adef (λ)

])∣∣∣∣
λ=0

= δ2M +

∫

Σ

ta
[
∆2

(
T b
a ǫbdef

)
− 1

2
∆
(
T bc∆gbcǫadef

)]
.

(145)

Here, in the third line, we have used the fact that ĝ(0) = g(0) is stationary. The fourth

equality comes from the general identity (28) (and the field equations), and the definition

of the ADM mass. The final equality uses the fact that the ADM mass is gauge invariant,

so M̂(λ) = M(λ). Below, we will simplify this expression further in the case where δφ is

axisymmetric.

Now, consider the case where the background star is in thermodynamic equilibrium, so

that, in particular, Ω is constant. Then the background 4-velocity ua is proportional to the
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Killing field

va = ta + Ωϕa (146)

and it is natural to consider the quantity

Er(δ1φ, δ2φ) = W [φ; δ1φ,£v δ2φ] , (147)

which may be interpreted as the “canonical energy as measured in the frame that rotates

rigidly with the star.” A calculation parallel to the above calculation yields

Er(δφ, δφ) = δ2M − Ωδ2J +

∫

Σ

va
[
∆2

(
T b
a ǫbdef

)
− 1

2
∆
(
T bc∆gbcǫadef

)]
, (148)

where J denotes the ADM angular momentum and the presence of the additional term

−Ωδ2J arises simply because of the asymptotic behavior of va (as compared with ta) at

infinity. However, the last term can be seen to vanish using Lemma III.1. Namely, the right

hand side of the identity (52) is zero in a gauge where the Lagrangian displacements vanish

(since N and S are then fixed) so the identity evaluated at λ = 0 in such a gauge says

0 = ua
[
1

2
T bc∆gbcǫadef −∆

(
T b
a ǫbdef

)]
, (149)

and the λ derivative of the identity evaluated at λ = 0 in such a gauge yields

0 = ∆

(
ua

[
1

2
T bc∆gbcǫadef −∆

(
T b
a ǫbdef

)])

= ua∆

[
1

2
T bc∆gbcǫadef −∆

(
T b
a ǫbdef

)]
+ (∆ua)

[
1

2
T bc∆gbcǫadef −∆

(
T b
a ǫbdef

)]

= ua
[
1

2
∆
(
T bc∆gbcǫadef

)
−∆2

(
T b
a ǫbdef

)]
,

(150)

where we have used the fact that ∆ua is parallel to ua (equation (80)) and (149). Thus, the

last term in (148) vanishes, and we obtain

Er(δφ, δφ) = δ2M − Ωδ2J. (151)

Taking account of the fact that we automatically have δ2N = δ2S = 0 for all variations

describable within the Lagrangian framework, we see that, for perturbations within the
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Lagrangian framework, the quantity Er coincides with the quantity E ′, as we desired to

show. Consequently, we immediately obtain the following theorem;

Theorem VI.1. For a star in thermodynamic equilibrium, a necessary condition for ther-

modynamic stability is positivity of Er on all linearized solutions within the Lagrangian frame-

work that have δJ = 0.

The identification of Er as the quantity whose positivity determines thermodynamic sta-

bility is in accord with the analysis of Lindblom and Hiscock [3]. Lindblom and Hiscock

further argued that dissipative processes will act to stabilize a star against the CFS dynamic

instability implied by theorem V.1, which might seem to suggest that a star could be dy-

namically unstable (to the CFS instability) but thermodynamically stable. However, by the

general arguments given in the Introduction, this is impossible. Indeed, it is easy to see

that all rotating stars are thermodynamically unstable: A perturbation that corresponds

to a gravitational wavepacket localized far from the star and in a high angular momen-

tum state—with negligible perturbation to the star itself—can easily be made20 to have

Ωδ2J > δ2M , and, hence, Er < 0. In other words, it is always entropically favorable to put

some of the angular momentum of the star in low energy gravitational radiation, and then

use the rotational energy thereby gained to add thermal energy to the star. If gravitational

radiation were assigned a non-zero entropy, it would be even more entropically favorable to

do this.

The resolution of the apparent discrepancy between this argument and the results of

Lindblom and Hiscock is that Lindblom and Hiscock restricted consideration only to “short

length scale perturbations” that are localized within the star and have negligible metric

perturbation, thereby excluding the entropically favorable perturbations of the previous

paragraph. For these short length scale perturbations, the condition for thermodynamic

stability reduces to the two relations (17) for the thermodynamic stability of a homogeneous

system. In other words, a star will have positive Er for short length scale perturbations if

and only if (17) holds at each point in the star. Note that the first of these relations is

equivalent to the Schwarzschild stability criterion obtained by Lindblom and Hiscock; the

second condition does not appear in Lindblom and Hiscock’s analysis, presumably because

20 This can be done by choosing the perturbation to be predominantly composed of modes of frequency ω

and angular quantum number m such that 0 < ω < mΩ.
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they did not consider the dissipative process of diffusion. In any case, since the CFS dy-

namic instability is of this short length scale type, it is highly plausible that, if the local

thermodynamic stability criteria (17) hold, then dissipative processes will damp this insta-

bility, as claimed by Lindblom and Hiscock. Nevertheless, although dissipative processes

may enormously increase the timescale—beyond the already possibly enormous timescale of

the CFS instability—they cannot prevent the star from eventually reaching a state of higher

entropy by radiating its angular momentum away into modes with 0 < ω < mΩ.

Finally, we return to the expression (145) for the canonical energy for a background

star that is in dynamic—but not necessarily thermodynamic—equilibrium. If we restrict

consideration to axisymmetric perturbations (so that, in particular, ∆kϕa = 0), then we

have—making use of (150) and again choosing Σ to be axisymmetric—

∫

Σ

ta
[
∆2

(
T b
a ǫbdef

)
− 1

2
∆
(
T bc∆gbcǫadef

)]

=

∫

Σ

(|v|ua − Ωϕa)

[
∆2

(
T b
a ǫbdef

)
− 1

2
∆
(
T bc∆gbcǫadef

)]

=−
∫

Σ

Ω∆2
(
ϕaT b

a ǫbdef
)

=−
∫

Σ

Ω∆2Jdef

(152)

so we obtain

E(δφ, δφ) = δ2M −
∫

Σ

Ω∆2 J , (153)

which is our desired general expression for E in terms of second order variations for a star

in dynamic equilibrium.

If the star is rigidly rotating, the last term becomes

∫

Σ

Ω∆2 J = Ω

∫

Σ

∆2 J = Ω

∫

Σ

δ2 J = Ωδ2J , (154)

where the last equality follows from an argument similar to the argument that led to (64).

Thus, for an axisymmetric perturbation of a star in thermodynamic equilibrium, we have21

E(δφ, δφ) = Er(δφ, δφ) . (155)

21 This result can also be seen directly from the fact that Er(δφ, δφ) − E(δφ, δφ) = ΩW [φ,£ϕ φ] = 0.
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As an immediate consequence, we have the following theorem:

Theorem VI.2. For a star in thermodynamic equilibrium, a necessary condition for ther-

modynamic stability with respect to axisymmetric perturbations is positivity of E on all ax-

isymmetric linearized solutions within the Lagrangian framework that have δJ = 0.

As a simple application of our results, consider a star at T = 0 for which the entropy per

particle, s, takes its minimum value s = 0 throughout the star22. Then any perturbation

for which δS = 0 must have δs = 0 everywhere. Hence, for this “isentropic case,” every

perturbation with δS = δN = 0 can be described in the Lagrangian framework. Conse-

quently, in this case, the word “necessary” can be replaced by “necessary and sufficient”

in Theorems VI.1 and VI.2. Now consider spherically symmetric perturbations of a static,

spherically symmetric isentropic star. Such perturbations obviously have δJ = 0. It is not

difficult to show that there do not exist any spherically symmetric trivial perturbations.

Consequently, we have V = C. Comparison of Theorems V.2 and VI.2 (with “necessary”

replaced by “necessary and sufficient”) then immediately yields the following result23: In

the isentropic case, for spherically symmetric perturbations of static, spherically symmetric

stars, thermodynamic stability is equivalent to dynamic stability.
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Appendix A: Existence of Desired Solutions to the Linearized Constraints

Let Σ be a t−ϕ reflection invariant Cauchy surface for a star in dynamic equilibrium. Let

e be a fixed, non-dynamical volume element on Σ, so the volume element associated with

the induced metric on Σ is
√
he. Let νa be the future-directed unit normal to Σ. Consider

perturbations off of this background. The linearized Hamiltonian constraint on Σ is

0 = δ (νaCa) =

[
− 1

8π
δ
(√

hνaνbGab

)
+ δ

(√
hνaνbTab

)]
(A1)

and the linearized momentum constraint is

0 = δ
(
h b
a Cb

)
=

[
− 1

8π
δ
(√

hh b
a ν

cGbc

)
+ δ

(√
hh b

a ν
cTbc

)]
. (A2)

All quantities appearing in these equations can be expressed24 in terms of background quan-

tities and the perturbation quantities δhij , δπ
ij, δn, δs, and δui, where ui denotes the

3-velocity, i.e., the projection of ua tangent to Σ. Alternatively, we can replace the fluid

quantities (δn, δs, δui) with (δN , δS, δJ , δui⊥), where δui⊥ is the projection of δui perpen-

dicular to ϕi and

N ≡ −
√
hn(uaνa) ,

S ≡ sN ,

J ≡ jN =
ρ+ p

n
(uaϕa)N ,

(A3)

so that

δN = (δN )e ,

δ S = (δS)e ,

δ J = (δJ )e ,

(A4)

where δN , δ S, and δ J denote the pullbacks of δN , δS, and δ J to Σ.

24 Note, in particular, that δ(uaνa) can be expressed in terms of δ(hiju
iuj) and background quantities on

account of the normalization condition on ua.
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In terms of these variables, the linearized Hamiltonian constraint takes the form

1

16π

[
− Rij(h)δhij +DiDjδhij −DiDiδh

j
j + h−1πijπijδh

k
k − 2h−1πijδπ

ij

− 2h−1π j
i π

ikδhjk +
√
h
(
νaνbGab

)
δh j

j + 8π
√
hT ijδhij

]

= − 1

uaνa

[
µδN + TδS +

uaϕa

ϕbϕb
δJ

]
,

(A5)

where we have used the fact that since the background spacetime is t− ϕ symmetric about

Σ, the background πij must be odd under the action of the reflection isometry ϕ → −ϕ of

hij on Σ, so, in particular πi
i = 0. The ϕi-component of the linearized momentum constraint

is
1

16π
ϕi

[
2
√
hDj

(
h−1/2δπ j

i

)
+ 2πjkDjδhik

− πjkDiδhjk + 2
√
h δhikDj

(
h−1/2πjk

)
]
= −δJ ,

(A6)

and the components of the linearized momentum constraints perpendicular to ϕa are

1

16π

[
2
√
hDj

(
h−1/2δπij

)
+ 2πjkDjδh

i
k − πjkDiδhjk

]

⊥

=
√
h (ubνb)(ρ+ p)δui⊥ , (A7)

where the subscript “⊥” means the projection orthogonal to ϕi in Σ. Note that δui⊥ does

not appear at all in eqs. (A5) and (A6).

The following lemma is needed in Theorem III.1 to show that we can solve the constraints

for any choice of axisymmetric δN , δS, and δ J :

Lemma A.1: Let δN , δS, and δJ be specified arbitrarily as smooth, axisymmetric functions

with support inside the background star, such that δJ /ϕaϕa also is smooth (i.e., δJ vanishes

on the “rotation axis”). Then we can choose the remaining initial data (δhij , δπ
ij, δui⊥) so

as to solve the linearized constraints (A5)–(A7).

Proof: We choose δhij and δπ
ij to be of the form

δhij = ψhij ,

δπij =
√
hD(iF j) − ψπij .

(A8)
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We choose F i to satisfy

Dj
(
D(iFj)

)
= −8π

δJ
ϕaϕa

ϕi (A9)

Since the right side is a smooth vector field of compact support, by standard arguments (see,

e.g., [27]), there exists a unique solution to (A9) that goes to zero at infinity. Since the right

side is axisymmetric and is odd under the action of the reflection isometry ϕ→ −ϕ of hij on

Σ, the same must be true of F i. It may be straightforwardly verified that for δhij and δπ
ij

of the form (A8) together with this choice of F i and with any choice of ψ, the ϕ-component

(A6) of the linearized momentum constraint is satisfied.

Now substitute (A8) into the linearized Hamiltonian constraint (A5). We obtain

−DiD
iψ +Mψ = h−1/2πijDiFj +

8πh−1/2

uaνa

[
µδN + TδS +

uaϕa

ϕbϕb
δJ

]
, (A10)

where

M ≡ h−1πijπij + 8π
(ϕaua)

2

ϕbϕb

(ρ+ p) + 4π(ρ+ 3p). (A11)

Since M is manifestly non-negative, and since the right side of (A10) vanishes suitably

rapidly at infinity, by standard arguments [27, 28], there exists a unique solution, ψ, of this

equation that vanishes at infinity. With our previous choice of F i and this choice of ψ, our

ansatz (A8) solves both (A5) and (A6).

Finally, we note that with our choice δhij and δπ
ij, the vector inside the square brackets

on the left side of (A7) is axisymmetric and is odd under the action of the reflection isometry

ϕ → −ϕ on Σ. It follows that the projection of this vector perpendicular to ϕi vanishes.

Consequently, we may solve the remaining constraint (A7) by choosing δui⊥ = 0. �

Appendix B: Phase Space Construction

In this Appendix, we will show that δφ is a degeneracy ofW (given by (94)) if and only if

0 = δhij = δπij
klm = qabξ

b = δui on Σ. This shows that phase space may be identified with

the set of fields (hij ,π
ij, ψ, ui) on a Cauchy surface Σ, where ψ is a diffeomorphism from the

space of fiducial flowlines to Σ. We will then obtain canonical coordinates on phase space.

It is clear from (94) thatW depends at most on the following quantities on Σ (for each of

the two perturbations): δhij , δπ
ij
klm, δN (the perturbed lapse), δNi (the perturbed shift),



55

ξa, and the normal derivative of ξa. Using (77), we may write

W [δ1φ, δ2φ] =W [δ1φ,∆2φ]−W [δ1φ,Lξ2φ], (B1)

where ∆2φ denotes the perturbation (δgab = ∆2gab, ξ
a = 0). We use (94) to evaluate the

first term and (30) to evaluate the second, thereby obtaining

W [δ1φ, δ2φ] =

∫

Σ

[
1

16π

(
∆2hijδ1π

ij − δ1hij∆2π
ij
)

− ξa1∆2P a − iξ2(E ·δ1φ)− δ1Cξ2

]
,

(B2)

where ∆2hij denotes the perturbed spatial metric, δhij , associated with the perturbation

∆2φ—i.e., it does not mean δ2hij + £ξ2 hij—and similarly for ∆2π
ij
klm, ∆2N , and ∆2Na.

We write

∆P a = A bc
a ∆gbc, (B3)

where

A bc
a def = −1

2
ubucPadef −

1

2
c2sq

bcPadef +

(
ρ+ p

n

)
q (b
a uc)Ndef . (B4)

We note that uaA bc
a = 0, since uaP a = 0 (see (89)). Writing ∆gab in terms of the pertur-

bations to the lapse, shift, and spatial metric, we obtain

W [δ1φ, δ2φ] =

∫

Σ

[
1

16π

(
∆2hijδ1π

ij − δ1hij∆2π
ij
)
− iξ2(E ·δ1φ)− δ1Cξ2

− ξa1A
bc

a

(
∆2hbc −

2

N
νbνc∆2N − 2

N
νb∆2Nc

)]
,

(B5)

where νa is the unit normal to Σ. The quantities ∆2hij , ∆2π
ij, ∆2N , ∆2Ni, and ξ

a
2 on Σ

can be varied independently. (Note that the field equations and the linearized constraints

are not being imposed here, since we are seeking the degeneracy directions of W in the full

field space, not merely in the solution space.) Thus, δφ ≡ δ1φ is a degeneracy of W if and

only if the coefficients of ∆2hij , ∆2π
ij, ∆2N , ∆2Ni, and ξa2 in (the pullback to Σ of) the
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integrand of (B5) are each individually zero, i.e., if and only if the following conditions hold:

0 =
1

16π
δπij

klm + ξaA ij
a klm , (B6)

0 = δhij , (B7)

0 = ξaA bc
a klmνbνc , (B8)

0 = ξaA bi
a klmνb , (B9)

0 = δCa + iν(E · δφ)νa . (B10)

Conditions (B8) and (B9) together imply

0 = ξaA bc
a klmνb =

1

2
(ρ+ p)

[
(ubνb)

2δcd − c2sνbνdq
bc
]
ξaq d

a ν
eǫeklm . (B11)

Using c2s ≤ 1 (see (6)), we see that the right side cannot vanish unless

ξaq d
a = 0 , (B12)

i.e., ξa is proportional to ua. It also follows from (B6) and (B11) that δπij = 0.

Thus, we have shown that (B6)–(B9) are equivalent to δhij = 0, δπij = 0, and ξa ∝ ua.

We now show that, in the presence of these conditions, the final condition (B10) is equivalent

to δui = 0. Let δ1φ be such that 0 = δ1hab = δ1π
ab = qabξ

b
1 on Σ. We will show that δ1φ is

a degeneracy of W if and only if δ1u
i = 0.

To show this, we write

ξa1 = fua + τζa, (B13)

where τ is a smooth function that vanishes on Σ and is such that ∇aτ = νa on Σ and

ζaua = 0 everywhere. Then we have

W [δ1φ, δ2φ] = W [(0, fua), δ2φ] +W [(δ1gab, τζ
a), δ2φ] =W [(δ1gab, τζ

a), δ2φ], (B14)

since the flowline trivial (0, fua) is automatically a degeneracy ofW since it satisfies25 (B10).

25 Any trivial satisfies δCa = 0, and a flowline trivial satisfies E · δφ = −fub∇aT
ab = 0 since the ua-

component of stress energy conservation is automatically satisfied in the Lagrangian formalism.
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Using (94), we obtain

W [δ1φ, δ2φ] =

∫

Σ

(ξa2δ1Papqr − [τζ, ξ2]
aPapqr)

=

∫

Σ

(
ξa2δ1Papqr + ξb2νbζ

aPapqr

)
.

(B15)

We now eliminate ζa in terms of δ1gab and δ1(h
a
bu

b). A lengthy calculation yields

W [δ1φ, δ2φ] =

∫

Σ

(ρ+ p) ξa2Babδ1
(
hbcuc

)
, (B16)

where

Bab = −2uchb[aνc] +
c2s

(udνd)2
qacν

cub . (B17)

Again, using c2s ≤ 1, we find that the right side of (B16) vanishes for all ξa2 if and only if

δ1(h
bcuc) = 0, as we desired to show.

Thus, we have shown that δφ is a degeneracy of W if and only if the quantities

(δhij , δπ
ij, qabξ

b, δui) vanish on Σ. These quantities are the first order variations of the

quantities (hij,π
ij, ψ, ui) on Σ, where ψ is a diffeomorphism from the space of fiducial

flowlines, Σ′, to Σ (see subsection IVB). Thus, phase space is described by the quantities

(hij ,π
ij , ψ, ui) on, Σ.

The variables (ψ, ui) are not canonically conjugate, as the symplectic product of two pure

ψ perturbations (keeping ui fixed) is not necessarily zero. One can obtain canonically conju-

gate variables by representing the dynamical diffeomorphism χ as a set of four “coordinate”

scalar fields, following, e.g., [12, 14]. Let x′µ
′

be coordinates on M ′ such that x′1, x′2, and

x′3 are constant along the fiducial flowlines. Then we can encode the information in χ via

the 4 scalar fields

xµ
′ ≡ x′µ

′ ◦ χ−1. (B18)

The diffeomorphism ψ : Σ → Σ′ is specified by giving xi|Σ for i = 1, 2, 3. Using the

Lagrangian (71), and following the prescription of section II, one then finds that the matter

part of the symplectic form is

W (m)[φ; δ1φ, δ2φ] =

∫

Σ

3∑

µ=0

(
δ2x

µδ1pµ − δ1x
µδ2pµ

)
, (B19)
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where

pµ ≡ (χ−1
∗ ) a

µ P a, (B20)

with (χ−1
∗ ) a

µ being the inverse of (χ∗)
µ
a = ∇ax

µ. Since (χ−1
∗ ) a

µ ∇ax
ν = δ ν

µ , it follows that

(χ−1
∗ ) a

0 ∝ ua, (B21)

since both sides annihilate ∇ax
i. Consequently,

p0 ∝ uaP a = 0. (B22)

Thus, we obtain

W (m)[φ; δ1φ, δ2φ] =

∫

Σ

3∑

i=1

(
δ2x

iδ1pi − δ1x
iδ2pi

)
. (B23)

The variables xi and pi for i = 1, 2, 3 are thus canonically conjugate.
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