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Abstract.

In Horava’s theory of gravity coupled to a global monopole source, we seek for

static, spherically symmetric spacetime solutions for general values of λ. We obtain

the explicit solutions with deficit solid angles, in the IR modified Horava gravity model,

at the IR fixed point λ = 1 and at the conformal point λ = 1/3. For the other values

of 1 > λ > 0 we also find special solutions to the inhomogenous equation of the gravity

model with detailed balance, and we discuss an possibility of astrophysical applications

of the λ = 1/2 solution that has a deficit angle for a finite range.
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Since recently Horava proposed a renormalizable gravity theory in the UV limit [1],

a lot of related works have been widely circulated. Studies on Horava-Lifshitz cosmology

[2], black hole solutions [3, 4], and other interesting topics [5] have been reported.

In the IR modified Horava theory of gravity [1] where the detailed balance condition

is softly violated (via the term proportional to ωR in Eq. (4) below), we study

geometric structures affected by gravitationally coupled global monopole(GM) source

[7]. Considering static, spherically symmetric spacetimes, we obtain solutions to a set of

equations derived for general values of λ. In this IR modified model, we find the explicit

solutions at the IR fixed point λ = 1 and at the conformal point λ = 1/3. In both cases

deficit solid angles occur.

For the other values of 1 > λ > 0 in the case with detailed balance ω = 0, we have

new special solutions, in addition to known general solutions [3] to the corresponding

homogeneous equation. By simple analysis, we show that the GM spacetime in the case

λ = 1/2 can have a deficit solid angle only for a finite range and that it is asymptotically

flat. We discuss an possibility of its astrophysical applications.

Using the ADM decomposition of the spacetime metric

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt) (1)

with the lapse N and shift fields N i, the IR modified Horava gravity theory is described

by the action

SH =
∫

dtd3x
√
gN [LK + LV ], (2)

where the kinetic term

LK = 2κ−2(KijK
ij − λK2) (3)

is made of the extrinsic curvature Kij(≡ 2N−1(ġij −∇iNj −∇jNi)), its trace K and a

parameter λ. LV includes all potential terms satisfying the detailed balance condition

[1], and it is given by

LV = κ2[− 1

2ζ4
CijC

ij +
µ

2ζ2
ǫijkRil∇jR

l
k −

µ2

8
RijR

ij

+
µ2

8(1− 3λ)
(
1− 4λ

4
R2 + ΛR− 3Λ2)− µ2ω

8(1− 3λ)
R], (4)

where Λ (< 0) is a cosmological constant and the last term which violates softly the

detailed balance condition is added [1].

When we adopt the static, spherically symmetric metric ansatz as

ds2 = −N2(r) dt2 +
dr2

f(r)
+ r2(dθ2 + sin2θdφ2), (5)

we can write SH = 4π
∫

dtdrLH with the Lagrangian density

LH =
N

q2
√
f
[3Λ2r2 + 2(ω − Λ)(1− f − rf ′) (6)

+ (1− λ)
f ′2

2
+ (1− 2λ)

(1− f)2

r2
− 2λ

(1− f)f ′

r
],



Global monopole solutions in Horava gravity 3

where q2 = 8(3λ− 1)/(κ2µ2).

Let us consider a GM source which has the action written upto O((∂j~Φ)
2) [6]

Smatter = −
∫

dtd3x
√
gN [− 1

2N2
∂t~Φ·∂t~Φ+

1

2
gij∂i~Φ·∂j~Φ+

χ

4
(~Φ2−η2)2], (7)

with a dimensionless coupling constant χ. We can write Smatter = 4π
∫

dtdr Lmatter with

Lmatter = −Nr2√
f
[
1

2
(fh′2 +

2h2

r2
) +

χ

4
(h2 − η2)2], (8)

where a hedgehog ansatz for the GM, ~Φ = h(r)~x/r, is assumed.

Performing variation of the total action Stotal = SH + Smatter with respect to h(r),

N(r), and f(r) respectively, we obtain the following equations:

√
f

Nr2
(
Nr2√

f
fh′)′ =

2h

r2
+ χ(h2 − η2)h, (9)

(1− λ)
f ′2

2
+ (1− 2λ)

(1− f)2

r2
− 2λ

(1− f)f ′

r
+ 2(ω − Λ)(1− f − rf ′) + 3Λ2r2

= q2r2[
fh′2

2
+

h2

r2
+

χ

4
(h2 − η2)2], (10)

(
N√
f
)′ [−2λ

(1− f)

r
+ (1− λ)f ′ − 2r(ω − Λ)] (11)

= − N√
f
[2(1− λ)

(1− f)

r2
+ (1− λ)f ′′ + q2

r2h′2

2
].

With the solution to Eq. (9)

h(r) = η (12)

valid for the outside of the GM core, r > χ−1/2η−1 [7], the solutions to the other

equations (10) and (11) for various values of λ are given as follow.

1. λ = 1 case

In this λ = 1 case where Horava’s theory coincides with Einstein’s general theory of

relativity in IR limit, Eq. (12) gives us the simple solution to Eq. (11) as N/
√
f = 1.

Putting 1− f ≡ −(ω − Λ)r2 +X1/2, we can rewrite the remaining equation (10) as

3ω(ω − 2Λ)r2 + q2η2 =
X ′

r
− X

r2
, (13)

whose solution is

f = 1 + (ω − Λ)r2 −
√

ω(ω − 2Λ)r4 + q2η2r2 + βr. (14)

Note that Eq. (14) would be the same as the result of Ref. [8] if there were

not the additional new term q2η2r2. In the limit r >>
√

q2η2/[ω(ω − 2Λ)] and

r >> [β/{ω(ω − 2Λ)}]1/3, Eq. (14) can be approximated as

f = 1− q2η2

2
√

ω(ω − 2Λ)
+

Λeff

2
r2 − β

2
√

ω(ω − 2Λ) r
, (15)
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which can be compared with the Schwarzschild-AdS black hole carrying a GM charge

qη and a mass M ≃ β/[4
√

ω(ω − 2Λ)]. Here a effective cosmological constant Λeff ≡
2[(ω−Λ)−

√

ω(ω − 2Λ)](≃ Λ2/ω for −Λ < ω) and a deficit angle q2η2/[2
√

ω(ω − 2Λ)] =

8η2/[κ2µ2
√

ω(ω − 2Λ)].

2. 1 > λ case

With Eq. (12) in the case where 1 > λ, we can rewrite Eq. (10) as

1− λ

2
(
dY

du
)2 +

1− 3λ

1− λ
Y 2 = 3ω(ω − 2Λ)e(

4λ
1−λ

+4)u + q2η2e(
4λ
1−λ

+2)u (16)

with u = ln r and Y (u(r)) = r2λ/(1−λ)(1− f(r)) + (ω − Λ)r2/(1−λ)

2.1. λ = 1
3
case

In the case λ = 1/3 where it is allowed for us to get a nontrivial conformal limit [9],

the set of equations in Eqs. (9)-(11) obtained from Eqs. (4) and (8) can be replaced by

the same form with only substitution q2 → q2/(3λ− 1) = 8/(κ2µ2), and we have their

solutions

f = 1 + (ω − Λ)r2 − 2M

r
−

√
3

9ω(ω − 2Λ) r
[
8η2

κ2µ2
+ 3ω(ω − 2Λ)r2]

3
2 , (17)

and N2 = r2f(r). Eq. (17) goes to

f = 1− 4η2

κ2µ2
√

ω(ω − 2Λ)
+

Λeff

2
r2 − 2M

r
, (18)

in the region r >>
√
8η/[κµ

√

ω(ω − 2Λ)]. In this large r limit, f(r) (of this case λ = 1/3)

is almost the same as one of the λ = 1 case (in Eq. (15)) except different values of the

deficit angle, while the lapse functions N(r) in these cases are very different from each

other.

When there is no GM source, we have

f = 1 +
Λeff

2
r2 − 2M

r
, (19)

and N2 = f(r).

2.2. 1 > λ > 1
3
case

From now on, we consider the case with detailed balance condition (i.e. ω = 0) and

without q2 rescaling which is done in the case λ = 1/3. Eq. (16) can be written as a

simple inhomogeneous equation

(
dY

dU
)2 = AY 2 +BeU , (20)

where U ≡ γu, A = 2(3λ − 1)/(γ2(1 − λ)2), B = 2q2η2/(γ2(1 − λ)), and γ =

2(1 + λ)/(1− λ).
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The solution is

f = 1− Λr2 − qη

√

1− λ

3λ− 1

r

R(r)
, (21)

where with a constant cR

ln r(R) (=
U

γ
) = cR −

√

2(3λ− 1)

λ− 3
ln

√
1 +R2 − 1

R

+
1 + λ

λ− 3
ln
|1−

√
2(3λ−1)(1+R2)

1+λ
|

R
. (22)

From the last equation we can estimate the asymptotic behavior of Eq. (21) as; r/R ≃ 0

for largeR, while, for small R, r/R ∝ r1−1/n(λ) with n(λ) ≡ −1+(4+
√

2(3λ− 1))/(3−λ)

and −1 < 1 − 1/n(λ) < 1/2. Since especially r/R = constant when n(λ = 1/2) = 1,

we may have a deficit angle for a finite range r < r0 (with a constant r0) in the case

λ = 1/2.

The lapse function N =
√

f(r)M with

ln
M

√

2(1− λ)q2η2 + 2(3λ− 1)r−2(1− f − Λr2)2

=
∫

dr[
2λ

(1− λ)r
(23)

− 2(3λ− 1)(1− f − Λr2)

(1− λ)r2
√

2(1− λ)q2η2 + 2(3λ− 1)(1− f − Λr2)2/r2
].

When qη = 0, the lapse [3]

N =
√

f(r) r
1+3λ±2

√
2(3λ−1)

1−λ (24)

is obtained from Eq. (23) with the substitution of the term 1− f −Λr2 by r
−2λ±

√
2(3λ−1)

1−λ

[3] which is a solution to the corresponding homogeneous equation of (20) (instead of

the last term in Eq. (21)).

2.3. λ < 1
3
case

When λ < 1
3
, Eq. (20) is replaced by

(
dY

dU
)2 = −αY 2 +BeU , (25)

with α = 2(1 − 3λ)/(γ2(1 − λ)2) > 0 and B > 0 given below Eq. (20). This

inhomogeneous equation has a (special) solution

f = 1− Λr2 − qη

√

1− λ

1− 3λ
r I(r), (26)
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where

ln r(I) =
U

γ
= cI −

√

2(1− 3λ)

λ− 3
arctan

I√
1− I2

+
1 + λ

λ− 3
ln|

√

2(1− 3λ)(1− I2)

1 + λ
− I|. (27)

The lapse function in this case can be obtained by the similar method as we have done

in Eq. (23).

In summary, we have studied the IR modified Horava theory of gravity. In static,

spherically symmetric spacetimes, we obtain exact solutions (valid outside a GM core)

for general values of λ to the equations of gravity coupled to the GM. As we can see

from Eqs. (15) and (18) obtained in the large r limit, in the cases λ = 1 and λ = 1/3

we have deficit angles as in Einstein’s theory of gravity coupled to the GM [7]. f(r) of

the case λ = 1/3 (in Eq. (18)) is almost the same as one of the λ = 1 case (in Eq. (15))

except different values of the deficit angle. We also have the explicit solutions of the

lapse function in both cases.

In the case 1 > λ > 1/3 we have studied the Horava model with detailed balance and

obtained special solutions, in addition to known general solutions [3] to its homogeneous

equation. When especially λ = 1/2, r/R ≃ constant for r < r0 as seen in Eqs. (21), (22)

and below, and we can have a GM spacetime that has a deficit solid angle for a finite

range and is asymptotically flat, which is different from the GM spacetime in Einstein’s

theory of gravity [7]. This might be more helpful for us, with the GM as Refs. [10, 11],

to explain near flatness of rotation curves of galaxies, which appears over a finite range

0 << r < r0.

To explain the near flatness of rotation curves in preceding models using GM with

an energy density proportional to r−2, we need nonlinear coupling between gravity and

the GM as nonminimal coupling in Ref. [10] or Brans-Dicke field coupling. In the latter

case, as discussed below Eq. (4) of Ref. [12], it can be yielded by the finite range,

logarithmic gravitational potential that is derived from the Brans-Dicke field equation.

For the rotation velocity formula to be valid only for the finite range given by the galactic

halo radius r0, the responsible GM field should vanish at distance larger than r0 due to

interactions with the nearest topological defect such as anti-monopole, in the way that

the GM field lines can be absorbed into the anti-monopole core, as argued in Ref. [12].

Instead, if we study further (possibly considering Brans-Dicke field coupling to

Horava gravity [13]) the λ = 1/2 Horava gravity solution given below Eq. (22) having a

finite range deficit angle, more natural explanations for the near flatness can be possible.

This kind of r-dependent, deficit solid angle was obtained in Brans-Dicke gravity theory

[14], by studying the quantum effects [15] due to the GM, which can be expressed as

quadratic in curvature as if the Horava gravity with detailed balance. When we almost

complete our study, we see Ref. [16] that has reported results including some information

consistent with ours in the section 1. We have not considered higher derivative terms

of GM fields in Eq. (7) for simplicity. Even if we add these terms (∂j(∂k∂
k)(z−1)/2~Φ)2
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(1 < z ≤ 3) [6, 16], with the vacuum solution Eq. (12) our main results are not changed

in the leading 1/r approximation.
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