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Abstract. This paper corrects an earlier work suggesting that the quantum

expectation value of the proper length is bounded from below by the Planck length.

The original calculation examined fluctuations of the conformal factor of Einstein-

Hilbert gravity. However, in Einstein-Hilbert gravity, the conformal factor is not a

dynamical field subject to fluctuations. This paper performs the same calculation

using the trace anomaly-induced effective action for the conformal factor and finds

that, while conformal fluctuations modify the short-distance behavior of the interval,

the interval still approaches zero in the coincidence limit.
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1. Introduction

Nearly 30 years ago, Padamanabhan [1, 2] performed a simple calculation suggesting

that quantum gravitational fluctuations place a lower bound on distance measurements.

He considered fluctuations of the conformal factor φ(x) in metrics of the form

gµν (x) = (1 + φ(x))2 ḡµν (x), (1)

while keeping the background metric ḡ classical. Crudely speaking, Padmanabhan

argued that the conformal factor φ(x) has a Green’s function that diverges as 1
(x−x′)2

,

in such a way that gµνdx
µdxν remains finite in the coincidence limit.

This calculation was part of a larger approach to quantum gravity and quantum

cosmology in which the conformal factor was treated as a dynamical field to be quantized,

while the rest of the metric was treated as a classical field as in standard QFT. This

approach sidesteps some of the thornier conceptual problems associated with quantizing

the metric, since conformal fluctuations preserve the causal structure of spacetime.

However, this calculation is almost certainly wrong. In pure Einstein-Hilbert gravity,

the conformal factor is not a dynamical degree of freedom [3]. This is most clearly

seen using the York decomposition of symmetric tensors [4], in which the conformal

factor is determined by a constraint equation similar to the Gauss law constraint in

electrodynamics.

To see where the argument went wrong, we must examine the path-integral

approach taken by Padmanabhan and Narlikar [5, 6]. The classical action and path

integral are

S[g] =
1

16πG

∫

d4x
√
−g(R− 2Λ) (2)

Z =

∫

[Dg]exp {iS[g]} (3)

In terms of the conformal factor and background metric, the action becomes

S[ḡ, φ] =
1

16πG

∫

d4x
√
−ḡ

[

R̄(1 + φ(x))2 − 2Λ(1 + φ(x))4 − 6φiφi

]

(4)

From here, the calculation proceeds in a straightforward manner. Consider the

expectation value of the interval in a (Minkowski) vacuum state ḡµν = ηµν :

〈0|ds2|0〉 = 〈0|gµν|0〉dxµdxν = (1 + 〈φ2(x)〉)ηµνdxµdxν . (5)

However, 〈φ2〉 evaluated at a single event diverges. Using covariant point-splitting, we

instead evaluate the interval between two events xµ and yµ ≡ xµ+dxµ, in the limit that

xµ → yµ. With the notation l̄2 = ηµνdx
µdxν , we examine

lim
x→y

〈ds2〉 ≡ lim
x→y

(1 + 〈φ(x)φ(y)〉)ηµνdxµdxµ = lim
x→y

(1 + 〈φ(x)φ(y)〉)l̄2 (6)

With ḡµν = ηµν , the action (4) is just the action for a massless scalar field, albeit with

a negative sign‡, S[φ] = − 1
2L2

p

∫

φiφid
4x. The Green’s function is

〈φ(x)φ(y)〉 =
L2
p

4π2
· 1

(x− y)2
(7)

‡ Obtaining the clean result (8) requires a nonstandard definition of the Planck length, L2

p = 4π
3

G
~c3

.
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and so the interval becomes

lim
x→y

(1 + 〈φ(x)φ(y)〉)l̄2 = lim
x→y

〈φ(x)φ(y)〉l̄2

= lim
x→y

L2
p

4π2
· 1

(x− y)2
l̄2 =

L2
p

4π2
(8)

In other words, quantum fluctuations produce a “ground state length” just as a harmonic

oscillator has a ground state energy.

Note that the path integral approach taken here obscures the fact that the conformal

factor is not a true dynamical field subject to quantum fluctuations. The source of this

confusion is the apparent kinetic term in the action (4), which justifies all subsequent

steps leading to (8). However, in the hamiltonian framework, the trace part of the metric

perturbations does not have a canonically conjugate momentum, and a true kinetic term

for the conformal factor should not appear in the action.

The explanation for the offending term is hidden in the measure of (3) and was

finally resolved by Mazur and Mottola [7]. To identify the correct measure, they

first decomposed the space of metric perturbations into diffeomorphisms and physical

fluctuations. The remaining physical subspace was further decomposed into constrained

(conformal) and dynamical (transverse-traceless) degrees of freedom. Seen in this light,

(1) amounts to a change of coordinates in the space of metrics, which introduces a non-

trivial Jacobian in the measure. A field redefinition of the conformal factor then turns

the apparent kinetic term in (4) into a potential term, confirming the result that the

conformal modes are non-propagating constrained modes.

2. A Dynamical Conformal Field

While the conformal factor is non-propagating in pure Einstein-Hilbert gravity, the

classical constraints that fix the conformal part of the metric fluctuations in terms of

matter sources cannot be maintained upon quantization [8]. The trace anomaly of

matter coupled to gravity induces an effective action for the conformal factor that gives

rise to non-trivial dynamics [9]. In other words, the conformal factor is promoted to

a dynamical field when gravity is coupled to quantized matter. Thus we can revisit

Padmanabhan’s calculation in light of this dynamical model of the conformal factor.

We begin by summarizing the basic results of Antoniadis, Mazur and Mottola

[8]. The effective action of the conformal factor becomes local in the conformal

parameterization

gµν(x) = e2σ(x)ḡµν(x), (9)

where ḡµν is a fiducial metric. The total effective action is

S = SEH + Smatt + Sanom, (10)

where SEH is the Einstein-Hilbert action (2) evaluated at g = e2σḡ, Smatt is the action

for matter fields, and Sanom is the trace anomaly-induced effective action [10]

Sanom[ḡ; σ] =

∫

d4x
√−ḡ

[

2b′σ∆̄4σ + b′
(

Ē − 2

3
�̄R̄

)

σ + bF̄ σ

]

. (11)



Conformal fluctuations do not establish a minimum length 4

Here, ∆4 is the conformally invariant fourth-order operator

∆4 = �
2 + 2Rµν∇µ∇ν −

2

3
R�+

1

3
(∇µR)∇µ (12)

and

F ≡ CµνρλC
µνρλ = RµνρλR

µνρλ − 2RµνR
µν +

1

3
R2 (13)

E ≡ RµνρλR
µνρλ − 4RµνR

µν +R2 (14)

are the square of the Weyl tensor and the Gauss-Bonnet integrand, respectively. The

coupling constants b and b′ depend on the matter content of the theory [8, 11]:

b =
1

16π2

1

120
(NS + 3NF + 12NV − 8) + bgrav (15)

b′ = − 1

32π2
Q2

= − 1

16π2

1

360

(

NS +
11

2
NF + 62NV − 28

)

+ b′grav, (16)

where NS, NF and NV are the numbers of scalar, Weyl fermion, and vector fields. The

spin-0 and ghost contributions are included in the -8 and -28 factors, while bgrav and

b′grav count the contributions from the spin-2 metric fields. Because the values of these

gravitational contributions, as well as contributions beyond the Standard Model, remain

open questions, Q2 will be treated as a free parameter.

The total trace anomaly of the full theory described by (10) must vanish [8]. The

absence of this anomaly requires that the vacuum is a conformal fixed point at which

the β functions of all couplings must vanish. The physical metric then acquires an

anomalous scaling dimension

gµν(x) = e2ασ(x)ḡµν(x), (17)

where α is determined by the β function for the Einstein-Hilbert action [9],

α =
1−

√

1− 4
Q2

2
Q2

. (18)

From here we can follow Padmanabhan’s prescription. Looking only at conformal

fluctuations and choosing a Minkowski fiducial metric ḡµν = ηµν , the action (10) reduces

to

Seff [σ] = − Q2

(4π)2

∫

d4xσ�̄2σ +
1

8πG

∫

d4x
[

3e2ασ (∂aσ)
2 − Λe4ασ

]

. (19)

The action simplifies again by invoking the translational invariance of the measure and

shifting σ by a constant σ0 [9]. In the limit σ0 → −∞, the final terms drop out, leaving

only the free quartic action. The propagator for this fourth-order kinetic term is k−4 in

momentum space, which is just a logarithm in coordinate space:

〈σ(x)σ(y)〉 = − 1

2Q2
ln[µ2(x− y)2], (20)

where µ is an infrared cutoff.
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Now the expectation value of the interval (6) becomes

lim
x→y

〈ds2(x, y)〉 = lim
x→y

〈eασ(x)eασ(y)〉ηµνdxµdxν

= lim
x→y

eα
2〈σ(x)σ(y)〉 ℓ̄2(x, y)

∝ lim
x→y

[

ℓ̄(x, y)
]2−α2/2Q2

, (21)

where the first line makes use of covariant point-splitting, and normal ordering is used

on each operator eασ(x) individually. The second equality in (21) is a standard field

theory result that makes use of the Baker-Campbell-Hausdorff relation§. This yields

the interesting result that the scaling depends on the matter content: the distance

approaches zero for all values Q2 < −1/12 or Q2 ≥ 4. From (18), positive values of

Q2 < 4 are excluded at the conformal fixed point. The interval is constant at the

critical point Q2 = −1/12, and −1/12 < Q2 < 0 gives the nonsensical result that

distances diverge in the limit ℓ̄ → 0. For large Q2, the interval scales as 2 − 1
2Q2 , and

classical scaling is recovered in the limit |Q2| → ∞.

It follows from (16) that Q2 > 0 for normal matter; however, it is worth noting that

some models of conformal supergravity contribute negatively to Q2 [12]. Calculations of

the one-loop contributions from Einstein gravity place it atQ2
grav ≈ 7.9 [13, 8]. Together,

the Standard Model particle content (NF = 45 and NV = 12) and one-loop gravitational

contributions give a value

Q2
SM ≈ 13.2. (22)

The greatest uncertainty in the value of Q2 comes from the gravitational contributions,

and a precise theoretical prediction for Q2 remains an open problem. Recent attempts

to place observational limits on Q2 using WMAP data claim to limit Q2 to the range

|Q2| > 80 [16].

Thus a more complete treatment of conformal fluctuations using the trace anomaly-

induced effective action do not place a lower bound on the distance between two points.

Of course this result should be viewed with some skepticism. In particular, the spin-2

metric fluctuations are expected to become important around the Planck scale but have

been frozen out in this approach. Additionally, the transition from Einstein gravity

to the conformally invariant phase described by (11) is poorly understood, and more

research is need to determine the scales at which the effective action becomes significant.

§ This result requires that the operators in the exponent be no more than linear in creation/annihilation

operators, and that the creation and annihilation operators obey standard commutation relations.

While this is certainly true for a free Klein-Gordon field, it is no longer obvious for the quartic action

(19). For example, we expect a quartic field to have two sets of creation and annihilation operators.

Recent efforts to quantize the conformal factor in R × S3 [14] and Minkowski space [15] confirm both

of these requirements.
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