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Simple generalizations of Anti-de Sitter space-time
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We consider new cosmological solutions which generalize the cosmological patch of the Anti-de
Sitter (AdS) space-time, allowing for fluids with equations of state such that w # —1. We use
them to derive the associated full manifolds. We find that these solutions can all be embedded in
flat five-dimensional space-time with — — 4+ 4+ + signature, revealing deformed hyperboloids. The
topology and causal-structure of these spaces is therefore unchanged, and closed time-like curves
are identified, before a covering space is considered. However the structure of Killing vector fields is
entirely different and so we may expect a different structure of Killing horizons in these solutions.

PACS numbers: 0000000
I. INTRODUCTION

Anti-de Sitter (AdS) space-time [6, |8] is a maximally
symmetric solution to Einstein’s field equations with a
negative cosmological constant A. It is one of the sim-
plest solutions to Einstein’s gravity and as such it has
been a prime test ground for new ideas and toy models
in (quantum) gravity. More recently, AdS is best known
for its role in the AdS/CFT correspondence |2-5], which
conjectures that string theories on a given space are dual
to conformal field theories on the conformal boundary of
this space. Typically the space in question is the prod-
uct of AdS with a closed manifold. For example type 11B
string theory on AdSs x S° is dual to N' = 4 SYM on the
4D boundary of AdSs.

A natural question is whether more realistic space-
times might support extensions of conjectures made (or
theorems proved) for AdS. For this reason it is interesting
to consider deformations of AdS, i.e. families of solutions
to Einstein gravity which contain AdS as a limiting case
(allowing, by suitably varying a parameter, to be as close
as wanted to AdS).

It is well known that a portion of AdS can be discov-
ered using the formalism of homogeneous and isotropic
cosmology. The full manifold can then be inferred by ex-
tension. In this paper we consider cosmological solutions
that follow from altering the equation of state w = p/p
(where p is the pressure and p is the energy density).
AdS follows from w = —1, but a variety of solutions with
similar properties result from w < —1/3. In Section [I]
we derive these solutions and in Section [[IIl we use them
to infer their associated inextendible manifolds. Finally
in Section [[V] we carry out a preliminary study of the
local and global properties of these solutions.

II. COSMOLOGICAL SOLUTIONS

A patch of AdS may be discovered using the formalism
of Friedmann-Roberstson-Walker (FRW) homogeneous
and isotropic cosmology. As is well known, for a con-

stant equation of state w = p/p, the continuity equation,

p+3§p(1+w):0 (1)
integrates into p oc a=3(1+*) so that the Friedmann equa-
tion:
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where 8 = —(1 + 3w) and C is a constant. The cosmo-
logical portion of AdS follows from k = —1, w = —1, so

that (3) becomes
a2=1+(%+0)a2, (4)

with the extra condition C' + A/3 < 0. Setting w? =
—(C+A/3) converts [@]) into a simple harmonic oscillator
equation:

a* =1-—w?a? (5)
The FRW form of the AdS, is

solved by a = coswt.
therefore:

ds® = —dt* + cos? (wt) do (6)

where do is the metric on a 3D homogeneous space neg-
atively curved:

dr? 9
do = m —+7r dQQ (7)

where dQy = df? + sin? 0 d¢? is the area element of a
2-sphere.

In this construction we can use interchangeably a neg-
ative cosmological constant or a fluid with w = —1 and
negative energy. A generalization can be obtained by

considering a fluid with negative energy (C < 0), but
with any w < —1/3 (with A = 0 and k£ = —1). To fix
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ideas set C = —1 (but a generalization is straightfor-
ward). Then the Friedman equation becomes

al=1-d", (8)

where 8 = —(1 + 3w) > 0. This is no longer a simple
harmonic oscillator equation but, availing ourselves of the
diffeormorphism invariance of relativity, we may define a
time variable n via:

1—a?
dt2—<1_aﬂ> d’)’]2 (9)

Time coordinate 7 is not proper time for a cosmologi-
cal observer, but, rather, a “harmonic” time for which
Eq. @) reduces to

a?=1-ad? (10)
where a’ = da/dn. Thus a = cosn leading to metric:

.
ds® = — (%) dn? + cos’n do (11)

so that with these coordinates only ggo is modified.

For g = 2, (i.e. w = —1) metric (IIl) reduces to the
AdS metric. For 8 = 0 (corresponding to w = —1/3,
i.e. the Milne universe), the gop component becomes sin-
gular. For other f > 0 (w < —1/3) we have obtained
generalizations of the AdS solution. They can only be
considered in the Friedmann patch of the manifold, and
hence it would be interesting to seek their complete man-
ifold, just like for AdS.

For completeness, we include our metric written in
terms of proper time ¢. We note that

_ da_ _ 11,15
t—/m—agFl<2,ﬂ,l+ﬂ,a> (12)

where oF} is a hypergeometric function. We can thus
recast (IT)) in terms of ¢, but the result must be expressed
in terms of special functions and their inverses.

One may wonder what kind of matter content could
lead to these models. Most obviously one could consider
a scalar field with a suitable potential. For K = 0 an
exponential potential leads to solutions with constant w,
and it’s possible to obtain any w < —1/3 (and even a
negative energy density) by carefully choosing the sign
of the kinetic and potential energy terms . Sim-
ilar solutions might be obtainable for K = —1 with an
appropriate choice of potential. We defer this study to
future work, but note that one often simply postulate the
equation of state w for a fluid.

III. THE ASSOCIATED FULL MANIFOLD

The complete extension of the above patch can be ob-
tained by a simple adaptation of the procedure for AdS,

which we briefly review here []. Consider a 5D manifold
with metric

ds* = —du® — dv* + da* + dy? + d2* (13)
where there live a series of hyperboloids (see Fig. [Il):
u? +v? — 2% —y? - 2% =p?. (14)

We can introduce a system of coordinates {¢,r, p, 8, ¢} by
means of:

u = psint

v = pcost V1+712

x = pcostrcos

y = pcost rsinfcosd

z = pcost rsinfsing (15)

for which p = constant represents the hyperboloids.

FIG. 1: As is well known AdS space can be represented by an
hyperboloid living in 5D flat space with signature — — + + +.
Closed time-like curves are evident (see text; but note that
any curve in the u,v plane is time-like).

The induced metric on the hyperboloids may be found
by writing ([I3]) in terms of these coordinates and setting
dp = 0, an exercise that reveals the metric (@). Thus
the portion of the hyperboloids covered by these coordi-
nates are embeddings of the AdS Friedmann patch. For
different p, different values of w are recovered.

To find the whole manifold, we note that there are
apparent singularities at ¢t = :t%ﬂ' and therefore these
coordinates do not cover the whole space ﬂa] We can re-

frame the space into a system of static coordinates using
relations [1, [2]:

psint’ coshr’

pcost’ coshr’

psinhr’ cosd

= psinh v’ sin 6 cos ¢

= psinhr’sinfsing . (16)
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These cover the full hyperboloid and for p = 1 the metric
is now

ds® = — cosh® 7’ dt"* + dr'’? + sinh? 7/ dQ, . (17)

By choosing different values of p different A may be im-
plemented, but as before, we shall consider p = 1 to fix
ideas in what follows.

A similar construction may be devised for the gener-
alisations in Eq. (IIl). The manifolds they represent can
be embedded in 5D flat space with the same signature.
Given that the do components of the metric remain the
same we try

x = pa sinhx cosf (18)
y = pa sinhysinf cos ¢ (19)
2z = pa sinh ysinfsin ¢ (20)

and indeed ¥ dz? = p? a?sinh® x d Q3 + [d(pasinh x))]?,
replicating that part of the AdS calculation. Setting v =
pa cosh y and for some yet to be defined function u, we
find:

ds?

—du? — dv? + da?
= —du? - p*da® — a®dp® + p*a*do . (21)

If u. = pJ(n) then
du? = p* J%dn? +2p J J dpdn + J* dp* (22)

where J' = dJ/dn. Inserting a = cosn and equating the
terms in dn? in () and ZI)) gives:

.2
p2J/2d,rI2 — p2 _ Sin2 n 4 S 7 dn2
1—cosPn
_ 2 (sinzncosﬂn) . (23)
1-—- coan
This reduces to
-2 ﬁ
dJ? = (L e 77> dn? (24)
1 —cos”n

which can be explicitly integrated into

2 1 113 1
:ﬂ+2”ﬂ<§+ﬁiﬁ+3”%mOC%MH%
(25)

Thus (I is the metric induced on the p =const surfaces
(for which dp = 0) if we take the 5D space metric to be:

J(n)

ds* = —du? — dv* + da* + dy? + dz* (26)

The p = constant surfaces can be inferred by analogy,
resulting in a deformed hyperboloid of form:

. 2
Sm7) 2 2 2 2 2 2
u;, +v' -z -y  —2"=p 27
(J(n)> 27)

where u. = pJ(n)

We note that for 8 = 2 (i.e. w = —1) we have J = sinyg
and we recover the AdS construction. For g = 0, i.e.
Milne space-time (with w = —1/3) the construction be-
comes singular. For other values of w < —1/3 the result
can be seen most effectively by plotting the resulting de-
formed hyperboloids. As Figure [ shows, if w < —1 the
hyperboloid squashes in the u direction, the more so the
smaller the value of w. For —1 < w < —1/3, as Fig[3
shows, the hyperboloids expand in the u direction in-
stead, the effect becoming more extreme as w = —1/3 is
approached. Since p oc a®~2 there are Ricci singularities
as a — 0. This means that for a = cos(n) = 0, i.e. when
17 = +m/2, there are “point-like” singularities, seen as
cusps on the hyperboloid. We pick the particular case of
B =1 to that find

J(n) o< (VT = cos(n)) cos(n) — sin~(v/eos(m) )~ (28)

which has roots at 7 = +7/2. The hyperboloid construc-
tion fails at these points (which are located on the plane
u=p,v=z=y=z=0). These singular points on the
hyperboloid are found for all 0 < 5 < 2

FIG. 2: The full manifold corresponding to the cosmological
solution with w = —5/3. For all w < —1 the hyperboloid
squashes along the u direction, the effect becoming more pro-
nounced the smaller the w.

IV. DISCUSSION

These manifolds may prove valuable in assessing con-
jectures that theorems proved for AdS generalize to more
realistic space-times. A close scrutiny of their properties
is therefore in order. Here we briefly discuss their most
evident properties.

From the embeddings found it’s immediately obvious
that the new manifolds share with AdS its topology and
aspects of the causal structure. In particular they all
admit closed time-like curves (any curve in the u, v plane
is time-like). From the embedding of AdS we see that the
time ¢’ is periodic: ¢’ and t'+2 7 represent the same point
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FIG. 3: The full manifold corresponding to the cosmological
solution with w = —2/3. For —1 > w > —1/3 the hyperboloid
elongates along the u direction, the more so the closer to
w=—1/3 (i.e. B =0) one gets.

on the hyperboloid. Thus any curve with fixed p, 0, ¢
and increasing t’ is a closed time-like curve (CTC) (see
Fig. (). The same feature is present for all deformed
hyperboloids. By unwrapping these circles one obtains
universal covering spaces, like for AdS [6, [14].

In contrast with these AdS-like features, the structure
of Killing vector fields is entirely changed in the new
spaces. For any 3+1 metric, there exist up to 10 Killing
vector fields: 3 rotational, 3 translational, 3 boosts and
1 time-like vector. All 10 Killing vectors are manifest on
the full AdS manifold. In our solutions, the rotations and
translations survive, but the time-like and boost isome-
tries are obviously lost.

Within these fields, a null integral hypersurface can
sometimes be identified, known as a Killing Horizon. As-
sociated with these there are important geometrical and
thermodynamical quantities ﬂg], such as the surface grav-
ity k, and Hawking’s temperature 7' = x/27. Killing
horizons in AdS are highly non-trivial, however by con-
sidering optical metrics (see [7, §]) one finds three classes
of time-like, orthogonal Killing vectors in the space.
Clearly with the loss of isometries these results do not
translate into our construction, but its thermodynamical
properties should be the subject of a future study.

We have been unable to find the equivalent of static
coordinates for the new spaces, and we conjecture that
they don’t exist (it’s not obvious that a simple adapta-
tion of Birkhoff’s theorem can be used to prove this).
It is easy, however, to adapt the constructions used for
building the AdS Penrose diagram, as well and inferring
the key causal features. Let us write the metric in terms
of conformal time:

| sin | 2 -1
=/d = = tanh™ "[sgn 1 — cosP
3 / ncosn Ty P [sgn(n)v/ gl
(29)

A crucial feature of AdS is that light rays may reach
X = oo in a finite amount of affine parameter (and proper

time for time-like observers). Thus the Friedmann patch
is extendable. This feature is also true here: £(n) diverges
at n = £7/2, and although 7 is not proper time, proper
time is convergent at these points.

The metric can be written in terms of £ by noting that

cos?(n) = sech2% (30)
so that:
ds® = sech’? (%) [—d€? + dx* + sinh® xdQs]  (31)

We can now perform the usual conformal transformation
that maps the metric into a diamond inserted in the Ein-
stein Static Universe (ESU). Specifically we set up null
coordinates:

u = §-x (32)
= &+x (33)
make infinity tangible (and extendable) via:
u
tanp = tanh§ (34)
tang = tanhg (35)

and unwrap the new null coordinates into a new space

and time:

72
|
<>

p = o (36)
g = 52X (37)

This leads to a metric conformal to the ESU:
ds® = Q*(—d€? + dx? + sin® xdQs) (38)

where the initial cosmological patch corresponds to the
diamond —7/4 < p < ¢ < 7/4 (see Fig.[d). The confor-
mal factor is:

BE(p, Q)) (39)

02 = sec(2p) sec(2q) sech® (T

and for 8 = 2 this reduces to Q2 = sec?y, as is well
known. For other values of 8 the expression is more com-
plicated. For example for 8 = 4 we find:

1

P
1+ sin2psin2q

(40)
Using the Hopital rule it can be generally proved that
Q converges on the null boundaries of the cosmologi-
cal diamond. It can also be generally proved that the
only divergence occurs for sin2psin2¢ = —1 (i.e. for
—p = q = w/4 and periodically related points), where
the two null boundaries meet. Indeed away from the null



boundaries of the cosmological patches Q2 can only di-
verge if n = z% This only has real solutions in {p, ¢}

for 8 = 2. Thus the Penrose diagram (see Fig. M) is the
whole Einstein static Universe, if no singularities isolate
part of it. This is true for g > 2. Spatial infinity is at
{ = 7/2 and £ = nx. Unlike with AdS ¥ = 7/2 is no
longer Z%. As with AdS, it is impossible to conformally
render finite time-like infinity without collapsing spatial
distances to a point.

However for f < 2 there are singularities, associ-
ated with a diverging energy density. Homogeneity and
isotropy preclude Weyl curvature, so all singularities
must be Ricci singularities (since w # 1/3, a divergence
of the Ricci tensor entails a divergent Ricci scalar). But
the Ricci curvature is homogeneous in the foliations of
constant &, and these leaves approach the null hypersur-
face that bounds the cosmological half-diamond. There-
fore the space is singular on these surfaces (which are
within a finite affine distance) and the Penrose diagram
of the space-time is that depicted in Fig.
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FIG. 4: The Penrose Diagram for our space-time when g > 2.
Here k and j are observers at x = 0; all cosmological observers
move from k to j inside the half-diamond depicted (to be
repeated up and down the diagram). The diagram can be
extended to the whole Einstein static Universe, i.e. up to
X = w. Points at ¥ = 7/2 and £ = nw represent spatial
infinity.

Finally note that a simple coordinate system can be
obtained if the angular variables can be ignored. By
defining a transformation as above but with (34) and

B3) replaced by

tanp = tanh% (41)

tang = tanh% (42)

one obtains a metric of form

4

ds? = PN (g () d)

B2 cos' "7 (2p) cos' 7 (2q)

(43)

Conformal diagrams may be obtained with these coordi-

nates but they hide a complex structure in the angular

part of the metric F(, %) (with F = sin?§ for § = 2
only).

Y

FIG. 5: The Penrose Diagram for our space-time when § < 2.

V. CONCLUSIONS

In summary we have used the set up of FRW cosmol-
ogy as a springboard to find simple generalizations of
AdS space. They can be seen as w # —1 FRW solutions,
but we extended them to their full manifolds. The em-
beddings found reveal deformed hyperboloids with the
same topology and causal structure as AdS. However the
structure of Killing vector fields is entirely modified and
should be the subject of further enquiry. We hope that
these simple solutions might be useful in assessing the
generality of theorems proved for AdS, but conjectured
to be true in an adapted form in more realistic spaces.

To conclude we stress that it wouldn’t be difficult to
generalize our constructions to de Sitter-like space-times
(for which all we’d need to do it change the sign of the
integration constant C' and the signature of the embed-
ding space). More spatial dimensions could also be trivial
included. Less trivial is the meaning of our construc-
tion when w > —1/3. Then the calculations can still
be trivially carried out, but they lead to Euclidean met-
rics. These spaces were not explicitly constructed here
but may also be of interest.
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